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Derivation of the Model and Algorithms

Here we derive our model and optimizations from our assumptions. Some equations are
numbered to facilitate implementation of the model in software; these equations correspond
to a function in our C++ implementation.

Basic Notation

Using standard statistical notation, random variables are given capital letters. For a random
variable (for instance R) a particular value that can be taken on by that random variable is
given with the corresponding lowercase letter (r). The event that the random variable takes
the value is noted R = r.
For any random variable R we will write ∀r to mean “the set of all possible values for the
random variable R.” If R represents the set of present proteins, then ∀r will represent all
possible sets of present proteins (i.e. the power set). If Rρ indicates whether protein ρ is
present or absent, then ∀rρ will represent the instance where it is present (we will write rρ)
and the case when it is absent (we will write rρ).
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Definitions

R array of indicators for presence of proteins in the sample, indexed by ρ

E array of indicators for presence of peptides in the sample, indexed by ǫ

D observed data, with paired spectra and total masses indexed by δ

mρ,ǫ indicator for protein ρ is expected to produce peptide ǫ using the digest
Gρ,ǫ the event that peptide ǫ is produced by emission from a protein
Hǫ the event that peptide ǫ is produced by an event other than Gρ,ǫ

We denote the size of these arrays as size(R), size(E), . . ..
The numbered equations in this write-up are used in the implementation.

Model

We parameterize the models of G and H in terms of unknown rates α and β.

Assumptions

Assumption A1: Conditional Independence of Eǫ1 and Eǫ2 given R

Pr(E = e|R = r) =
∏

ǫ

Pr(Eǫ|R = r)

Assumption A2: Conditional Independence of Dδ1 and Dδ2 given E

Pr(D|E = e) =
∏

δ

Pr(Dδ|E = e)

Assumption A3: Probability of predicted peptide creation

Pr(Gρ,ǫ|Rρ) =

{

α, mρ,ǫ = 1

0, else

Assumption A4: Probability of sponteneous peptide emission given the peptide is not
created by proteins

Pr(Hǫ|∀ρ, Gρ,ǫ) = β

Assumptions A5, A6: Prior, independent belief on presence of proteins

∀ρ, Pr(Rρ) = γ

Pr(R = r) = γ|r|(1 − γ)size(R)−|r|

Assumption A7: Conditional Independence of D and R given E

Pr(D|E = e, R = r) = Pr(D|E = e)
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Assumption A8: Dependence of Dδ only on best matching peptide Eǫ

Pr(Dδ|E = e) = Pr(Dδ|Eǫ(δ) = eǫ(δ)),

Pr(Dδ|Eǫ(δ) = eǫ(δ), α, β) = Pr(Dδ|Eǫ(δ) = eǫ(δ))

given ǫ(δ) is the index of the best matching peptide to spectrum and precursor mass pair δ

ǫ(δ) = arg max
ǫ′

Pr(Eǫ′|Dδ)

δ(ǫ) = arg max
δ′

Pr(Eǫ|Dδ′)

Furthermore, a unique ǫ(δ) is assumed to exist for each δ, and a unique δ(ǫ) is assumed to
exist for each ǫ.
Assumption A9: Independence of predicted peptide creation

Pr(Gρ1,ǫ, Gρ2,ǫ) = Pr(Gρ1,ǫ) Pr(Gρ2,ǫ)

Method

Method Given Known α, β

Let the proteins and peptides be partitioned so that all proteins in each partition have no
connections to peptides in another partition, and all peptides in each partition have no
connections to proteins in another partition. This can be trivially accomplished by tracing
the graph with depth first search. Denote the protein set corresponding to partition i as r(i)

and the peptides in the partition e(i).

