Supporting Information

Construction of Methylenecycloheptane Frameworks through 7-*Exo-dig* Cyclization of Acetylenic Silyl Enol Ethers Catalyzed by Triethynylphosphine–Gold Complex

Hideto Ito, Hirohisa Ohmiya and Masaya Sawamura* Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan

1. General $\cdots S1$

- 2. Preparation of Cationic Gold-Phosphine Complex · · · · S1
- 2. General Procedure for Alkyne Cyclizations · · · · · S2
- 3. Preparation of Substrate $\cdots S2$
- 4. Cyclization Products $\cdots S15$
- 5. References $\cdots S19$
- 6. Copies of NMR Spectrum Charts · · · · S20

General.

NMR spectra were recorded on a Varian Gemini 2000 spectrometer, operating at 300 MHz for ¹H NMR, 75.4 MHz for ¹³C NMR and 121.4 MHz for ³¹P NMR. Chemical shift values for ¹H, ¹³C and ³¹P NMR are reference to Me₄Si, the residual solvent resonances and external aqueous 85% H₃PO₄ respectively. Mass spectrometry (JEOL JMS-FABmate for EI-MS, JEOL JMS-700TZ for ESI-MS) and elemental analysis were performed at the Instrumental Analysis Division, Equipment Management Center, Creative Research Institution, Hokkaido University. Triethynylphosphine ligand L1 was prepared according to the reported procedure.¹ AgNTf₂ was prepared from Ag₂O and HN(SO₂CF₃)₂.² AgSbF₆, AgBF₄ and AgOTf were purchased from Aldrich. Phosphine ligands, PPh₃ and P(OPh)₃ were commercially available. Gold complexes [AuCl(ligand)] were synthesized by the reported method.¹ MS4A was purchased from Junsei Chemical Co. Anhydrous solvents used in the synthesis of materials were purchased from Kanto Chemical Co. and used without further purification. Anhydrous CH₂Cl₂ and DCE were purchased from Kanto Chemical Co. and Aldrich, respectively. Anhydrous CH₂Cl₂, DCE, MeOH, 1.0 M 'BuOH in CH₂Cl₂ and 1.0 M 'BuOH in DCE used in Au-catalyzed cyclizations were degassed and dried with MS4A before use, and their water amount (almost always under 15 ppm) was measured by Karl Fisher's moisture meter (Kyoto Electronics Manufacturing Co. Ltd., MKC-520). Gel permeation chromatography (GPC) was performed by LC-908 (Japan Analytical Industry Ltd., two in-line JAIGEL-2H, CHCl₃, 3.5 mL/min, UV and RI detectors). TLC analyses were performed on commercial glass plates bearing 0.25-mm layer of Merck Silica gel 60F₂₅₄. Silica gel (Kanto Chemical Co., Silica gel 60 N, spherical, neutral) was used for column chromatography. PTLC purification was performed on commercial glass plates bearing 1-mm layer of Merck Silica gel 60F₂₅₄. All reactions were carried out under argon atmosphere unless otherwise noted.

Preparation of Cationic Gold-Phosphine Complexs¹

[AuCl(ligand)] (1 eq) was placed in an open vial tube, and was dissolved in CH_2Cl_2 (ca. 0.1 M). AgX (>1.5 eq) was added, and a mixture was stirred at 25 °C for 10 min. The resulting white suspension was filtered through celite to a screw vial. The resulting colorless solution was first concentrated with a stream of Ar gas, and then was dried *in vacuo* to give [AuX(ligand)].

General Procedure for Cyclization of Alkynyl Silyl Enol Ethers.

MS4A (ca. 100 mg) was added to a Schlenk tube, and vigorously stirred with heating by heat gun for 5 min in *vacuo*. Then, a flask was cooled to rt and charged with Ar. Au catalyst, CH_2Cl_2 (3.9 mL) and 1.0 M ^tBuOH in CH_2Cl_2 (0.10 mL, 0.10 mmol) were added to a Schlenk tube in this order. The reaction vessel was placed into water bass (for 25 °C or 40 °C) or oil bass (for 80 °C). The alkynyl silyl enol ether (0.10 mmol) was weighed into micro tube and diluted with CH_2Cl_2 (0.25 mL). The mixture was added dropwise to the Schlenk tube by a well dried 250 µL syringe over 1 min. The substrate solutions remaining in the micro tube and the syringe were washed with CH_2Cl_2 (3 × 0.25 mL) and added to the reaction mixture. The mixture was stirred at appropriate temperature. After completion of the reaction (monitored by TLC), the resulting mixture was passed through a pad of silica gel and concentrated to dryness. Purification by flash chromatography on silica gel or PTLC gave the cyclization product.

Preparation of Substrates.

Ethyl 2-Oxo-1-(4-pentyn-1-yl)cyclohexanecarboxylate (3a)

To a suspension of NaH (60 wt. %, 910 mg, 22.8 mmol) in THF (10 mL) and DMF (10 mL) was added dropwise ethyl 2-oxocyclohexanecarboxylate (**7**) (3.28 mL, 20.0 mmol) at 0 °C. The mixture was stirred at this temperature for 10 min and at room temperature for 1 h. Then, 5-iodo-1-pentyne (4.67 g, 24.1 mmol) was added, and the reaction mixture was stirred for 18 h (monitored by TLC). The resulting suspension was diluted with ether, and quenched with saturated aqueous NH₄Cl. The organic layer was washed with saturated aqueous NH₄Cl (3 × 20 mL), and separated. The combined aqueous layer was extracted with ether (3 × 20 mL). The organic layers were combined, dried over MgSO₄, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (hexane/EtOAc 99:1 to 92:8) to afford **3a** as a colorless oil (4.68 g, 99%). IR (neat) 636, 1181, 1708, 2941, 3287 cm⁻¹; ¹H NMR (CDCl₃) δ 1.27 (t, *J* = 7.2 Hz, 3H), 1.35–1.80 (m, 7H), 1.89–2.06 (m, 2H), 1.95 (t, *J* = 2.7 Hz, 1H), 2.19 (td, *J* = 6.9, 2.7 Hz, 2H), 2.37–2.56 (m, 3H), 4.24 (q, *J* = 7.2 Hz, 2H). ¹³C NMR (CDCl₃) δ 13.80, 18.43, 22.20, 23.10, 27.25, 33.54, 35.77, 40.74, 60.29, 60.94, 68.42, 83.60, 171.78, 207.72. HRMS (ESI⁺) Calcd for C₁₄H₂₀O₃Na [M+Na]⁺: *m/z* 259.13047. Found: *m/z* 259.13018.

Ethyl 2-(tert-Butyldimethylsiloxy)-1-(4-pentyn-1-yl)-2-cyclohexenecarboxylate (1a)

To a solution of **3a** (1.19 g, 5.05 mmol) and Et₃N (1.39 mL, 10.0 mmol) in CH₂Cl₂ (10 mL), TBSOTf (1.76 mL, 7.51 mmol) was added at 0 °C under Ar atmosphere, then the reaction mixture was slowly warmed to room temperature and stirred overnight. The resulting suspension was diluted with ether, and quenched with saturated aqueous NaHCO₃. The organic layer was washed with water (2 × 10 mL) and brine (10 mL), and separated. The combined aqueous layer was extracted with ether (3 × 10 mL). The organic layers were combined, dried over MgSO₄, filtered and concentrated under reduced pressure. Purification by flash chromatography on silica gel (hexane/EtOAc 99.5:0.5 to 97:3) provided **1a** as a colorless oil (1.66 g, 94%). IR (neat) 777, 833, 926, 1156, 1662, 1726, 2931, 2951, 3313 cm⁻¹; ¹H NMR (CDCl₃) δ 0.14 (s, 3H), 0.17 (s, 3H), 0.88 (s, 9H), 1.25 (t, *J* = 7.2 Hz, 3H), 1.42–1.72 (m, 5H), 1.88–1.89 (m, 2H), 1.94 (t, *J* = 2.7 Hz, 1H), 1.95–2.08 (m, 3H), 2.19 (td, *J* = 7.2, 2.7 Hz, 2H), 4.03–4.21 (m, 2H), 4.84 (aprox. dd, *J* = 4.5, 3.6 Hz, 1H). ¹³C NMR (CDCl₃) δ –5.46, –4.55, 14.07, 17.85, 18.84, 19.19, 23.57, 23.82, 25.46, 31.81, 34.22, 50.53, 60.34, 68.16, 84.39, 103.93, 149.80, 175.81. Anal. Calcd for C₂₀H₃₄O₃Si: C, 68.52; H, 9.78%. Found: C, 68.21; H, 9.78%.

Ethyl 1-(4-Pentyn-1-yl)-2-(triisopropylsiloxy)-2-cyclohexenecarboxylate (1b)

To a solution of **3a** (1.19 g, 5.05 mmol) and 2,6-lutidine (0.399 mL, 3.40 mmol) in CH₂Cl₂ (3.4 mL), TIPSOTF (0.685 mL, 2.55 mmol) was added at 0 °C under Ar atmosphere. Then the reaction mixture was slowly warmed to room temperature and stirred for 18 h. The resulting suspension was diluted with ether, and quenched with saturated aqueous NaHCO₃. The organic layer was washed with water (2 × 5 mL) and brine (5 mL), and separated. The combined aqueous layer was extracted with ether (3 × 5 mL). The organic layers were combined, dried over MgSO₄, filtered and concentrated under reduced pressure. Purification by flash chromatography on silica gel (hexane/EtOAc 99.5:0.5 to 97:3) provided **1b** as a colorless oil (0.645 g, 97%). IR (neat) 624, 881, 925, 1185, 1463, 1662, 1727, 2866, 2943, 3313 cm⁻¹; ¹H NMR (CDCl₃) δ 1.03–1.20 (s, 21H), 1.24 (t, *J* = 7.2 Hz, 3H), 1.52–1.68 (m, 5H), 1.80–2.00 (m, 3H), 1.93 (t, *J* = 2.7 Hz, 1H), 2.19 (td, *J* = 7.2, 2.7 Hz, 2H), 4.00–4.21 (m, 2H), 4.85 (t, *J* = 4.2 Hz, 1H). ¹³C NMR (CDCl₃) δ 12.66, 14.02, 17.97, 18.08, 18.90, 19.15, 23.63, 23.79, 31.74, 34.37, 50.49, 60.35, 68.13, 84.41, 103.16, 150.01, 175.75. HRMS (ESI⁺) Calcd for C₂₃H₄₀O₃SiNa [M+Na]⁺: *m/z* 415.26389. Found: *m/z* 415.26293.

