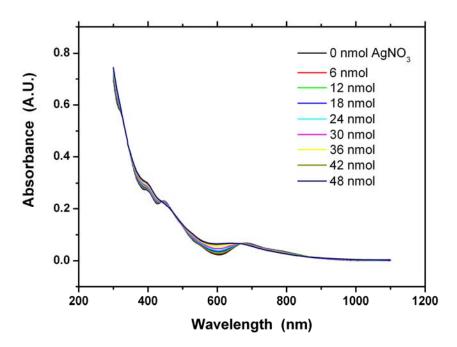
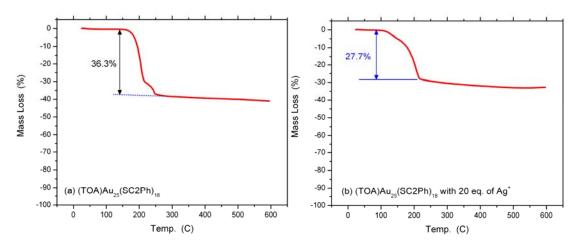
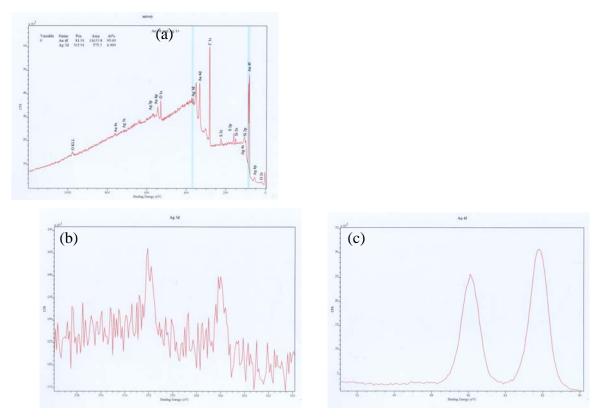

SILVER.EFFECT.SI.VERFINAL 10/21/2009

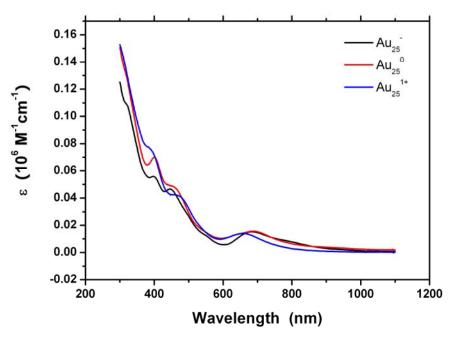
SUPPORTING INFORMATION

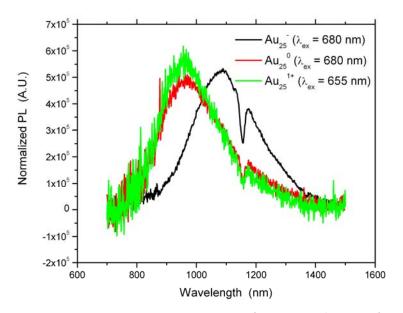

Reactivity of [Au₂₅(SCH₂CH₂Ph)₁₈]⁻ Nanoparticles with Metal Ions

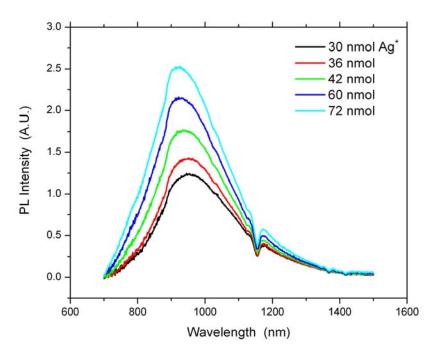
Jai-Pil Choi,[†] Christina A. Fields-Zinna, Rebecca L. Stiles,[‡] Ramjee Balasubramanian,[§] Alicia D. Douglas,[#] Matthew C. Crowe, and Royce W. Murray*

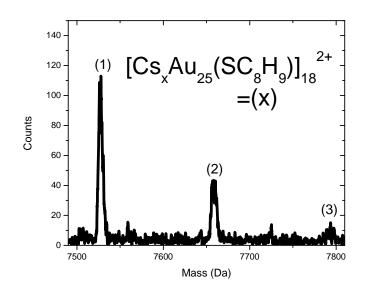

Kenan Laboratories of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290


Figure S-1. Crystal structure of $Au_{25}(SCH_2CH_2Ph)_{18}$, where smaller orange balls are Au atoms, and larger yellow balls are sulfur atoms (the rest of ligand, $-CH_2CH_2Ph$, is not pictured). Image emphasizes the Au_2L_3 semi-rings. From Ref. 9.