Pr(R(i) = r(i)|D) =
Pr(D|R(i) = r(i)) Pr(R(i) = r(i))

∑

∀r(i)′ Pr(D|R(i) = r(i)′) Pr(R(i) = r(i)′)

This probability can be defined in terms of a likelihood function:

Pr(R(i) = r(i)|D) =
L(R(i) = r(i)|D) Pr(R(i) = r(i))

∑

∀r(i)′ L(R(i) = r(i)′|D) Pr(R(i) = r(i)′)

Pr(D|R(i) = r(i)) =
∑

∀e(i)

Pr(D|E(i) = e(i)) Pr(E(i) = e(i)|R(i) = r(i))

=
∑

∀e(i)

∏

δ

Pr(Dδ|E
(i) = e(i)) Pr(E(i) = e(i)|R(i) = r(i))

=
∑

∀e(i)

∏

j 6=i

∏

δ

Pr(D
(j)
δ )

∏

ǫ

Pr(D
(i)
δ(ǫ)|E

(i)
ǫ = e(i)

ǫ ) Pr(E(i)
ǫ = e(i)

ǫ |R(i) = r(i))

Pr(D
(i)
ǫ(δ)|E

(i)
ǫ = e(i)

ǫ ) = Pr(E(i)
ǫ = e(i)

ǫ |D
(i)
ǫ(δ), Q)

Pr(D
(i)
δ(ǫ)|Q)

Pr(E
(i)
ǫ = e

(i)
ǫ |Q)
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Pr(D|R(i) = r(i)) =

∏

j

[

∏

δ

Pr(D
(j)
δ |Q)

]

∑

∀e(i)

∏

ǫ

Pr(E
(i)
ǫ = e

(i)
ǫ |D

(i)
δ(ǫ), Q)

Pr(E
(i)
ǫ = e

(i)
ǫ |Q)

Pr(E(i)
ǫ = e(i)

ǫ |R(i) = r(i))

L(R(i) = r(i)|D) =

∑

∀e(i)

∏

ǫ

Pr(E
(i)
ǫ = e

(i)
ǫ |D

(i)
δ(ǫ), Q)

Pr(E
(i)
ǫ = e

(i)
ǫ , Q)

Pr(E(i)
ǫ = e(i)

ǫ |R(i) = r(i))

=
Pr(E

(i)
1 |D

(i)
δ(ǫ), Q)

Pr(E
(i)
1 , Q)

Pr(E
(i)
1 |R(i) = r(i))

∑

∀e(i):e
(i)
1

∏

ǫ 6=1

Pr(E
(i)
ǫ = e

(i)
ǫ |D

(i)
δ(ǫ), Q)

Pr(E
(i)
ǫ = e

(i)
ǫ , Q)

Pr(E(i)
ǫ = e(i)

ǫ |R(i) = r(i))

+
Pr(E

(i)
1 |D

(i)
δ(ǫ), Q)

Pr(E
(i)
1 , Q)

Pr(E
(i)
1 |R(i) = r(i))

∑

∀e(i):e
(i)
1

∏

ǫ 6=1

Pr(E
(i)
ǫ = e

(i)
ǫ |D

(i)
δ(ǫ), Q)

Pr(E
(i)
ǫ = e

(i)
ǫ , Q)

Pr(E(i)
ǫ = e(i)

ǫ |R(i) = r(i))

=
Pr(E

(i)
1 |D

(i)
δ(ǫ), Q)

Pr(E
(i)
1 , Q)

Pr(E
(i)
1 |R(i) = r(i))

∑

∀e(i):e
(i)
1

∏

ǫ 6=1

Pr(E
(i)
ǫ = e

(i)
ǫ |D

(i)
δ(ǫ), Q)

Pr(E
(i)
ǫ = e

(i)
ǫ , Q)

Pr(E(i)
ǫ = e(i)

ǫ |R(i) = r(i))

+
Pr(E

(i)
1 |D

(i)
δ(ǫ), Q)

Pr(E
(i)
1 , Q)

Pr(E
(i)
1 |R(i) = r(i))

∑

∀e(i):e
(i)
1

∏

ǫ 6=1

Pr(E
(i)
ǫ = e

(i)
ǫ |D

(i)
δ(ǫ), Q)