2-Benzoyl-2-(4-pentyn-1-yl)cyclohexanone (3c)

The compound **3c** was prepared according to the procedure for the preparation of **3a**, employing 2-benzoylcyclohexanone **8** (2.01 g, 10.0 mmol), NaH (481 mg, 12.0 mmol), 5-iodo-1-pentyne (2.33 g, 12.0 mmol) and hexane/EtOAc (99:1 to 85:15) as an eluent. Colorless oil (951 mg, 35%). IR (neat) 634, 689, 1212, 1667, 1709, 2943, 3292 cm⁻¹; ¹H NMR (CDCl₃) δ 1.13–1.30 (m, 1H), 1.35–1.58 (m, 2H), 1.63–1.85 (m, 3H), 1.87 (t, *J* = 2.7 Hz, 1H), 1.92–2.34 (m, 6H), 2.39–2.48 (m, 1H), 2.87–2.96 (m, 1H), 7.38–7.45 (m, 2H), 7.50–7.57 (m, 1H), 7.83–7.88 (m, 2H). ¹³C NMR (CDCl₃) δ 18.58, 22.05, 22.56, 28.92, 34.32, 37.42, 42.83, 66.30, 68.63, 83.54, 128.70, 128.72, 133.08, 136.54, 197.75, 212.25. HRMS (ESI⁺) Calcd for C₁₈H₂₀O₂Na [M+Na]⁺: *m/z* 291.12555. Found: *m/z* 291.13521. *O*-Alkylation product **12** was also obtained as by-product (ca. 35%).

[2-(tert-Butyldimethylsiloxy)-1-(4-pentyn-1-yl)-2-cyclohexen-1-yl](phenyl)methanone (1c)

The compound **1c** was prepared according to the procedure for the preparation of **1a**, employing **3c** (674 mg, 2.51 mmol), Et₃N (0.525 mL, 3.77 mmol), TBSOTf (0.706 mL, 3.01 mmol) in CH₂Cl₂ (10 mL) and hexane/EtOAc (99.5:0.5 to 95:5) as an eluent. Colorless oil (861 mg, 90%). IR (neat) 832, 1174, 1249, 1655, 1680, 2930, 2950, 3311 cm⁻¹; ¹H NMR (CDCl₃) δ –0.05 (s, 3H), 0.12 (s, 3H), 0.65 (s, 9H), 1.55–1.81 (m, 5H), 1.90–2.09 (m, 3H), 2.11–2.31 (m, 5H), 4.89 (dd, *J* = 4.5, 3.6 Hz, 1H), 7.31–7.39 (m, 2H), 7.41–7.49 (m, 1H), 7.93–8.00 (m, 2H). ¹³C NMR (CDCl₃) δ –5.31, –5.22, 17.51, 18.63, 19.00, 23.64, 24.38, 25.09, 31.72, 35.92, 54.91, 68.08, 84.33, 101.95, 127.71, 128.48, 131.35, 137.72, 152.13, 203.49. HRMS (EI⁺) Calcd for C₂₄H₃₅O₂Si [M+H]⁺: *m/z* 383.24063. Found: *m/z* 383.24211.

Methyl 2-Oxo-1-(4-pentyn-1-yl)cyclopentanecarboxylate (3d)

The compound **3d** was prepared according to the procedure for the preparation of **3a**, employing methyl 2-oxocyclopentanecarboxylate **9** (1.24 mL, 9.99 mmol), NaH (482 mg, 12.0 mmol) and 5-iodo-1-pentyne (2.15 g, 11.1 mmol). Purification by flash chromatography on silica gel (hexane/EtOAc 99:1 to 85:15) provided **3d** as a mixture of a trace amount of impurities. This mixture was used in the next step without further purification.

Methyl 2-(tert-Butyldimethylsiloxy)-1-(4-pentyn-1-yl)-2-cyclopentenecarboxylate (1d)

The compound **1d** was prepared according to the procedure for the preparation of **1a**, employing **3d** (a mixture of impurities, <9.99 mmol), Et₃N (2.03 mL, 14.6 mmol), TBSOTf (2.27 mL, 9.68 mmol) in CH₂Cl₂ (10 mL) and hexane/EtOAc (99.5:0.5 to 95:5) as an eluent. Colorless oil (2.14 g, 2 steps overall 96%). IR (neat) 781, 837, 854, 1251, 1647, 1730, 2858, 2931, 2951, 3313 cm⁻¹; ¹H NMR (CDCl₃) δ 0.16 (s, 3H), 0.20 (s, 3H), 0.94 (s, 9H), 1.46–1.61 (m, 2H), 1.70–1.96 (m, 3H), 1.98 (t, *J* = 2.7 Hz, 1H), 2.19–2.28 (m, 3H), 2.30–2.41 (m, 2H), 3.69 (s, 3H), 4.69 (br d, *J* = 2.4 Hz, 1H). ¹³C NMR (CDCl₃) δ –5.79, –5.12, 17.64, 18.65, 23.57, 25.21, 26.20, 31.53, 33.55, 51.44, 57.85, 68.22, 84.09, 102.23, 154.06, 175.66. HRMS (EI⁺) Calcd for C₁₈H₃₀O₃SiNa [M+Na]⁺: *m/z* 345.18564. Found: *m/z* 345.18531.

Methyl 2-Oxo-1-(4-pentyn-1-yl)cycloheptanecarboxylate (3e)

The compound **3e** was prepared according to the procedure for the preparation of **3a**, employing methyl 2-oxocycloheptanecarboxylate **10** (1.58 g, 10.0 mmol), NaH (482 mg, 12.1 mmol), 5-iodo-1-pentyne (2.15 g, 11.1 mmol) and hexane/EtOAc (99:1 to 85:15) as an eluent. Colorless oil (2.26 g, 96%). R (neat) 631, 1150, 1168, 1224, 1701, 1732, 2962, 2934, 3286 cm⁻¹; ¹H NMR (CDCl₃) δ 1.40–1.82 (m, 10H), 1.95 (t, *J* = 2.7 Hz, 1H), 2.00–2.24 (m, 4H), 2.44–2.54 (m, 1H), 2.58–2.68 (m, 1H), 3.73 (s, 3H). ¹³C NMR (CDCl₃) δ 18.52, 23.56, 24.59, 25.37, 29.66, 32.61, 34.33, 41.77, 52.01, 62.47, 68.54, 83.65, 172.90, 209.48. HRMS (ESI⁺) Calcd for C₁₄H₂₀O₃Na [M+Na]⁺: *m/z* 259.13047. Found: *m/z* 259.13016.

Methyl 2-(tert-Butyldimethylsiloxy)-1-(4-pentyn-1-yl)-2-cycloheptenecarboxylate (1e)

The compound **1e** was prepared according to the procedure for the preparation of **1a**, employing **3e** (958 mg, 4.06 mmol), Et₃N (1.70 mL, 12.2 mmol), TBSOTf (1.90 mL, 8.10 mmol) in CH₂Cl₂ (8.1 mL) and hexane/EtOAc/Et₃N (99:0:1 to 95:4:1) as an eluent. Colorless oil (1.24 g, 87%). IR (neat) 776, 837, 1164, 1732, 2858, 2930, 2950, 3313 cm⁻¹; ¹H NMR (CDCl₃) δ 0.14 (s, 3H), 0.16 (s, 3H), 0.87 (s, 9H), 1.48–1.75 (m, 6H), 1.79–2.95 (m, 5H), 1.96–2.05 (m, 2H), 2.20 (td, *J* = 7.2, 2.7 Hz, 2H), 3.66 (s, 3H), 4.97 (dd, *J* = 7.2, 5.7 Hz, 1H). ¹³C NMR (CDCl₃) δ –5.18, –4.70, 17.89, 18.87, 22.69, 23.47, 23.58, 25.50, 26.43, 31.35, 35.40, 51.38, 55.99, 68.20, 84.36, 108.47, 153.13, 175.54. HRMS (EI⁺) Calcd for C₂₀H₃₄O₃SiNa [M+Na]⁺: *m*/z 373.21694. Found: *m*/z 373.21606

Methyl 2-Oxo-1-(4-pentyn-1-yl)cyclooctanecarboxylate (3f)

The compound **3f** was prepared according to the procedure for the preparation of **3a**, employing methyl 2-oxocyclooctanecarboxylate **11**³ (1.47 g, 8.03 mmol), NaH (386 mg, 9.64 mmol), 5-iodo-1-pentyne (1.87 g, 9.64 mmol) and hexane/EtOAc (99:1 to 85:15) as an eluent. Colorless oil (1.81 g, 90%). IR (neat) 631, 1077, 1166, 1219, 1704, 2858, 2930, 3287 cm⁻¹; ¹H NMR (CDCl₃) δ 0.90–1.05 (m, 1H), 1.26–1.90 (m, 9H), 1.95 (t, *J* = 2.7 Hz, 1H), 1.97–2.32 (m, 6H), 2.43–2.55 (m, 1H), 2.71 (td, *J* = 12.0, 3.9 Hz, 1H), 3.70 (s, 3H). ¹³C NMR (CDCl₃) δ 18.51, 22.87, 23.61, 23.90, 25.23, 28.13, 29.03, 29.88, 38.28, 52.12, 61.82, 68.46, 83.67, 172.19, 212.25. Anal. Calcd for C₁₅H₂₂O₃: C, 71.97; H, 8.86%. Found: C, 71.69; H, 8.90%.