Figure S-2. Full-range (300 ~ 1100 nm) UV-Vis spectra of 46 nmole Au_{25}^{-} in CH_2Cl_2 titrated by Ag^+ (added as 10 mM AgNO₃ in acetonitrile).


Figure S-3. Thermogravimetric analysis of (a) $(Oct_4N^+)[Au_{25}(SC2Ph)_{18}^-]$ and (b) after reaction with 20 equivalents of Ag⁺.


Figure S-4. X-ray photoelectron spectra of the Au_{25}^{-} nanoparticles after reaction with 20 equivalents of Ag⁺. After the reaction, the solvent was removed and the sample was washed with methanol to get rid of AgNO₃ residues. (a) survey scan, (b) 3d-Ag, and (c) 4f-Au.


Figure S-5. UV-vis absorption spectra of Au_{25}^{-} , Au_{25}^{0} , and Au_{25}^{1+} . Au_{25}^{0} and Au_{25}^{1+} were prepared by chemically oxidizing Au_{25}^{-} with an aqueous Ce(SO₄)₂ solution. The charge states of Au_{25} were estimated by measuring the rest potentials (*E*_{REST}) of the oxidized Au_{25} solution, in reference to voltammetrically assessed formal potentials.

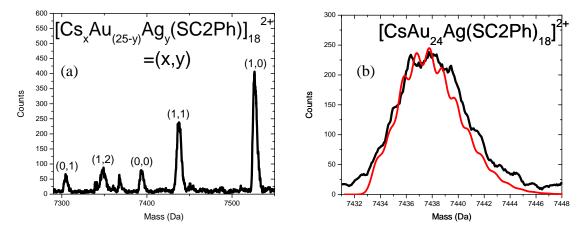

Figure S-6. Photoluminescence spectra of Au_{25}^{-} , Au_{25}^{0} , and Au_{25}^{1+} . Au_{25}^{0} and Au_{25}^{1+} were prepared by chemically oxidizing Au_{25}^{-} with an aqueous Ce(SO₄)₂ solution. The charge states of Au_{25} were estimated by measuring the rest potentials (*E*_{REST}) of the oxidized Au_{25} solution.

Figure S-7. Photoluminescence spectra of Au_{25}^{-} titrated by Ag^{+} . $\lambda_{EX} = 400$ nm. 32.4 nmole Au_{25}^{-} MPCs in CH₂Cl₂ titrated with 30 ~ 72 nmole Ag^{+} . Additions of maller equivalents of Ag^{+} are shown in the manuscript figure.

Figure S-8. Electrospray ionization (ESI) – TOF mass spectrum of Au_{25}^{-} obtained with 2.6 mg CsOAc (OAc = acetate) per mg MPCs in 70:30 methanol:CH₂Cl₂. The numbers in parentheses represents the number of bound Cs⁺ ions.

Figure S-9. (a) Electrospray ionization (ESI) – TOF mass spectrum of Au_{25} with 1.5 equivalents of Ag^+ . 2.6 mg of CsOAc (OAc = acetate) per mg MPC was added to 70:30 methanol:CH₂Cl₂ to obtain the spectra. The numbers in parentheses correspond to *x* and *y* of MPC formula. (b) High-resolution analysis of [CsAu₂₄Ag(SC2Ph)]²⁺; the red line is simulation. The sample was washed with MeOH to remove excess AgNO₃. Sample was run through ESI in a solution of 70:30 v:v methanol:CH₂Cl₂.

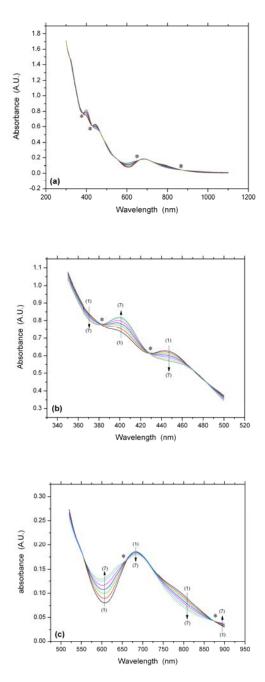


Figure S-10. UV-Vis absorption spectra of 29 μ M Au₂₅ MPCs in CH₂Cl₂ in the presence of Cu²⁺, whose added concentrations are (1) 0 μ M, (2) 2.3 μ M, (3) 4.5 μ M, (4) 6.8 μ M, (5) 9.1 μ M, (6) 11.3 μ M, and (7) 13.6 μ M. Isosbestic points are denoted as * at 383, 430, 660, and 875 nm. Cu²⁺ was added as small volumes of 6.8 mM CuCl₂ in CH₃CN.