Pr(E
(i)
ǫ = e

(i)
ǫ , Q)

Pr(E(i)
ǫ = e(i)

ǫ |R(i) = r(i))
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=





Pr(E
(i)
1 |D

(i)
δ(ǫ), Q)

Pr(E
(i)
1 , Q)

Pr(E
(i)
1 |R(i) = r(i)) +

Pr(E
(i)
1 |D

(i)
δ(ǫ), Q)

Pr(E
(i)
1 , Q)

Pr(E
(i)
1 |R(i) = r(i))





∑

∀e(i):e
(i)
1

∏

ǫ 6=1

Pr(E
(i)
ǫ = e

(i)
ǫ |D

(i)
δ(ǫ), Q)

Pr(E
(i)
ǫ = e

(i)
ǫ , Q)

Pr(E(i)
ǫ = e(i)

ǫ |R(i) = r(i))

· · ·

=
∏

ǫ

∑

∀e
(i)
ǫ

Pr(E
(i)
ǫ = e

(i)
ǫ |D

(i)
δ(ǫ), Q)

Pr(E
(i)
ǫ = e(i), Q)

Pr(E(i)
ǫ = e(i)

ǫ |R(i) = r(i))

where the likelihood constant does not depend on R, α, β. This final transformation uses the
conditional independence assumption to convert the sum over all peptide sets into a product
over peptide indices. Thus the likelihood can be computed for each protein set without
computing the sum over all peptide sets.

Pr(E(i)
ǫ ) =

∑

∀r(i)′

Pr(E(i)
ǫ |R(i) = r(i)′) Pr(R(i) = r(i)′)

Pr(E(i)
ǫ |R(i) = r(i)) = 1 − Pr(Hǫ,

⋂

ρ:r
(i)
ρ

Pr(Gρ,ǫ))

= 1 − Pr(Hǫ|
⋂

ρ:r
(i)
ρ

Pr(Gρ,ǫ)) Pr(
⋂

ρ:r
(i)
ρ

Pr(Gρ,ǫ))

= 1 − (1 − β)
∏

ρ:r
(i)
ρ ,mρ,ǫ

(1 − α)

= 1 − (1 − β)(1 − α)|{r
(i)
ρ :mρ,ǫ}|

= Pr(E(i)
ǫ | |{R(i)

ρ : mρ,ǫ}| = |{r(i)
ρ : mρ,ǫ}|)

Pr(Eǫ) =

size({R(i):mρ,ǫ})
∑

k=0

Pr(E(i)
ǫ | |{R(i)

ρ : mρ,ǫ}| = k) Pr(|{R(i)
ρ : mρ,ǫ}| = k) (1)

Pr(E(i)
ǫ | |{R(i)

ρ : mρ,ǫ}| = k) = 1 − (1 − β)(1 − α)k (2)

Pr(|{R(i)
ρ : mρ,ǫ}| = k) =

(

size(|{R(i) : mρ,ǫ}|)

k

)

γk(1 − γ)size(|{R(i):mρ,ǫ}|)−k (3)
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Let c(i) be a collection of sets of proteins from partition i that have idential connectivity in
the graph. Let mν,ǫ indicate mρ,ǫ for all ρ ∈ c

(i)
ν . Also, use ν(ρ) as shorthand for the index

of the collection containing protein ρ.

Pr(E(i)
ǫ | |{R(i)

ρ : mρ,ǫ}| = k) = Pr(E(i)
ǫ |

∑

ν:mν,ǫ

|{R(i)
ρ : ρ ∈ mν,ǫ}| = k)

Define a new random variable N as the sum of the present proteins in each collection, and
write the previous probability in terms of this variable:

N (i)
ν = |{R(i)

ρ : ρ ∈ c(i)
ν }|

Pr(E(i)
ǫ | |{R(i)

ρ : mρ,ǫ}| = k) = Pr(E(i)
ǫ |

∑

ν:mν,ǫ

N (i)
ν = k)

Pr(E(i)
ǫ |N (i) = n(i)) = Pr(E(i)

ǫ | |{R(i)
ρ : mρ,ǫ}| =

∑

ν:mν,ǫ

N (i)
ν ) (4)

Summing over all sets of proteins R(i) is now equivalent to summing over the indistinguishable
possible values of N (i) and multiplying each term by the number of possible ways it could
be made using protein sets.