Methyl 2-(tert-Butyldimethylsiloxy)-1-(4-pentyn-1-yl)-2-cyclooctenecarboxylate (1f)

The compound **1f** was prepared according to the procedure for the preparation of **1a**, employing **3f** (785 mg, 3.13 mmol), Et₃N (1.31 mL, 9.40 mmol), TBSOTf (1.47, 3.01 mmol) in CH₂Cl₂ (10 mL) and

hexane/EtOAc (99.5:0.5 to 95:5) as an eluent. Colorless oil (861 mg, 90%). IR (neat) 627, 776, 837, 1146, 1648, 1731, 2929, 2950, 3313 cm⁻¹; ¹H NMR (CDCl₃) δ 0.18 (s, 6H), 0.88 (s, 9H), 1.32–1.45 (m, 1H), 1.46–1.67 (m, 6H), 1.73–2.03 (m, 5H), 1.93 (t, J = 2.7 Hz, 1H), 2.13–2.42 (m, 2H), 2.18 (td, J = 7.8, 2.7 Hz, 2H), 3.67 (s, 3H), 4.75 (dd, J = 11.5, 9.3 Hz, 1H). ¹³C NMR (CDCl₃) δ –5.15, –5.55, 17.92, 18.79, 22.94, 23.10, 23.41, 25.40, 25.59, 27.36, 34.13, 36.79, 51.24, 56.23, 68.23, 84.35, 104.81, 152.01, 175.55. Anal. Calcd for C₂₁H₃₆O₃Si: C, 69.18; H, 9.95%. Found: C, 68.83; H, 10.02%.

Scheme 2. Preparation of 1g.⁴

To a solution of the 8-iodo-1-trimethylsilyl-1-octyne $(13)^5$ (1.96 g 6.35 mmol) in pentane/Et₂O (3:2, 60 mL) was added dropwise ¹BuLi (7.98 mL of 1.59 M in Et₂O, 12.7 mmol) at -78 °C under Ar atmosphere. The reaction mixture was stirred at this temperature for 20 min. Then a solution of benzaldehyde (656 mg, 6.15 mmol) in Et₂O (6 mL) was added and the mixture was stirred at -78 °C for 1 h before being quenched with saturated aqueous NH₄Cl. The organic layer was washed with water (2 × 50 mL) and brine (50 mL), and separated. The combined aqueous layer was extracted with ether (3 × 50 mL). The organic layers were combined, dried over MgSO₄, filtered and concentrated under reduced pressure to afford **14** as a crude product. This crude product was used in the next step without further purification.

To a solution of **14** (6.15 mmol) in acetone (25 mL), Jones reagent (6.50 mL of 1.00 M in H_2SO_4 and H_2O , 6.50 mmol) was added dropwise at 0 °C under air and a mixture was stirred at this temperature for 15 min. Then MeOH (5 mL) was added at 0 °C, and the precipitates were filtered off and washed with Et₂O (30 mL). The filtrate was washed with brine (2 × 50 mL) and 15% NaOH (50 mL), and separated. The combined aqueous layer was extracted with ether (3 × 50 mL). The organic layers were combined, dried over MgSO₄, filtered and concentrated under reduced pressure to afford 1-phenyl-9-(trimethylsilyl)-8-nonyn-1-one as a crude product.

To a solution of this crude product (895 mg, 3.12 mmol) in THF (6.2 mL), TBAF (3.44 mL of 1.0 M in THF, 3.44 mL) was added at 0 °C. After stirring at this temperature for 6 h, the reaction mixture was diluted with water (10 mL) and Et₂O (10 mL). The organic layer was washed with water (3 × 10 mL), and separated. The combined aqueous layer was extracted with ether (3 × 10 mL). The organic layers were combined, dried over MgSO₄, filtered and concentrated under reduced pressure to afford **3g** as a crude product. The residue was purified by flash chromatography on silica gel (hexane/EtOAc 99:1 to 95:5) to afford **3g** as a white solid (466 mg, 3 steps overall 35%). IR (neat) 624, 688, 1266, 1447, 1679, 2859, 2932, 3289, 3306 cm⁻¹; Mp 31.5–33.6 °C. ¹H NMR (CDCl₃) δ 1.35–1.62 (m, 6H), 1.76 (quint, *J* = 7.2 Hz, 2H), 1.94 (t, *J* = 2.4 Hz, 1H), 2.20 (td, *J* = 6.9, 2.4 Hz, 2H), 2.98 (t, *J* = 7.2 Hz, 2H), 7.43–7.50 (m, 2H), 7.53–7.60 (m, 1H), 7.94–7.99 (m, 2H). ¹³C NMR (CDCl₃) δ 17.95, 23.73, 27.91, 28.18, 28.41, 38.06, 68.10, 84.24, 127.83, 128.37, 132.71, 136.85, 200.11. Anal. Calcd for C₁₅H₁₈O: C, 84.07; H, 8.47%. Found: C, 83.72; H, 8.48%.

The compound 1g was prepared according to the procedure for the preparation of 1a, employing 3g (446 mg, 2.09 mmol), Et₃N (0.873 mL, 4.18 mmol), TBSOTf (0.980 mL, 4.18 mmol) in CH₂Cl₂ (4.1 mL) and hexane/EtOAc (99.5/0.5 to 95/5) as the eluent. Colorless oil (651 mg, 95%, E/Z = 14/86). IR (neat) 626, 696, 765, 778, 836, 1063, 1253, 2857, 2930, 3312 cm⁻¹; ¹H NMR of (*E*)-1g (CDCl₃) δ 0.06 (s, 0.86×6H), 0.03 (s, 0.14×6H), 0.91 (s, 0.14×9H), 0.98 (s, 0.86×9H), 1.35–1.55 (m, 6H), 1.93 (m, $0.14 \times 1H$, 1.94 (t, J = 2.7 Hz, $0.86 \times 1H$), 2.05-2.24 (m, 6H), 5.01 (t, J = 7.2 Hz, $0.14 \times 1H$), 5.10 (t, J = 1.00 Hz, $0.14 \times 1H$), $0.14 \times$ 7.2 Hz, 0.86×1 H), 7.19–7.37 (m, 3H), 7.40–7.45 (m, 2H). ¹³C NMR of (CDCl₃) δ –4.24 (0.86×1C), -4.71 (0.14×1C), 17.97 (0.14×1C), 18.13 (0.86×1C), 18.15 (0.14×1C), 18.20 (0.86×1C), 25.61 (0.14×1C), 25.73 (0.86×1C), 25.86 (0.86 ×1C), 27.28 (0.14×1C), 28.13 (0.14×1C), 28.23 (0.86×1C), 28.42 (0.86×1C), 29.02 (0.86×1C), 30.09 (0.14×1C), 68.16 (0.14×1C), 68.16 (1C), 84.38 (0.14×1C), 84.43 (0.86×1C), 110.96 (0.14×1C), 111.64 (0.86×1C), 125.87 (0.86×1C), 127.36 (0.86×1C), 127.60 (0.14×1C), 127.74 (0.14×1C), 127.88 (0.86×1C), 128.32 (0.14×1C), 137.93 (0.14×1C), 139.83 (0.86×1C), 149.44 (0.86×1C), 149.55 (0.14×1C). Another one peak of E-isomer was probably overlapped with that of Z-isomer. HRMS (APCI⁺) Calcd for $C_{21}H_{33}OSi [M+H]^+$: m/z 329.22952. Found: m/z 329.22888. The geometry of major Z-isomer was confirmed by an NOE experiment as shown below.

To a solution of triisopropylsilylacetylene (3.55 g, 19.5 mmol) in THF (40 mL) was added ^{*n*}BuLi (11.6 mL of 1.67 M in hexane, 19.4 mL) at 0 °C, and the mixture was stirred at this temperature for 1 h. Then 1-bromo-4-chloro-butane (3.16 g, 18.2 mmol) and HMPA (3.38 mL, 19.4 mmol was added at 0 °C , and the reaction mixture was allowed to warm to room temperature and stirred for 15 h. The

resulting mixture was treated with saturated aqueous NH_4Cl (30 mL) and hexane (30 mL), and the aqueous layer was separated. The organic layer was washed with water (30 mL) and brine (30 mL), and separated. The combined aqueous layer was extracted with hexane (3 × 30 mL). The organic layers were combined, dried over MgSO₄, filtered and concentrated under reduced pressure to afford the 6-chloro-1-triisopropylsilyl-1-hexyne as a crude product (pale yellow oil, 4.99 g). This crude product was used in the next step without further purification.

To a solution of 6-chloro-1-triisopropylsilyl-1-hexyne (4.99 g) in acetone (100 mL), NaI (14.6 g, 96.9 mmol) was added, and the mixture was stirred at 80 °C overnight. The resulting orange suspension was cooled to rt, solvent was removed by an evaporator, and saturated aqueous Na₂S₂O₃ (50 mL) and hexane (100 mL) was added. The organic layer was washed with water (2 × 50 mL) and brine (50 mL), and separated. The combined aqueous layer was extracted with hexane (3 × 50 mL). The organic layer was combined, dried over MgSO₄, filtered and concentrated under reduced pressure. Flash silica gel column purification (hexane) of the crude product afforded **15** as a colorless oil (5.58 g, 2 steps overall 84%). IR (neat) 659, 674, 882, 1462, 2171, 2863, 2941 cm⁻¹; ¹H NMR (CDCl₃) δ 1.00–1.10 (m, 21H), 1.65 (quint., *J* = 7.2 Hz, 2H), 1.98 (quint., *J* = 7.2 Hz, 2H), 2.30 (t, *J* = 6.9 Hz, 2H), 3.23 (t, *J* = 6.9 Hz, 2H). ¹³C NMR (CDCl₃) δ 6.04, 11.10, 18.49, 18.60, 29.21, 32.12, 80.99, 107.92. HRMS (EI⁺) Calcd for C₁₅H₂₉ISi [M]⁺: *m/z* 364.10832. Found: *m/z* 364.10752.