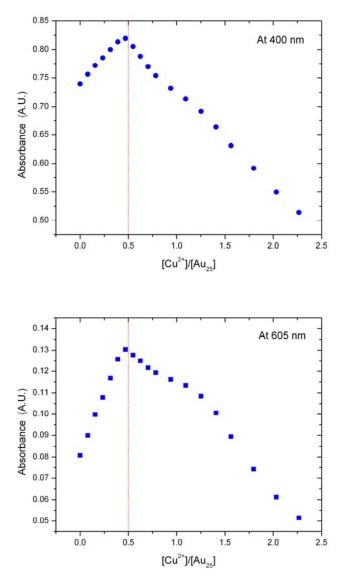


Figure S-11. Cu^{2+} titration plots of concentration ratio vs. absorbance at 400 nm and 605 nm. The initial concentration of Au₂₅ MPCs in CH₂Cl₂ was 29 μ M, and a 6.8 mM CuCl₂ stock solution prepared in CH₃CN was used for titration.

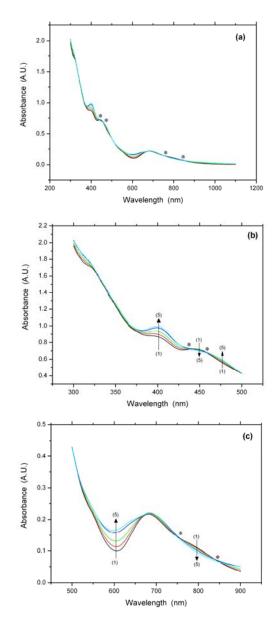
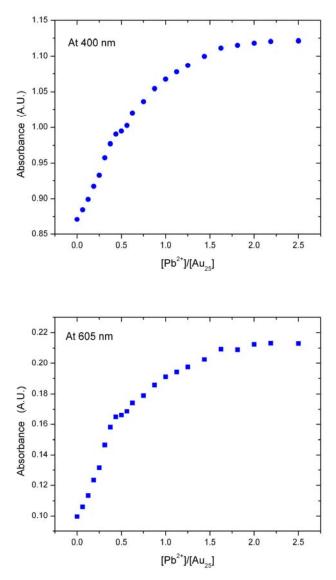



Figure S-12. UV-Vis absorption spectra of 32 μ M Au₂₅ MPCs in CH₂Cl₂ in the presence of Pb²⁺, whose concentrations are (1) 0 μ M, (2) 4 μ M, (3) 8 μ M, (4) 12 μ M, and (5) 16 μ M. Isosbestic points are denoted as * at 438, 458, 755, and 843 nm. For the titration of Pb²⁺, 6.0 mM Pb(ClO₄)₂·3H₂O in CH₃CN was used.

FigureS-13 Pb^{2+} titration plots of concentration ratio vs. absorbance at 400 nm and 605 nm. The initial concentration of Au₂₅ MPCs in CH₂Cl₂ was 32 μ M, and a 6.0 mM Pb(ClO₄)₂·3H₂O stock solution prepared in CH₃CN was used for titration.

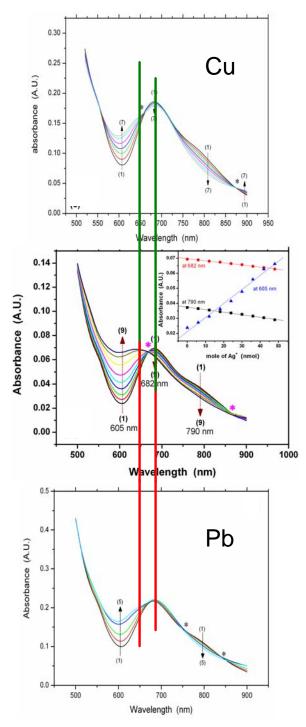


Figure S-14 Comparison of nanoparticle spectra produced by different metal ions. The vertical red bars guide the eye and show that spectra of solutions containing 1:1 Ag⁺ and 0.5:1 Cu^{2+} and Pb²⁺ / nanoparticle mole ratio are subtlely different.