∑

∀r(i)

Pr(D|R(i) = r(i)) Pr(R(i) = r(i)) =
∑

∀n(i)

Pr(D|N (i) = n(i)) Pr(N (i) = n(i))

∑

∀r(i)

L(R(i) = r(i)|D) Pr(R(i) = r(i)) =
∑

∀n(i)

L(N (i) = n(i)|D) Pr(N (i) = n(i))

L(N (i) = n(i)|D) =
∏

ǫ

∑

∀e
(i)
ǫ

Pr(E
(i)
ǫ = e

(i)
ǫ |Dδ(ǫ))

Pr(E
(i)
ǫ = e

(i)
ǫ |Q)

Pr(E(i)
ǫ = e(i)

ǫ |N (i) = n(i)) (5)

Pr(N (i) = n(i)) =
∏

ν

Pr(N (i)
ν = n(i)

ν ) (6)

Pr(N (i)
ν = n(i)

ν ) =

(

|c
(i)
ν |

n
(i)
ν

)

γn
(i)
ν (1 − γ)|c

(i)
ν |−n

(i)
ν (7)
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Pr(R(i)
ρ |D) =

∑

∀r(i):r
(i)
ρ

Pr(R(i) = r(i)|D)

=
∑

∀n(i):n
(i)
ν(ρ)

>0

Pr(N (i) = n(i), R(i)
ρ |D)

Pr(N (i) = n(i), R(i)
ρ |D) =

Pr(D|N (i) = n(i), R
(i)
ρ ) Pr(N (i) = n(i), R

(i)
ρ )

Pr(D)

=
Pr(D|N (i) = n(i)) Pr(N (i) = n(i), R

(i)
ρ )

Pr(D)

=
Pr(D|N (i) = n(i)) Pr(R

(i)
ρ |N (i) = n(i)) Pr(N (i) = n(i))

Pr(D)

= Pr(N (i) = n(i)|D) Pr(R(i)
ρ |N (i) = n(i))

Pr(N (i) = n(i)|D) =
Pr(D|N (i) = n(i)) Pr(N (i) = n(i))

∑

∀n(i)′ Pr(D|N (i) = n(i)′) Pr(N (i) = n(i)′)

Pr(N (i) = n(i)|D) =
L(N (i) = n(i)|D) Pr(N (i) = n(i))

∑

∀n(i)′ L(N (i) = n(i)′|D) Pr(N (i) = n(i)′)
(8)

The vector of these posterior probabilities can be defined to further save computation by
computing all of them in one pass over the set {∀n(i)′}:

Pr(R(i)|D) =
∑

∀n(i)

Pr(N (i) = n(i)|D) Pr(R(i)|N (i) = n(i)) (9)

(10)

Where Pr(R(i)|N (i) = n(i)) is a vector defined as follows:

Pr(R(i)|N (i) = n(i))ρ =
n(i)

|c
(i)
ν(ρ)|

(11)

(12)

Note on Using Peptide Probabilities from PeptideProphet

It is important to distinguish peptide probabilities that use protein information from pep-
tide probabilities that do not use protein information (as well as their corresponding priors).
PeptideProphet estimates a posterior probabilitie for each peptide without utilizing infor-
mation in the associations between proteins and peptides. Our model can make use of the
PeptideProphetestimates by using them to compute likelihoods that a peptide emitted it’s
paired spectrum.
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By default, this document assumes that protein information is being used, but when protein
information is not being used (and instead we are using the PeptideProphet values), then
we condition on Q to indicate that protein-level information is not available. For instance
Pr(Eǫ) is the prior probability that peptide Eǫ is present using protein information, whereas
Pr(Eǫ|Q) is the prior probability of Eǫ given by PeptideProphet. This prior probability
should take into account the assumed charge state for this PSM. The correct prior values
for different charge states are found in the pepXML output of PeptideProphet.
In this document, conversion to probabilities that do not depend on the proteins will be
accomplished using the fact that