3-Methyl-1-phenyl-8-nonyn-1-one (3h)

To a solution of **15** (4.64 g, 12.7 mmol) in Et₂O (120 mL) was added ^tBuLi (16.3 mL of 1.55 M in pentane, 25.3 mmol) at -78 °C, and the mixture was stirred for 40 min. Then, CuCN (533 mg, 6.36 mmol) was added one portion to a mixture, and the pale yellow suspension was stirred at -78 °C for additional 15 min. To this suspension, a solution of (*E*)-1-phenyl-2-buen-1-one (888 mg, 6.07 mmol) was added dropwise at -78 °C over 7 min. The resulting dark red solution was quenched with saturated aqueous NH₄Cl (120 mL) after being stirred for 20 min (the consumption of SM was checked by TLC), and a mixture was stirred until the color of organic phase turned to blue. The organic phase was washed with saturated aqueous NH₄Cl (5 × 100 mL), and separated, dried over MgSO₄, filtered and concentrated under reduced pressure to afford the 1,4-adduct **16** as a crude product (yellow oil, 3.51 g,). The residue was purified by flash chromatography on silica gel (hexane/EtOAc 99.5:0.5 to 97:3) to afford **16** as a colorless oil (611 mg, 26%).

To a solution of **16** (611 mg, 1.59 mmol) in THF (8.0 mL), TBAF (2.38 mL of 1.0 M in THF, 2.38 mL) was added at 0 °C. After stirring at room temperature for 13 h, the reaction mixture was diluted with water (10 mL) and Et₂O (5 mL). The organic layer was washed with water (3 × 10 mL), and separated. The combined aqueous layer was extracted with ether (3 × 10 mL). The organic layers were combined, dried over MgSO₄, filtered and concentrated under reduced pressure to afford **3h** as a crude product. The residue was purified by flash chromatography on silica gel (hexane/EtOAc 99:1 to 96:4) to afford **3h** as a colorless oil (272 mg, 75%). IR (neat) 631, 690, 751, 1213, 1448, 1682, 2861, 2934, 3301 cm⁻¹; ¹H NMR (CDCl₃) δ 0.97 (d, *J* = 6.9 Hz, 3 H), 1.20–1.58 (m, 6H), 1.94 (t, *J* = 2.7 Hz, 1H), 2.11–2.23 (m, 3H), 2.77 (dd, *J* = 15.8, 6.0 Hz, 1H), 2.95 (dd, *J* = 15.8, 6.0 Hz, 1H), 7.43–7.50 (m, 2H), 7.53–7.60 (m, 1H), 7.93–7.98 (m, 2H). ¹³C NMR (CDCl₃) δ 18.05, 19.69, 25.81, 28.23, 29.30, 36.20, 45.62, 68.16, 84.32, 127.99, 128.47, 132.79, 137.33, 200.21. Anal. Calcd for C₁₆H₂₀O: C, 84.16; H, 8.83%. Found: C, 83.96; H, 8.90%.

(Z)-tert-Butyldimethyl[(3-methyl-1-phenyl-1-nonen-8-yn-1-yl)oxy]silane (1h) (E/Z = 13/87)

The compound **1h** was prepared according to the procedure for the preparation of **1a**, employing **3h** (257 mg, 1.13 mmol), Et₃N (0.235 mL, 1.69 mmol), TBSOTf (0.317 mL, 1.35 mmol) in CH₂Cl₂ (5.6 mL) and hexane/EtOAc (99.5:0.5 to 97:3) as an eluent. Colorless oil (342 mg, 89%, E/Z = 13/87). IR (neat) 626, 697, 764, 778, 836, 1062, 1255, 1647, 2858, 2930, 2954, 3313 cm⁻¹; ¹H NMR of (**Z**)-**1h** (CDCl₃) δ –0.10 (s, 3H), –0.03 (s, 3H), 0.98 (s, 9H), 1.01 (d, J = 6.6 Hz, 3 H), 1.24–1.58 (m, 6H), 1.93 (t, J = 2.7 Hz, 1H), 2.18 (td, J = 6.9, 2.7 Hz, 2H), 2.62–2.74 (m, 1H), 4.85 (d, J = 9.6 Hz, 1H), 7.17–7.36 (m, 3H), 7.39–7.45 (m, 2H). [(**E**)-**1h**: 4.79 (d, J = 10.8 Hz, 1H)]. ¹³C NMR of (**Z**)-**1h** (CDCl₃) δ –4.28, –4.11, 18.13, 18.27, 20.82, 25.80, 26.53, 28.54, 30.08, 37.07, 68.13, 84.48, 118.23, 126.18, 127.40, 127.86, 140.01, 148.62. Anal. Calcd for C₂₂H₂₄OSi: C, 77.13; H, 10.00%. Found: C, 76.74; H, 10.04%. The geometry of major Z-isomer was confirmed by an NOE experiment as shown below.

The compound **3i** was prepared according to the procedure for the preparation of **3a**, employing dimethyl 2-(4-pentyn-1-yl)malonate (**17**) (1.13 g, 5.04 mmol), NaH (241 mg, 6.00 mmol), 3-chloro-1-phenyl-1-propanone (1.05 g, 5.99 mmol), NaI (75.1 mg, 0.500 mmol) at 80 °C (reflux) for 11 h. Purification by silica gel chromatgraphy (hexane/EtOAc 95:5 to 80:20) afforded **3i** as a colorless oil (1.17 g, 70%). IR (neat) 689, 1173, 1434, 1448, 1683, 1727, 2953, 3288 cm⁻¹; ¹H NMR (CDCl₃) δ 1.42–1.54 (m, 2H), 1.96 (t, *J* = 2.4 Hz, 1H), 2.03–2.11 (td, *J* = 6.9, 2.4 Hz, 2H), 2.31–2.38 (m, 2H), 2.96–3.03 (m, 2H), 3.74 (s, 6H), 7.44–7.51 (m, 2H), 7.54–7.61 (m, 1H), 7.93–7.98 (m, 2H). ¹³C NMR (CDCl₃) δ 18.43, 23.18, 27.13, 32.73, 33.59, 52.41, 56.66, 68.85, 83.48, 128.06, 128.63, 133.18, 136.68, 171.82, 198.92. HRMS (ESI⁺) Calcd for C₁₉H₂₂O₅Na [M+Na]⁺: *m/z* 353.13594. Found: *m/z* 353.13528.

(Z)-Dimethyl 2-[3-(*tert*-Butyldimethylsiloxy)-3-phenylallyl]-2-(4-pentyn-1-yl)malonate (1i) (*E*/Z = 10/90)

The compound **1i** was prepared according to the procedure for the preparation of **1a**, employing **3i** (609 mg, 1.84 mmol), Et₃N (0.770 mL, 5.53 mmol), TBSOTf (0.864 mL, 3.68 mmol) in CH₂Cl₂ (3.7 mL) and hexane/EtOAc (99:1 to 87:13) as an eluent. Colorless oil (781 mg, 87%, E/Z = 10/90). IR (neat) 760, 779, 837, 1074, 1254, 1732, 2931, 2953, 2931, 2953, 3308 cm⁻¹; ¹H NMR of (**Z**)-**1i** (CDCl₃) δ –0.06 (s, 3H), 0.99 (s, 9H), 1.42–1.57 (m, 2H), 1.91 (t, J = 2.7 Hz, 1H), 1.95–2.02 (m, 2H), 2.18 (td, J = 7.2, 2.7 Hz, 2H), 2.84 (d, J = 7.5 Hz, 1H), 4.89 (d, J = 7.5 Hz, 1H), 7.23–7.31 (m, 3H), 7.36–7.41 (m, 2H). [(**E**)-**1i**: 2.74 (d, J = 7.8 Hz, 2H), 4.77 (t, J = 7.8 Hz, 1H)]. ¹³C NMR of (**Z**)-**1i** (CDCl₃) δ –4.28, –4.11, 18.13, 18.27, 20.82, 25.80, 26.53, 28.54, 30.08, 37.07, 68.13, 84.48, 118.23, 126.18, 127.40, 127.86, 140.01, 148.62. Anal. Calcd for C₂₅H₃₆OSi: C, 67.53; H, 8.16%. Found: C, 67.29; H, 8.25%. The geometry of major Z-isomer was confirmed by an NOE experiment as shown below.

