Supporting Information for Manuscript

Efficient Cycloisomerization of Propargyl Amides by Electrophilic Gold(I) Complexes of KITPHOS Monophosphines: A Comparative Study

Simon Doherty, ${ }^{*}{ }^{\dagger}$ Julian G. Knight, ${ }^{*}{ }^{\dagger}$ A. Stephen K. Hashmi, ${ }^{\ddagger}$ Catherine H. Smyth, ${ }^{\dagger}$ Nicholas A. B. Ward, ${ }^{\dagger}$ Katharine J. Robson, ${ }^{\dagger}$ Sophie Tweedley, ${ }^{\dagger}$ Ross W. Harrington, ${ }^{\dagger}$ and William Clegg ${ }^{\dagger}$
${ }^{\dagger}$ School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK and ${ }^{\ddagger}$ Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany

Experimental Section.

General Procedure for the Gold-Catalyzed Cycloisomerizations using Precursors 4a-d. A flamedried Schlenk flask charged with $\mathbf{4 a - d}(0.01 \mathrm{mmol})$, AgOTf ($0.0026 \mathrm{~g}, 0.01 \mathrm{mmol}$) and dichloromethane $(1.0 \mathrm{~mL})$ was stirred for 30 min , after which propargyl amide (0.5 mmol) was added and the resulting mixture stirred for the allocated time. The reaction mixture was diluted with diethyl ether, 1,3dinitrobenzene added $(0.084 \mathrm{~g}, 0.5 \mathrm{mmol})$ and the resulting mixture passed through a short silica plug. The solvent was removed and the residue analyzed by ${ }^{1} \mathrm{H}$ NMR spectroscopy to determine conversions before being purified by column chromatography, eluting with hexane:ethyl acetate. Known products were characterised by NMR spectroscopy and mass spectrometry and unknown products by NMR spectroscopy, mass spectrometry and high resolution mass spectrometry.

General Procedure for the Gold-Catalyzed Cycloisomerizations using 5 and 6. A flame-dried Schlenk flask charged with $\mathbf{5}$ or $\mathbf{6}(0.01 \mathrm{mmol})$, propargyl amide $(0.5 \mathrm{mmol})$ and dichloromethane $(1.0 \mathrm{~mL})$ and the resulting mixture stirred for the allocated time. The reaction mixture was diluted with diethyl ether, 1,3dinitrobenzene added $(0.084 \mathrm{~g}, 0.5 \mathrm{mmol})$ and the resulting mixture passed through a short silica plug. The solvent was removed and the residue analyzed by ${ }^{1} \mathrm{H}$ NMR spectroscopy to determine conversions before being purified by column chromatography, eluting with hexane:ethyl acetate. Known products were characterised by NMR spectroscopy and mass spectrometry and unknown products by NMR spectroscopy, mass spectrometry and high resolution mass spectrometry (HRMS).

2-tert-Butyl-5-methylene-4,5-dihydrooxazole (Table 1, Entries 1-6). ${ }^{1} \mathrm{H}$ NMR (500.16 MHz, $\left.\mathrm{CDCl}_{3}, \delta\right): 4.63\left(\mathrm{dt}, J=2.75 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 4.39\left(\mathrm{dd}, J=2.75 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.21(\mathrm{dt}, J=2.75$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}} H_{\mathrm{b}}\right), 1.22\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125.76 MHz, $\left.\mathrm{CDCl}_{3}, \delta\right): 173.8(C=\mathrm{N})$, $159.6\left(C=\mathrm{CH}_{2}\right), 82.7\left(\mathrm{C}=\mathrm{CH}_{2}\right), 57.8\left(\mathrm{CH}_{2}\right), 33.4\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $27.4\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$; MS $\left(\mathrm{EI}^{+}\right) \mathrm{m} / \mathrm{z} 140$ $[\mathrm{M}+\mathrm{H}]^{+}$.

2-(Cyclohexyl)-5-methylene-4,5-dihydro-1,3-oxazole (Table 1, Entries 7-12). ${ }^{1} \mathrm{H}$ NMR (500.16 MHz , $\left.\mathrm{CDCl}_{3}, \delta\right): 4.62\left(\mathrm{dt}, J=2.16 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 4.39\left(\mathrm{dd}, J=2.16 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.21(\mathrm{dt}, J=2.16 \mathrm{~Hz}, 1 \mathrm{H}$,
$\left.\mathrm{CH}_{\mathrm{a}} H_{\mathrm{b}}\right), 2.34(\mathrm{tm}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Cy}-H), 1.94(\mathrm{dm}, J=10.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Cy}-H), 1.77(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Cy}-H), 1.64$ (m, 1H, Cy-H), 1.44 (qd, $J=11.9,2.8 \mathrm{~Hz}, \mathrm{Cy}-\mathrm{H}), 1.26(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Cy}-H) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125.76 MHz , $\left.\mathrm{CDCl}_{3}, \delta\right): 170.6(C=\mathrm{N}), 159.0\left(C=\mathrm{CH}_{2}\right), 82.7\left(\mathrm{C}=\mathrm{CH}_{2}\right), 57.0\left(\mathrm{CH}_{2}\right), 37.3(\mathrm{Cy}), 29.4(\mathrm{Cy}), 25.8(\mathrm{Cy}), 25.5$ (Cy); MS (EI $) m / z 165[\mathrm{M}+\mathrm{H}]^{+}$.

