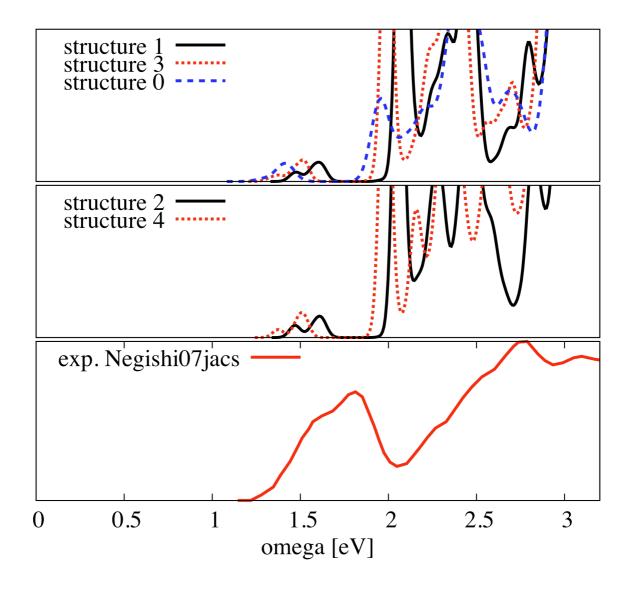
SUPPORTING INFORMATION

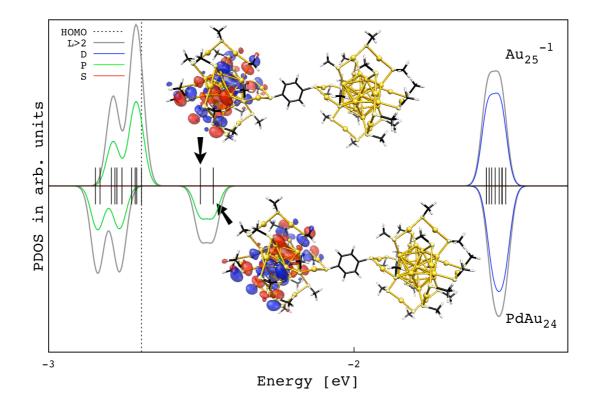
Thiolate-Protected Au₂₅ Superatoms as Building Blocks: Dimers and Crystals

Jaakko Akola,^{1,2} Katarzyna A. Kacprzak,¹ Olga Lopez-Acevedo,¹ Michael Walter,^{1,#} Henrik Grönbeck³ and Hannu Häkkinen^{1,4*}

¹ Department of Physics, Nanoscience Center, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland


² Department of Physics, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere, Finland

³ Department of Applied Physics and Competence Centre for Catalysis, Chalmers University of Technology, SE-412 96 Göteborg, Sweden.


⁴ Department of Chemistry, Nanoscience Center, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland

[#] Present address: Freiburg Materials Research Center, University of Freiburg, D-79104 Freiburg i. Br., Germany

* Corresponding author, email: hannu.j.hakkinen@jyu.fi

Figure S-1. Calculated optical spectra of $Au_{25}(SEtPh)_{18}^{-1}$ and its complex with TOA+ from the experimental data (ref. 16 in the main text). 1: The cluster anion as extracted from the experimental data; 2: the cluster anion + counterion as extracted; 3: system 1 relaxed in gas-phase; 4: system 2 relaxed in gas-phase. System 0: relaxed $Au_{25}(SMe)_{18}^{-1}$ in gas-phase (ref. 18 in the main text). The experimental curve is for hexyl-thiolate-protected $Au_{25}(SHex)_{18}^{-1}$ from ref. 13a in the main text.

Figure S-2. The electron density of states of dimer **4** and its projections to spherical harmonics (L = 0,1,2). The superatomic electron count is 14, and the dimer can be understood in terms of a closed-shell Au₂₅⁻¹ and a 6-electron PdAu₂₄ with two holes in the P-like shell of PdAu₂₄. The localized hole states are visualized with red (positive amplitude) and blue (negative) isosurfaces.