Dimethyl 2-(4-Oxo-4-phenyl-2-butanyl)-2-(4-pentyn-1-yl)malonate (3j)

To a suspension of NaH (0.224 g, 5.59 mmol) in Et₂O (4.6 mL) was added a solution of **17** (1.04 g, 4.59 mmol) in Et₂O (9.2 mL) at 0 °C under Ar atmosphere. After stirring for 10 min, the reaction mixture was allowed to warm to room temperature and stirred for 1 h. Then, the mixture was concentrated *in vacuo* to remove the solvent, and the reaction vessel was charged with Ar. To the reaction vessel, CH₂Cl₂ (23 mL), (*E*)-1-phenyl-2-buten-1-one (673 mg, 4.61mmol) and TMSOTf (1.69 mL, 9.17 mmol) was added in this order at 0 °C, and the mixture was stirred at this temperature for 10 h. The resulting trimethylsilyl enol ether was hydrolyzed with aq NaHCO₃ to **3j**. The organic layer was washed with H₂O (3 × 10 mL) and separated. The combined aqueous layer was extracted with Et₂O (3 × 10 mL). The organic layers were combined, dried over MgSO₄, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel (hexane/EtOAc 95:5 to 80:20) to give **3j** as a colorless oil (1.17 g, 74%). IR (neat) 776, 835, 1186, 1252, 1712, 2933, 2954, 3288 cm⁻¹; ¹H NMR (CDCl₃) δ 0.97 (d, *J* = 6.9 Hz, 3H), 1.42–1.59 (m, 2H), 1.96 (t, *J* = 2.7 Hz, 1H), 2.03–2.11 (m, 2H), 2.21 (td, *J* = 7.2, 2.7 Hz, 2H), 2.82 (dd, *J* = 16.5, 10.5 Hz, 1H), 2.91–3.04 (m, 1H), 3.30 (d, *J* = 16.5 Hz, 1H), 3.75 (s, 3H), 3.79 (s, 3H), 7.43–7.51 (m, 2H), 7.54–7.60 (m, 2H), 7.97–8.03 (m, 2H).

51.93, 52.02, 61.07, 68.76, 83.33, 128.02, 128.46, 132.95, 136.90, 171.00, 171.55, 198.87. HRMS (ESI⁺) Calcd for $C_{20}H_{24}O_5Na [M+Na]^+$: *m/z* 367.15160. Found: *m/z* 367.15084.

(Z)-Dimethyl 2-[4-(*tert*-Butyldimethylsiloxy)-4-phenyl-3-buten-2-yl]-2-(4-pentyn-1-yl)malonate (1j)

The compound **1j** was prepared according to the procedure for the preparation of **1a**, employing **3j** (996 mg, 2.89 mmol), Et₃N (1.21 mL, 8.68 mmol), TBSOTf (1.36 mL, 5.80 mmol) in CH₂Cl₂ (5.8 mL) and hexane/EtOAc (99:1 to 92:8) as the eluent. The further purification was conducted by GPC. Colorless oil (871 mg, 66%). IR (neat) 698, 766, 779, 838, 1062, 1252, 1646, 1727, 2932, 2953, 3310 cm⁻¹; ¹H NMR (CDCl₃) δ –0.15 (s, 3H), 0.01 (s, 3H), 1.00 (s, 9H), 1.12 (d, *J* = 6.9 Hz, 3 H), 1.32–1.50 (m, 1H), 1.62–1.78 (m, 1H), 1.90 (t, *J* = 2.7 Hz, 1H), 1.94–2.02 (m, 2H), 2.16 (td, *J* = 6.9, 2.7 Hz, 2H), 3.49 (dq, *J* = 10.5, 6.9 Hz, 1H), 3.72 (s, 3H), 3.75 (s, 3H), 4.95 (d, *J* = 10.5 Hz, 1H), 7.24–7.32 (m, 3H), 7.35–7.41 (m, 2H). ¹³C NMR (CDCl₃) δ –4.49, –4.08, 17.42, 17.99, 18.60, 23.63, 25.61, 33.93, 34.50, 51.56, 51.83, 61.47, 68.44, 83.63, 111.87, 126.44, 127.76, 127.82, 139.51, 150.51, 171.22, 171.64. HRMS (ESI⁺) Calcd for C₂₆H₃₈O₅SiNa [M+Na]⁺: *m/z* 481.23807. Found: *m/z* 481.23699. The geometry of major *Z*-isomer was confirmed by an NOE experiment as shown below.

Dimethyl 2-(3-Oxo-1,3-diphenylpropyl)-2-(4-pentyn-1-yl)malonate (3k)

The compound **3k** was prepared according to the procedure for the preparation of **3j**, employing **17** (896 mg, 4.00 mmol), NaH (193 mL, 4.83 mmol), (*E*)-chalcone (836 mg, 4.01 mmol), TMSOTf (1.17 mL, 5.99 mmol) and hexane/EtOAc (90:10 to 80:20) as an eluent. Colorless viscose oil (1.29 g, 79%). IR (neat) 690, 702, 749, 1170, 1213, 1433, 1448, 1597, 1685, 1726, 2951, 3288 cm⁻¹; ¹H NMR (CDCl₃) δ 1.40–1.69 (m, 2H), 1.73 (dd, *J* = 4.8, 12.0 Hz, 1H), 1.84 (dd, *J* = 8.1, 12.0 Hz, 1H), 3.75 (s, 3H), 3.78 (dd, *J* = 17.4 Hz, 10.5 Hz, 1H), 3.80 (s, 3H), 4.17 (dd, *J* = 10.5, 2.7 Hz, 1H), 7.11–7.17 (m, 2H), 7.17–7.26 (m, 3H), 7.38–7.45 (m, 2H), 7.48–7.55 (m, 2H). ¹³C NMR (CDCl₃) δ 18.49, 23.89, 33.65, 41.99, 44.75, 52.18, 52.47, 61.74, 68.69, 83.54, 127.46, 128.13, 128.35, 128.54, 129.08, 132.99, 137.02, 138.94, 171.17, 171.65, 197.96. Anal. Calcd for C₂₅H₂₆O₅: C, 73.87; H, 6.45%. Found: C, 73.49; H, 6.57%.

(Z)-Dimethyl 2-[3-(tert-Butyl
dimethylsiloxy)-1,3-diphenylallyl]-2-(4-pentyn-1-yl)malonate (1k)
 (E/Z=4/96)

The compound **1k** was prepared according to the procedure for the preparation of **1a**, employing **3k** (1.02 g, 2.50 mmol), Et₃N (1.05 mL, 7.53 mmol), TBSOTf (1.17 mL, 4.99 mmol) in CH₂Cl₂ (5.0 mL) and hexane/EtOAc (99.5:0.5 to 97:3) as an eluent. White solid (1.26 mg, 97%, *E/Z* 4:96). IR (neat) 700, 769, 780, 1648, 1722, 1751, 2933, 2954, 3277 cm⁻¹; Mp: 71.9–73.0 °C. ¹H NMR of (**Z**)-**1k** (CDCl₃) δ –0.28 (s, 3H), –0.25 (s, 3H), 0.99 (s, 9H), 1.24–1.43 (m, 1H), 1.60–1.76 (m, 1H), 1.90 (t, *J* = 2.7 Hz, 1H), 1.92–211 (m, 2H), 2.15 (br t, *J* = 6.0 Hz, 2H), 3.57 (s, 3H), 3.66 (s, 3H), 4.68 (d, *J* = 10.8 Hz, 1H), 5.68 (d, *J* = 10.8 Hz, 1H), 7.15–7.34 (m, 8H), 7.36–7.42 (m, 2H). [(*E*)-**1k**: δ –0.14 (s, 3H), –0.10 (s, 3H), 1.02 (s, 9H), 5.35 (d, *J* = 10.2 Hz, 1H)]. ¹³C NMR of (**Z**)-**1j** (CDCl₃) δ –4.60, –3.79, 18.12, 18.70, 23.89, 25.75, 34.37, 45.22, 51.72, 51.92, 63.24, 68.48, 83.79, 109.52, 126.80, 127.79, 127.95, 128.01, 129.49, 139.75, 140.51, 150.94, 171.00, 171.12. Anal. Calcd for C₃₁H₄₀O₅Si: C, 71.50; H, 7.74%. Found: C, 71.34; H, 7.78%. The geometry of major *Z*-isomer was confirmed by an NOE experiment as shown below.

Dimethyl 2-(3-Butyn-1-yl)-2-(4-Oxo-4-phenylbutyl)malonate (3l)

The compound **3l** was prepared according to the procedure for the preparation of **3a**, employing dimethyl 2-(3-butyn-1-yl)malonate (**18**) (1.04 g, 5.01 mmol), NaH (240 mg, 6.00 mmol), 4-iodo-1-phenyl-1-butanone⁶ (1.65 g, 6.02mmol) at room temperature overnight. Purification by silica gel chromatography (hexane/EtOAc 95:5 to 75:25) afforded **3l** as a colorless oil (0.951 g, 57%). IR (neat) 690, 1175, 1199, 1434, 1448, 1683, 1728, 2953, 3289 cm⁻¹; ¹H NMR (CDCl₃) δ 1.57–1.70 (m, 2H), 1.96–2.06 (m, 3H), 2.21–2.24 (m, 4H), 3.01 (t, *J* = 6.9 Hz, 2H), 3.75 (S, 6H), 7.43–7.50 (m, 2H), 7.54–7.60 (m, 1H), 7.93–7.97 (m, 2H). ¹³C NMR (CDCl₃) δ 13.42, 18.07, 30.88, 31.60, 37.71, 52.11, 56.57, 68.65, 82.83, 127.68, 128.36, 132.83, 136.58, 171.22, 198.98. HRMS (ESI⁺) Calcd for C₁₉H₂₂O₅Na [M+Na]⁺: *m/z* 353.135894. Found: *m/z* 353.13539.

(Z)-Dimethyl 2-(3-butyn-1-yl)-2-[4-(*tert*-butyldimethylsiloxy)-4-phenyl-3-buten-1-yl]malonate (11) (*E*/Z = 19/81)

The compound **11** was prepared according to the procedure for the preparation of **1a**, employing **31** (724 mg, 2.19 mmol), Et₃N (0.458 mL, 3.29 mmol), TBSOTF (0.617 mL, 2.63 mmol) in CH₂Cl₂ (8.8 mL) and hexanes/EtOAc (99/1 to 92/8) as an eluent. Colorless oil (794 mg, 81%, E/Z = 19/81). IR

(neat) 697, 758, 779, 838, 1176, 1196, 1253, 1732, 2931, 2954, 3308 cm⁻¹; ¹H NMR of (**Z**)-**1**l (CDCl₃) δ –0.11 (s, 6H), 0.97 (s, 9H), 1.91–2.28 (m, 9H), 3.71 (s, 6H), 4.93–5.05 (m, 1H), 7.19–7.44 (m, 5H). ¹³C NMR of (**Z**)-**1**l (CDCl₃) δ –4.36, 13.76, 18.00, 20.82, 25.61, 31.04, 32.21, 52.21, 56.60, 68.72, 82.92, 109.88, 125.80, 127.54, 127.86, 139.36, 150.08, 171.47. HRMS (ESI⁺) Calcd for C₂₅H₃₆O₅SiNa [M+Na]⁺: *m/z* 467.22169. Found: *m/z* 467.22242. The geometry of major Z-isomer was confirmed by NOE experiment as shown below.