Pr(Dδ(ǫ)|Eǫ) = Pr(Dδ(ǫ)|Eǫ, Q)

using assumption A8.

Increasing the Sparsity of the Graph (Pruning)

In practice, the number of proteins in each partition is often small enough that the algorithm
is efficient. However, this is sometimes not the case. A single protein partition can be
split by assuming that the peptides that join two subpartitions, E(0), are not present. This
assumption introduces no error when these peptides receive a zero score from PeptideProphet.
Note that normally ǫ iterates over every index where it is used, however some statements
here need to limit to E(0), and so are explicitly referred to as ǫ(0).
First we demonstrate the error will be zero in this case:

|Pr(Rρ|D) − Pr(Rρ, E
(0) = {}|D)| = |

∑

∀e(0)

Pr(Rρ, E
(0) = e(0)|D) − Pr(Rρ, E

(0) = {}|D)|

=
∑

∀e(0) 6={}

Pr(Rρ, E
(0) = e(0)|D)

≤
∑

∀e(0) 6={}

Pr(E(0) = e(0)|D)

≤
∑

∀ǫ

Pr(E
(0)
ǫ |D)

Because, writing E(0)′ as the elements other than E
(0)
1 ,

∑

∀e(0) 6={}

Pr(E(0) = e(0)|D) =
∑

∀e(0)′ 6={}∧e
(0)
1 ∨e

(0)
1

Pr(E(0)′ = e(0)′|D)

= Pr(E
(0)
1 |D) +

∑

∀e(0)′ 6={}

Pr(E(0)′ = e(0)′, E
(0)
1 |D)
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≤ Pr(E
(0)
1 |D) +

∑

∀e(0)′ 6={}

Pr(E(0)′ = e(0)′|D)

and continuing inductively, then

≤ · · · ≤
∑

ǫ

Pr(E(0)
ǫ |D)

Since Pr(E
(0)
ǫ |D) = 0 when Pr(E

(0)
ǫ |Dδ(ǫ), Q) = 0 (as long as Pr(D) > 0 which can be shown

since ∀r, Pr(E = e|R = r) > 0 as long as α, β ∈ (0, 1), meaning that Pr(E = e) > 0, and
Pr(D|E = e) > 0 trivially for some E = e, and so Pr(D) > 0) then any peptide given a
zero score by PeptideProphet can be assumed to be absent. When a peptide is given a very
small score by PeptideProphet, then the problem can be approximated more efficiently by
assuming the score was zero. In the future, it would be useful to develop a bound on the
error introduced by making this approximation, since it would suggest a strategy for which
peptides should be changed to zero scored.
Second, we show that assuming E(0) = {} gives allows the proteins to be divided into two
partitions, R(1) and R(2) with peptides E(1) that associate only with R(1), E(2) that associate
only with R(2), and E(0) that associate with both R(1) and R(2), then we have:

Pr(D, E(0) = {}|R(1) = r(1), R(2) = r(2)) =
∑

∀e(1),e(2)

Pr(D(1)|E(1) = e(1)) Pr(D(2)|E(2) = e(2)) Pr(D(0)|E(0) = {})

Pr(E(1) = e(1)|R(1) = r(1)) Pr(E(2) = e(2)|R(2) = r(2))

Pr(E(0) = {}|R(1) = r(1), R(2) = r(2))