5-Methylene-2-phenyl-4,5-dihydrooxazole (Table 1, Entries 13-18). ${ }^{1} \mathrm{H}$ NMR (500.16 MHz, CDCl_{3}, $\delta): 7.96\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} H_{5}\right), 7.29\left(\mathrm{t}, J=7.40 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} H_{5}\right), 7.40\left(\mathrm{t}, J=7.60 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} H_{5}\right), 4.80$ $\left(\mathrm{dt}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 4.63(\mathrm{dd}, J=3.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}), 4.35\left(\mathrm{dt}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}} H_{\mathrm{b}}\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.125.76 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right)$: $163.6(C=\mathrm{N})$, $158.7\left(C=\mathrm{CH}_{2}\right)$, $131.7\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)$, $128.4\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)$, $127.9\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)$, $126.7\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 83.7\left(\mathrm{C}=\mathrm{CH}_{2}\right), 57.7\left(\mathrm{CH}_{2}\right)$; MS $\left(\mathrm{EI}^{+}\right) \mathrm{m} / \mathrm{z} 160[\mathrm{M}+\mathrm{H}]^{+}$.

5-Methylene-2-(thiophen-2-yl)-4,5-dihydrooxazole (Table 1, Entries 19-24). ${ }^{1} \mathrm{H}$ NMR (399.78 MHz , $\left.\mathrm{CDCl}_{3}, \delta\right): 7.64(\mathrm{dd}, J=3.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}$, thieny- H), $7.48(\mathrm{dd}, J=4.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}$, thienyl- H), $7.09(\mathrm{dd}, J=$ $4.5,3.7 \mathrm{~Hz}, 1 \mathrm{H}$, thienyl- H), $4.78\left(\mathrm{dt}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 4.60\left(\mathrm{dd}, J=2.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH} \mathrm{H}_{2}\right), 4.34(\mathrm{dt}, J=$ $\left.2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}} H_{\mathrm{b}}\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(125.76 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 158.6(C=\mathrm{N})$, $158.2\left(C=\mathrm{CH}_{2}\right), 130.8$ $\left(\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~S}\right), 130.3\left(\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~S}\right), 129.4\left(\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~S}\right), 128.0\left(\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~S}\right), 84.1\left(\mathrm{C}=\mathrm{CH}_{2}\right)$, $57.6\left(\mathrm{CH}_{2}\right) ; \mathrm{MS}\left(\mathrm{EI}^{+}\right) m / z=165$ $[\mathrm{M}]^{+}$.

2-(2-Furyl)-5-methylene-4,5-dihydro-1,3-oxazole (Table 1, Entries 25-30). ${ }^{1} \mathrm{H}$ NMR (399.78 MHz , $\left.\mathrm{CDCl}_{3}, \delta\right): 7.54(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}$, furyl- $-H), 6.98(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}$, furyl- H), $6.47(\mathrm{dd}, J=3.6,1.8 \mathrm{~Hz}$, 1 H , furyl- H), $\left.4.78\left(\mathrm{dt}, J=3.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 4.60(\mathrm{dd}, J=3.2,3.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH})^{2}\right), 4.34(\mathrm{dt}, J=3.2$, $\left.3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}} H_{\mathrm{b}}\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(125.76 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 158.1(C=\mathrm{N}), 155.9\left(C=\mathrm{CH}_{2}\right), 145.6$ $\left(\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{O}\right), 141.9\left(\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{O}\right), 114.9\left(\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{O}\right), 111.6\left(\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{O}\right)$, $84.2\left(\mathrm{C}=\mathrm{CH}_{2}\right), 57.3\left(\mathrm{CH}_{2}\right) ; \mathrm{MS}\left(\mathrm{EI}^{\dagger}\right) m / z=150$ $\left[\mathrm{M}+\mathrm{H}^{+}\right.$; HRMS (ESI ${ }^{+}$): exact mass calcd for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$requires $\mathrm{m} / \mathrm{z} 150.0555$, found m / z 150.0601 .
\boldsymbol{E}-5-Methylene-2-styryl-4,5-dihydrooxazole (Table 1, Entries 31-36). ${ }^{1} \mathrm{H}$ NMR ($500.16 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $\delta): 7.48\left(\mathrm{dd}, J=7.7,1.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} H_{5}\right), 7.24\left(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5} H \mathrm{C}=\mathrm{CH}\right), 7.36-7.33(\mathrm{~m}, 4 \mathrm{H}$,
$\left.\mathrm{C}_{6} \mathrm{H}_{5}\right), 6.60\left(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{HC}=\mathrm{CH}\right), 4.48\left(\mathrm{dt}, J=3.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 4.60(\mathrm{dd}, J=3.2$, $\left.3.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH} \mathrm{H}_{2}\right), 4.34\left(\mathrm{dt}, J=3.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}} H_{\mathrm{b}}\right.$); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100.52 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 163.5$ $(C=\mathrm{N}), 158.4\left(C=\mathrm{CH}_{2}\right)$, $140.7\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{HC}=\mathrm{CH}\right)$, $134.8\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)$, $129.7\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)$, $128.8\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)$, $127.5\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)$, $114.0\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{HC}=\mathrm{CH}\right), 83.3\left(\mathrm{C}=\mathrm{CH}_{2}\right), 57.6\left(\mathrm{CH}_{2}\right)$; MS $\left(\mathrm{EI}^{+}\right) m / z=185[\mathrm{M}]^{+}$; HRMS (ESI ${ }^{+}$): exact mass calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$requires m / z 186.0919, found m / z 186.0927.