Scheme 7. Preparation of (*E*)-1j.⁴

(*E*)-Dimethyl 2-[4-(*tert*-Butyldimethylsiloxy)-4-phenyl-3-buten-2-yl]-2-(4-pentyn-1-yl)malonate [(*E*)-1j] (*E*/Z = 86/14)

To a suspension of NaH (149 mg, 3.73 mmol) in Et₂O (3 mL) was added a solution of **17** (679 mg, 3.04 mmol) in Et₂O (6 mL) at 0 °C under Ar atmosphere. After stirring for 10 min, the reaction mixture was allowed to warm to room temperature and stirred for 1 h. Then, the mixture was concentrated in *vacuo* to remove the solvent, and the reaction vessel was charged with Ar. To the reaction vessel, CH₂Cl₂ (23 mL), (E)-1-phenyl-2-buten-1-one (452 mg, 3.09 mmol) and TBSOTF (1.07 mL, 4.56 mmol) was added in this order at -78 °C, and the mixture was allowed to slowly warm to room temperature with stirring for 24 h. The resulting trimethylsilyl enol ether was hydrolyzed with aq NaHCO₃ to **3j**. The organic layer was washed with H_2O (3 × 10 mL), and separated. The combined aqueous layer was extracted with Et_2O (3 × 10 mL). The organic layers were combined, dried over MgSO₄, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel (hexane/EtOAc 99.5:0.5 to 92:8) and GPC to give (E)-1j as a colorless oil (735 g, 53%). IR (neat) 699, 778, 836, 1252, 1646, 1728, 2931, 2953, 3310 cm⁻¹; ¹H NMR (CDCl₃) $\delta 0.05$ (s, 3H), 0.08 (s, 3H), 0.88 (s, 9H), 1.04–1.22 (m, 2H), 1.15 (d, J = 6.9 Hz, 3H), 1.75–1.91 (m, 2H), 1.90 (t, J = 2.7 Hz, 1H), 2.04 (td, J = 7.2, 2.7 Hz, 2H), 2.96–3.08 (m, 1H), 3.68 (s, 3H), 3.71 (s, 3H), 4.90 (d, J = 11.4 Hz, 1H), 7.22–7.38 (m, 5H). ¹³C NMR (CDCl₃) δ –4.82, –4.49, 17.96, 18.51, 18.62, 23.49, 25.55, 33.87, 36.34, 51.74, 51.91, 61.64, 68.45, 83.63, 110.56, 128.01, 128.05, 128.07, 137.75, 151.25, 171.16, 171.47. HRMS (ESI⁺) Calcd for $C_{26}H_{38}O_5SiNa[M+Na]^+$: m/z 481.23807. Found: *m/z* 481.23733.

Scheme 8. Preparation of 1m.

Methyl 2-Acetyl-2-benzyl-6-heptynoate (3m)

Ph

The compound **3m** was prepared according to the procedure for the preparation of **3a**, employing metyl 2-acetyl-6-heptynoate (**19**) (729 mg, 4.00 mmol), NaH (192 mg, 4.80 mmol), benzyl bromide (0.582 mL, 4.80mmol) at room temperature for 20 min. Purification by silica gel chromatography (hexane/EtOAc 99:1 to 85:15) afforded **3m** as a colorless oil (0.834 g, 88%). IR (neat) 635, 701, 1176, 1433, 1455, 1709, 1742, 2952, 3289 cm⁻¹; ¹H NMR (CDCl₃) δ 1.23–1.45 (m, 1H), 1.45–1.61 (m, 1H), 1.87–1.97 (m, 2H), 1.96 (t, *J* = 2.7 Hz, 1H), 2.12 (s, 3H), 2.15–2.23 (m, 2H), 3.12 (d, *J* = 14.4, 1H), 3.23 (d, *J* = 14.4, 1H), 3.72 (s, 3H), 7.02–7.07 (m, 2H), 7.18–7.28 (m, 3H). ¹³C NMR (CDCl₃) δ 18.27, 22.82, 26.89, 30.15, 37.08, 51.96, 64.32, 68.92, 83.25, 126.81, 128.22, 129.67, 136.05, 172.17, 204.60. Anal. Calcd for C₁₇H₂₀O₃Si: C, 74.97; H, 7.40%. Found: C, 74.74; H, 7.43%.

Methyl 2-Benzyl-2-[1-(tert-butyldimethylsiloxy)vinyl]-6-heptynoate (1m)

The compound **1n** was prepared according to the procedure for the preparation of **1a**, employing **3m** (732 mg, 2.69 mmol), Et₃N (0.749 mL, 5.37 mmol), TBSOTF (0.945 mL, 4.03 mmol) in CH₂Cl₂ (5.4 mL) and hexane/EtOAc (99.5:0.5 to 94:6) as an eluent. White solid (959 mg, 92%). Mp = 47.2–50.4 °C. IR (neat) 829, 992, 1274, 1633, 1725, 2931, 2948, 3277 cm⁻¹; ¹H NMR (CDCl₃) δ 0.19 (s, 3H), 0.24 (s, 3H), 0.91 (s, 9H), 1.38–1.51 (m, 1H), 1.59–1.68 (m, 3H), 1.95 (t, *J* = 2.7 Hz, 1H), 2.15–2.21 (m, 2H), 3.09 (s, 2H), 3.67 (s, 3H), 4.05 (d, *J* = 2.4 Hz, 1H), 4.17 (d, *J* = 2.4 Hz, 1H), 7.07–7.12 (m, 2H), 7.17–7.25 (m, 3H). ¹³C NMR (CDCl₃) δ –5.56, –4.97, 17.79, 18.53, 23.48, 25.33, 30.09, 37.03, 51.59, 56.82, 68.57, 83.93, 89.80, 126.50, 127.86, 130.21, 137.05, 158.19, 174.15. HRMS (ESI⁺) Calcd for C₂₃H₃₄O₃Si [M]⁺: *m/z* 409.21694. Found: *m/z* 409.21632.

Scheme 9. Preparation of 1n.

Methyl 2-[1-(tert-Butyldimethylsiloxy)vinyl]-2-(4-pentyn-1-yl)-6-heptynoate (1n)

The compound **3n** was prepared according to the procedure for the preparation of **3a**, employing methyl 2-acetyl-6-heptanoate (**20**) (929 mg, 5.10 mmol), NaH (245 mg, 6.13 mmol), 5-iodo-1-hexyne (1.52 g, 7.65mmol) at room temperature overnight. Purification by silica gel chromatography (hexanes/EtOAc 98:2 to 75:25) afforded **3n** as a mixture of a small amount of a *O*-alkylation by-product (colorless oil, 917 mg, ca 73%). ¹H NMR (CDCl₃) δ 1.22–1.46 (m, 4H), 1.97–2.04 (m, 6H), 2.15 (s, 3H), 2.17–2.25 (m, 4H), 3.75 (S, 3H). Then silyl enolization of **3n** took place by using the procedure for the preparation **3a**, employing **3n** (917 mg, 3.69 mmol), Et₃N (0.772 mL, 5.54 mmol), TBSOTf (1.04 mL, 4.43 mmol) in CH₂Cl₂ (7.4 mL) and hexane/EtOAc (99.5/0.5 to 97/3) as the eluent. Colorless oil (887 mg, 48% from **19**). IR (neat) 626, 827, 1020, 1172, 1254, 1625, 1735, 2932, 2951, 3309 cm⁻¹; ¹H NMR (CDCl₃) δ 0.17 (s, 6H), 0.88 (s, 9H), 1.20–1.40 (m, 2H), 1.40–1.53 (m, 2H), 1.80–1.87 (m, 4H), 3.66 (s, 3H), 4.19 (q, *J* = 2.1 Hz, 2H). ¹³C NMR (CDCl₃) δ –5.27, 17.74, 18.60, 23.04, 25.30, 30.58, 51.70, 55.40, 68.52, 83.99, 89.12, 158.62, 174.63. Anal. Calcd for C₂₁H₃₄O₃Si: C, 69.56; H, 9.45%. Found: C, 69.56; H, 9.59%.

Cyclization Products.

Ethyl cis-5-Methylene-10-oxobicyclo[4.3.1]decane-1-carboxylate (2a)

Colorless oil. IR (neat) 1175, 1232, 1704, 1732, 2935 cm⁻¹; ¹H NMR (CDCl₃) δ 1.28 (t, *J* = 7.2 Hz, 3H), 1.61–2.26 (m, 10H), 2.36–2.49 (m, 2H), 3.34 (br s, 1H), 4.20 (q, *J* = 7.2 Hz, 2H), 4.93 (s, 1H), 5.03 (s, 1H). ¹³C NMR (CDCl₃) δ 13.78, 17.89, 23.66, 31.76, 34.00, 35.08, 35.26, 55.08, 60.85, 60.94, 112.50, 145.33, 173.58, 211.03. Anal. Calcd for C₁₄H₂₀O₃: C, 71.16; H, 8.53%. Found: C, 70.85; H, 86.68%.

cis-1-benzoyl-5-methylenebicyclo[4.3.1]decan-10-one (2c)

Colorless oil. IR (neat) 1230, 1446, 1677, 1697, 2932 cm⁻¹; ¹H NMR (CDCl₃) δ 1.72–1.83 (m, 1 H), 1.84–1.96 (m, 3H), 2.05–2.20 (m, 4H), 2.23–2.40 (m, 2 H), 2.40–2.55 (m, 2 H), 3.61 (br s, 1H), 4.96 (s, 1H), 5.10 (s, 1H), 7.36–7.49 (m, 2H), 7.45–7.52 (m, 1H), 7.66–7.71 (m, 2H). ¹³C NMR (CDCl₃) δ 18.79, 24.67, 32.46, 35.24, 36.33, 37.63, 54.61, 63.53, 113.17, 128.23, 129.50, 131.96, 135.10, 146.04, 201.06, 213.17. HRMS (ESI⁺) Calcd for C₁₈H₂₀O₂ [M+Na]⁺: *m/z* 291.13555. Found: *m/z* 291.13523.