Pr(E(0) = {}|R(1) = r(1), R(2) = r(2)) =

Pr(E(0) = {}|R(1) = r(1), R(2) = {}) Pr(E(0) = {}|R(2) = r(2), R(1) = {})
∏

ǫ(0) Pr(Hǫ(0)|
⋂

ρ:r
(i)
ρ

Gρ,ǫ(0))

Pr(D, E(0) = {}|R(1) = r(1), R(2) = r(2)) =

1
∏

ǫ(0) Pr(Hǫ(0)|
⋂

ρ:r
(i)
ρ

Gρ,ǫ(0))
∑

∀e(1)

Pr(D(1)|E(1) = e(1)) Pr(D(0)|E(0) = {})

Pr(E(2) = e(2)|R(2) = r(2)) Pr(E(0) = {}|R(2) = r(2), R(2) = {})
∑

∀e(2)

Pr(D(2)|E(2) = e(2))

Pr(E(2) = e(2)|R(2) = r(2)) Pr(E(0) = {}|R(2) = r(2), R(1) = {})
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=

1

Pr(D(0)|E(0) = {})
∏

ǫ(0) Pr(Hǫ(0)|
⋂

ρ:r
(i)
ρ

Gρ,ǫ(0))
∑

∀e(1)

Pr(D(1)|E(1) = e(1)) Pr(D(0)|E(0) = {})

Pr(E(2) = e(2)|R(2) = r(2)) Pr(E(0) = {}|R(2) = r(2), R(2) = {})
∑

∀e(2)

Pr(D(2)|E(2) = e(2)) Pr(D(0)|E(0) = {})

Pr(E(2) = e(2)|R(2) = r(2)) Pr(E(0) = {}|R(2) = r(2), R(1) = {})

=

1

Pr(D(0)|E(0) = {})
∏

ǫ(0) Pr(Hǫ(0)|
⋂

ρ:r
(i)
ρ

Gρ,ǫ(0))

Pr(D(1), D(0), E(0) = {}|R(1) = r(1), R(2) = {})

Pr(D(2), D(0), E(0) = {}|R(2) = r(2), R(1) = {})

Finally, we can define the likelihood

L(R(1), R(2)|E(0) = {}, D) =

1
∏

ǫ(0) Pr(Hǫ(0)|
⋂

ρ:r
(i)
ρ

Gρ,ǫ(0))

L(R(1) = r(1), R(2) = {}|E(0) = {}, D(1), D(0))

L(R(2) = r(2), R(1) = {}|E(0) = {}, D(2), D(0))

(13)

where the likelihood constant does not depend on R, α, β.
The resulting probability and likelihood is equivalent (aside from the leading correction in
the previous formula) to those computed after disconnecting R(1) from R(2) by duplicating
the peptides that they share so that each R(1) and R(2) associate with their own copy of E(0)

and D(0).

Analysis of Approximation Errors from Pruning

The calculation of posterior probabilities is exact when only zero-scoring PSMs are used
for pruning. When PSMs with small nonzero scores are used, then a small approximation
error is introduced. Occassionaly, it may be necessary to prune a PSM with a large score
in order to achieve the desired separability. Even in this case, the error introduced may
be small and is confined to the proteins in the same connected subgraph; therefore, the
overall approximation error depends not only on the highest-scoring PSM pruned, but on
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Figure 1: Distribution of pruned PSM scores. For each data set, we plot a histogram
of the scores of pruned PSMs. The figure shows that almost all pruned PSMs have very low
scores. The C. elegans data set is not shown because it does not require pruning to achieve
this much separability.

the quantity of PSMs pruned and their scores. In Figure 1, we plot the distribution of pruned
PSM scores necessary to require no more than 218 marginalization steps for any subgraph.
We demonstrate that there are not many high-scoring PSMs that need to be pruned, even
to achieve this strict level of separability. The yeast data requires a couple of high-scoring
PSMs to be pruned, but the proteins associated with these PSMs are also suppported by
other PSMs; therefore, the error is still minimal and only influences these few proteins.
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