Methyl cis-5-Methylene-9-oxobicyclo[4.2.1]nonane-1-carboxylate (2d)

Colorless oil. IR (neat) 1174, 1208, 1268, 1243, 1727, 1749, 2935, 2949 cm⁻¹; ¹H NMR (CDCl₃) δ

1.69–1.99 (m, 4H), 2.02–2.20 (m, 3H), 2.35–2.61 (m, 3H), 3.34 (dd, J = 8.7, 2.1 Hz, 1H), 3.74 (s, 3H), 4.81 (s, 1H), 4.89 (s, 1H). ¹³C NMR (CDCl₃) δ 23.78, 28.19, 29.31, 34.31, 34.89, 52.45, 54.48, 60.14, 111.38, 146.20, 173.05, 214.61. HRMS (EI⁺) Calcd for C₁₂H₁₆O₃ [M]⁺: *m*/*z* 208.10994. Found: *m*/*z* 208.10967.

Methyl cis-5-Methylene-11-oxobicyclo[4.4.1]undecane-1-carboxylate (2e)

Colorless oil. IR (neat) 901, 1210, 1690, 1728, 2925, 2950 cm⁻¹; ¹H NMR (CDCl₃) δ 1.45–1.55 (m, 1H), 1.68–2.20 (m, 12H), 2.45–2.55 (m, 1H), 3.46–3.58 (m, 1H), 3.73 (s, 3H), 4.91 (s, 1H), 4.93 (s, 1H), 5.00 (s, 1H). ¹³C NMR (CDCl₃) δ 24.71, 25.55, 25.69, 27.91, 30.73, 33.20, 36.23, 52.01, 61.79, 64.39, 113.20, 144.54. HRMS (EI⁺) Calcd for C₁₄H₂₀O₃ [M]⁺: *m/z* 236.14124. Found: *m/z* 236.14115.

Methyl cis-8-Methylene-12-oxobicyclo[5.4.1]dodecane-1-carboxylate (2f)

Colorless oil. IR (neat) 1220, 1241, 1438, 1683, 1731, 2929 cm⁻¹; ¹H NMR (CDCl₃) δ 1.17–1.34 (m, 1H), 1.40–1.56 (m, 1H), 1.56–1.99 (m, 9H), 2.03–2.14 (m, 1H), 2.03–2.14 (m, 1H), 2.30–2.56 (m, 4H), 3.34 (dd, J = 9.0, 4.2, 1H), 3.71 (s, 3H), 4.94 (s, 1H), 4.97 (s, 1H). ¹³C NMR (CDCl₃) δ 23.06, 23.82, 24.77, 25.11, 30.08, 34.44, 34.68, 35.82, 51.88, 62.75, 63.35, 112.99, 145.77, 173.83, 213.61. HRMS (EI⁺) Calcd for C₁₅H₂₂O₃ [M]⁺: *m/z* 250.15689. Found: *m/z* 250.15707.

2-Benzoyl-1-methylenecycloheptane (2g)

Colorless oil. IR (neat) 689, 1206, 1446, 1677, 2853, 2924 cm⁻¹; ¹H NMR (CDCl₃) δ 1.31–1.57 (m, 3H), 1.71–1.95 (m, 4H), 1.96–2.07 (m, 1H), 2.31–2.52 (m, 2H), 4.15 (dd, *J* = 10.8, 4.8, 1H), 4.72 (s, 1H), 4.89 (s, 1H), 7.40–7.47 (m, 2H), 7.50–7.57 (m, 1H), 7.91–7.97 (m, 2H). ¹³C NMR (CDCl₃) δ 27.43, 28.53, 29.46, 30.69, 35.24, 52.54, 114.69, 128.53 (2C), 132.72, 136.83, 149.57, 201.40. HRMS (EI⁺) Calcd for C₁₅H₁₈O [M]⁺: *m/z* 214.13576. Found: *m/z* 214.13583.

trans-1-Benzoyl-7-methyl-2-methylenecycloheptane (2g)

Colorless oil. IR (neat) 697, 1206, 1446, 1675, 2853, 2922 cm⁻¹; ¹H NMR (CDCl₃) δ 0.91 (d, *J* = 6.6 Hz, 3H), 1.34–1.69 (m, 4H), 1.71–1.89 (m, 2H), 2.18–2.27 (m, 1H), 2.30–2.40 (m, 1H), 2.41–2.52 (m, 1H), 3.94 (d, *J* = 9.9 Hz, 1H), 4.78 (s, 1H), 4.87 (s, 1H), 7.42–7.49 (m, 2H), 7.51–7.58 (m, 1H), 7.94–8.00 (m, 2H). ¹³C NMR (CDCl₃) δ 22.37, 27.96, 31.52, 34.47, 34.98, 35.30, 60.71, 115.43, 128.54, 128.60, 132.72, 137.52, 148.42, 201.03. Anal. Calcd for C₁₆H₂₀O: C, 84.16; H, 8.83%. Found: C, 83.94; H, 8.93%. HRMS (EI⁺) Calcd for C₁₆H₂₀O [M]⁺: *m/z* 228.15142. Found: *m/z* 228.15135. The

relative configuration of Bz and Me group was determined by comparing the coupling constant between H_a and H_b and that in the compound 2k.

Dimethyl trans-3-Benzoyl-4-methylenecycloheptane-1,1-dicarboxylate (2i)

Colorless oil. IR (neat) 690, 1207, 1225, 1239, 1681, 1728, 2952 cm⁻¹; ¹H NMR (CDCl₃) δ 1.52–1.70 (m, 1H), 1.87–2.03 (m, 2H), 2.11 (dd, J = 14.4 Hz, 11.4 Hz, 1H), 2.30–2.47 (m, 2H), 2.47–2.58 (m, 1H), 2.73 (ddd, J = 14.4, 3.0, 1.5 Hz, 1H), 3.71 (s, 3H), 3.75 (s, 3H), 4.39 (dd, J = 11.4, 3.0 Hz, 1H), 4.72 (s, 1H), 4.87 (s, 1H), 7.40–7.47 (m, 2H), 7.51–7.58 (m, 1H), 7.89–7.94 (m, 2H). ¹³C NMR (CDCl₃) δ 22.67, 31.78, 34.75, 36.17, 47.93, 52.41, 52.69, 57.16, 115.34, 128.53, 128.56, 132.93, 136.33, 147.65, 172.04, 172.88, 199.81. HRMS (EI⁺) Calcd for C₁₉H₂₂O₅ [M]⁺: *m/z* 330.14672. Found: *m/z* 330.14679.

Dimethyl trans-3-Benzoyl-2-methyl-4-methylenecycloheptane-1,1-dicarboxylate (2j)

White solid (recrystallization from hot hexane gave a colorless crystalline). IR (neat) 699, 1245, 1672, 1724, 1743, 2939, 2956 cm⁻¹; Mp = 47.2–50.4 °C. ¹H NMR (CDCl₃) δ 1.04 (d, *J* = 6.6 Hz, 3H), 1.40–1.58 (m, 1H), 1.88–2.00 (m, 1H), 2.01–2.15 (m, 2H), 2.27 (td, *J* = 12.6, 3.0 Hz, 1H), 2.37 (dt, *J* = 14.4, 4.2 Hz, 1H), 3.04 (dq, *J* = 10.5, 6.6 Hz, 1H, –CH_a(Me)–), 3.73 (s, 3H), 3.76 (s, 3H), 4.69 (d, *J* = 10.5 Hz, 1H, –CH_b(Bz)–), 4.84 (s, 1H), 4.88 (s, 1H), 7.42–7.49 (m, 2H), 7.52–7.59 (m, 1H), 7.98–8.04 (m, 2H). ¹³C NMR (CDCl₃) δ 17.90, 28.69, 31.47, 37.00, 38.88, 51.78, 52.30, 59.05, 61.38, 118.46, 128.61, 128.84, 133.04, 136.90, 146.67, 171.04, 173.05, 199.60. Anal. Calcd for C₂₀H₂₄O₅: C, 69.75; H, 7.02%. Found: C, 69.76; H, 7.08%. The relative configuration of Bz and Me group was determined by comparing the coupling constant between H_a and H_b and that in the compound **2k**.

Dimethyl trans-3-Benzoyl-4-methylene-2-phenylcycloheptane-1,1-dicarboxylate (2k)

White solid. IR (neat) 700, 1246, 1672, 1725, 1744, 2939, 2955 cm⁻¹; Mp = 150.5–151.0 °C. ¹H NMR (CDCl₃) δ 1.47 (distorted qt, J = 13.2, 3.6 Hz, 1H), 2.01–2.11 (m, 1H), 2.16–2.25 (m, 1H), 2.32 (td, J = 13.8, 4.5 Hz, 1H), 2.43–2.57 (m, 2H), 3.13 (s, 3H), 3.76 (s, 3H), 4.12 (d, J = 11.4 Hz, 1H, –*CH_a* (Ph)–), 4.91 (s, 1H), 4.95 (s, 1H), 5.46 (d, J = 11.4 Hz, 1H, –*CH_b* (Bz)–), 7.02–7.08 (m, 1H), 7.11–7.18 (m, 2H), 7.28–7.35 (m, 2H), 7.39–7.45 (m, 1H), 7.60 (br s, 2H), 7.72–7.77 (m, 2H). ¹³C NMR (CDCl₃) δ 29.27, 31.73, 38.37, 51.83, 51.92, 52.06, 58.03, 63.09, 118.90, 127.09, 127.92, 128.32, 128.62, 130.51, 132.62, 132.64, 140.05, 146.69, 171.12, 171.72, 199.03. Anal. Calcd for C₂₅H₂₆O₅: C, 73.87; H, 6.45%. Found: C, 73.86; H, 6.47%. The relative configuration was determined by X-ray analysis as shown below. X-ray quality crystals were grown from hot hexane. Crystallographic data for the structure has been deposited at the Cambridge Crystallographic Data Centre (CCDC 787890). Copies of the data can be obtained, free of charge, on application to the Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK. Fax: 44-1223-3360033 or E-mail: deposit@ccdc.cam.ac.uk

Dimethyl 5-Benzoyl-4-methylenecycloheptane-1,1-dicarboxylate (2l)

Colorless oil. IR (neat) 691, 1169, 1209, 1237, 1677, 1728, 2953 cm⁻¹; ¹H NMR (CDCl₃) δ 1.83–2.07 (m, 4H), 2.39–2.63 (m, 4H), 3.72 (s, 3H), 3.76 (s, 3H), 4.25 (dd, *J* = 9.3, 5.7 Hz, 1H), 4.77 (s, 1H), 4.96 (s, 1H), 7.42–7.50 (m, 2H), 7.52–7.59 (m, 2H), 7.90–7.96 (m, 2H). ¹³C NMR (CDCl₃) δ 25.27, 31.12, 31.15, 34.92, 51.94, 52.49, 52.61, 57.79, 116.04, 128.59, 128.63, 132.99, 136.49, 147.85, 171.82, 173.04, 200.58. HRMS (EI⁺) Calcd for C₁₉H₂₂O₅ [M]⁺: *m/z* 330.14672. Found: *m/z* 330.14672.

Methyl 1-Benzyl-4-methylene-2-oxocycloheptanecarboxylate (2m)

Colorless oil. IR (neat) 691, 1169, 1209, 1237, 1677, 1728, 2953 cm⁻¹; ¹H NMR (CDCl₃) δ 1.62–1.83 (m, 3H), 2.00–2.10 (m, 1H), 2.32–2.42 (m, 1H), 2.97 (d, *J* =13.5 Hz, 1H), 3.10 (d, *J* = 14.7 Hz, 1H), 3.32 (d, *J* = 13.5 Hz, 1H), 3.44 (*J* = 14.7, 1H), 3.60 (s, 3H), 4.87 (s, 1H), 4.90 (s, 1H), 7.05–7.10 (m, 2H), 7.20–7.28 (m, 3H). ¹³C NMR (CDCl₃) 25.06, 32.75, 36.52, 41.65, 51.52, 51.93, 63.84, 116.10, 126.86, 128.12, 130.41, 136.60, 141.78, 171.92 , 206.21. Anal. Calcd for C₁₇H₂₀O₃: C, 74.94; H, 7.40%. Found: C, 74.88; H, 7.42%.

Methyl 4-Methylene-2-oxo-1-(4-pentyn-1-yl)cycloheptanecarboxylate (2n)

Colorless oil. IR (neat) 637, 1172, 1214, 1434, 1701, 1738, 2948, 3288 cm⁻¹; ¹H NMR (CDCl₃) δ

1.34–1.54 (m, 2H), 1.58–1.93 (m, 4H), 1.95 (t, J = 2.7 Hz), 1.96–2.28 (m, 5H), 2.32–2.43 (m, 1H), 3.21 (d, J = 15.0 Hz, 1H), 3.46 (d, J = 15.0 Hz, 1H), 3.70 (d, J = 15.0 Hz, 1H), 3.70 (s, 3H), 4.89 (s, 1H), 4.94 (s, 1H). ¹³C NMR (CDCl₃) 18.61, 23.56, 25.15, 33.50, 35.13, 36.59, 51.30, 52.12, 62.07, 68.59, 83.80, 116.22, 141.98, 172.53, 206 .41. HRMS (EI⁺) Calcd for C₁₅H₂₀O₃Na [M+Na]⁺: m/z 248.14124. Found: m/z 248.14087.

References

- 1) Ochida, A.; Ito, H.; Sawamura, M. J. Am. Chem. Soc. 2006, 128, 16486–16487.
- 2) Williams, D. B; Stoll, M. E.; Scott, B. L.; Costa, D. A.; Oldham, W. J. Jr. *Chem. Commun.* 2005, 1438–1440.
- 3) Barabé, F.; Bétournay, G.; Bellavance, G.; Barriault, L. Org. Lett. 2009, 11, 4236–4238.
- 4) (a) Kusama, H.; Yamabe, H.; Onizawa, Y.; Hoshino, T.; Iwasawa, N. Angew. Chem. Int. Ed. 2005, 44, 468–470. (b) Kusama, H.; Onizawa, Y.; Iwasawa, N. J. Am. Chem. Soc. 2006, 128, 16500–16501. (c) Kusama, H.; Karibe, Y.; Onizawa, Y.; Iwasawa, N. Angew. Chem. Int. Ed. 2010, 49, 4269–4272.
- 5) Van der Louw, J.; Komen, C. M. D.; Knol, A.; De Kanter, F. J.; Van der Bann, J.; Bickelhaupt, F.; Klumpp, G. W.. *Tetrahedron Lett.* **1989**, *30*, 4453–4456.
- 6) Zhou, J.; Fu, G. C.; J. Am. Chem. Soc. 2003, 125, 14726–14727.

S26

Original File: Date Apr 9 10 Comment C13 Statdard Observe Stick=none Tune=6.4 Match=0.4
ObsRuc 12C ExMode NO ObsSet -1.0 kHz DosSet -1.0 kHz Scan 112 AcqTime -990 cm PD 1.501 s Pulsel -6.0 µ s Temperature 29.0 °C Solvent CDCls Reference 77.0 ppm Broad, Factor 0.2863 Hz RGain 2010/Jul/30 13:56:13 Operator -1.30

File C:vDOCUMENTS AND SETTINCSV北海道大学VMY DOCUMENTSVDELL NMR データ 06Q1¥eMIDETOVHID-10-124B-FR1-1H.FID¥FID.ALS Original File: Date Jun 21 10 Comment STANDARD HI OBSERVE SIANUARU IN UDSERVE ObsNuc II ExMode NOW ObsFreq 26.96 MHz ObsFreq 26.96 MHz 0 obsFred 996.0047 Hz ObsFine 996.0047 Hz ObsFine 32. AcqTime 1.502 s PUlsel 6.0 µs Temperature 29.0 °C Solvent CDCls Reference 0.0 ppm Broad-Factor 0.1373 Hz RCain 29 Printed 2010/Jul/29 21:07:42 Operator EtO₂C 2a 10. 0228 4.3444 3.175 1515 0 s. 1. 0064 1. 0418 ŝ 331 0.9251 STANDARD 1H OBSERVE 9 8 7 6 3 2 5 4 ШL δ / ppm 7.2675 5.0312 4.9332

```
File C:vDOCUMENTS AND SETTINGSy北海道大学¥MY DOCUMENTSYDELL NMR データ 06Q1YeHIDET0¥HID-10-124C-FR1-13C.FID¥FID.ALS
Original File:
Date Jun 21 10
Comment Cl3 Statdard Observe
Stick-none Tune-6.4 Match=0.4
ObsMuc 12
ExMode NON
ObsFine 996.3672 Hz
Point 32768
Frequecy(Span) 18761.73 Hz
Scan 100
Frequecy(Span) 18761.73 Hz
Frequecy(Span) 18761.
```


Original File: Date Comment STANDARD 1F	Jun 22 10 H OBSERVE
ObsRuc ExMode ObsFreq ObsFreq ObsFine Point Frequecy(Span) Scan AcqTime PU Pulsel Temperature Solvent Reference Broad.Factor RGain Printed 2010, Operator	1 1 1 1 299.96 MHz 10 kHz 995.0047 Hz 16384 4500.45 Hz 32. 3.4963 s 1.502 s 6.0 μs 29.0 ℃ C013 0.0 ppm 0.1373 Hz 17 101/29 22:12:07

Original File: Date Jun Comment STANDARD 1H O	n 17 10 BSERVE
ObsNuc ExMode ObsFreq ObsFine Point Frequecy(Span) Scan AcqTime PD Pulsel Temperature Solvent Reference Broad.Factor RGain Printed 2010/Ju Operator	¹ H N0N 299.96 MHz -1.0 KHz 995.0047 Hz 16384 4500.45 Hz 32.4963 s 1.502 s 6.0 μs 2.9.0 °C COCla 0.1373 Hz 12 12 12/29 22:33:17

Original File: Date Jun 25 10 Comment C13 Statdard Observe Stick=none Tune=6.4 Match=0.4
ObsRuc ¹³ C ExMode NO ObsSet -1.0 kHz ObsSet -1.0 kHz ObsSet -1.0 kHz ObsTine 996.3672 Hz Point 32768 Frequecy(Span) 18761.73 Hz Scan 9984 AcqTime 1.4992 s PD 1.501 s Pulsel 6.0 µs Temperature 29.0 °C Solvent 0.2883 Hz Réalract 0.2883 Hz Réal 2010/Jul/30 14:07:39

