Supporting Information

Construction of Methylenecycloheptane Frameworks through 7-Exo-dig Cyclization of Acetylenic Silyl Enol Ethers Catalyzed by Triethynylphosphine-Gold Complex

Hideto Ito, Hirohisa Ohmiya and Masaya Sawamura*
Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan

1. General S S
2. Preparation of Cationic Gold-Phosphine Complex • . . . S1
3. General Procedure for Alkyne Cyclizations S2
4. Preparation of Substrate • . . . S2
5. Cyclization Products \cdot. . S15
6. References S19
7. Copies of NMR Spectrum Charts S20

General.

NMR spectra were recorded on a Varian Gemini 2000 spectrometer, operating at 300 MHz for ${ }^{1} \mathrm{H}$ NMR, 75.4 MHz for ${ }^{13} \mathrm{C}$ NMR and 121.4 MHz for ${ }^{31} \mathrm{P}$ NMR. Chemical shift values for ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{31} \mathrm{P}$ NMR are reference to $\mathrm{Me}_{4} \mathrm{Si}$, the residual solvent resonances and external aqueous $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ respectively. Mass spectrometry (JEOL JMS-FABmate for EI-MS, JEOL JMS-700TZ for ESI-MS) and elemental analysis were performed at the Instrumental Analysis Division, Equipment Management Center, Creative Research Institution, Hokkaido University. Triethynylphosphine ligand L1 was prepared according to the reported procedure. ${ }^{1} \mathrm{AgNTf}_{2}$ was prepared from $\mathrm{Ag}_{2} \mathrm{O}$ and $\mathrm{HN}\left(\mathrm{SO}_{2} \mathrm{CF}_{3}\right)_{2} .{ }^{2}$ $\mathrm{AgSbF}_{6}, \mathrm{AgBF}_{4}$ and AgOTf were purchased from Aldrich. Phosphine ligands, PPh_{3} and $\mathrm{P}(\mathrm{OPh})_{3}$ were commercially available. Gold complexes [AuCl(ligand)] were synthesized by the reported method. ${ }^{1}$ MS4A was purchased from Junsei Chemical Co. Anhydrous solvents used in the synthesis of materials were purchased from Kanto Chemical Co. and used without further purification. Anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and DCE were purchased from Kanto Chemical Co. and Aldrich, respectively. Anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, DCE, $\mathrm{MeOH}, 1.0 \mathrm{M}^{\dagger} \mathrm{BuOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $1.0 \mathrm{M}^{\dagger} \mathrm{BuOH}$ in DCE used in Au-catalyzed cyclizations were degassed and dried with MS4A before use, and their water amount (almost always under 15 ppm) was measured by Karl Fisher's moisture meter (Kyoto Electronics Manufacturing Co. Ltd., MKC-520). Gel permeation chromatography (GPC) was performed by LC-908 (Japan Analytical Industry Ltd., two in-line JAIGEL-2H, $\mathrm{CHCl}_{3}, 3.5 \mathrm{~mL} / \mathrm{min}$, UV and RI detectors). TLC analyses were performed on commercial glass plates bearing $0.25-\mathrm{mm}$ layer of Merck Silica gel $60 \mathrm{~F}_{254}$. Silica gel (Kanto Chemical Co., Silica gel 60 N, spherical, neutral) was used for column chromatography. PTLC purification was performed on commercial glass plates bearing 1-mm layer of Merck Silica gel 60F 254 . All reactions were carried out under argon atmosphere unless otherwise noted.

Preparation of Cationic Gold-Phosphine Complexs ${ }^{1}$

[AuCl (ligand)] (1 eq) was placed in an open vial tube, and was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (ca. 0.1 M). $\operatorname{AgX}(>1.5 \mathrm{eq})$ was added, and a mixture was stirred at $25^{\circ} \mathrm{C}$ for 10 min . The resulting white suspension was filtered through celite to a screw vial. The resulting colorless solution was first concentrated with a stream of Ar gas, and then was dried in vacuo to give [AuX(ligand)].

General Procedure for Cyclization of Alkynyl Silyl Enol Ethers.

MS4A (ca. 100 mg) was added to a Schlenk tube, and vigorously stirred with heating by heat gun for 5 min in vacuo. Then, a flask was cooled to rt and charged with Ar. Au catalyst, $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.9 \mathrm{~mL})$ and $1.0 \mathrm{M}^{t} \mathrm{BuOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.10 \mathrm{~mL}, 0.10 \mathrm{mmol})$ were added to a Schlenk tube in this order. The reaction vessel was placed into water bass (for $25^{\circ} \mathrm{C}$ or $40^{\circ} \mathrm{C}$) or oil bass (for $80^{\circ} \mathrm{C}$). The alkynyl silyl enol ether (0.10 mmol) was weighed into micro tube and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.25 \mathrm{~mL})$. The mixture was added dropwise to the Schlenk tube by a well dried $250 \mu \mathrm{~L}$ syringe over 1 min . The substrate solutions remaining in the micro tube and the syringe were washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 0.25 \mathrm{~mL})$ and added to the reaction mixture. The mixture was stirred at appropriate temperature. After completion of the reaction (monitored by TLC), the resulting mixture was passed through a pad of silica gel and concentrated to dryness. Purification by flash chromatography on silica gel or PTLC gave the cyclization product.

Preparation of Substrates.

Scheme 1. Preparations of 1 a and $1 \mathrm{c}-1 \mathrm{f}$.

$7 \mathrm{n}=2 \mathrm{R}=\mathrm{CO}_{2} \mathrm{Et}$
$8 \mathrm{n}=2 \mathrm{R}=\mathrm{Bz}$
$9 \mathrm{n}=1 \mathrm{R}=\mathrm{CO}_{2} \mathrm{Me}$
$10 \mathrm{n}=3 \mathrm{R}=\mathrm{CO}_{2} \mathrm{Me}$
$11 \mathrm{n}=4 \mathrm{R}=\mathrm{CO}_{2} \mathrm{Me}$

1) $\mathrm{NaH}(1.2 \mathrm{eq}), \mathrm{THF}, \mathrm{DMF}$

3a

3c

3 d
CO 2 Et
$\mathrm{n}=1 \mathrm{R}=\mathrm{CO}_{2} \mathrm{Me}$
$\mathrm{n}=3 \mathrm{R}=\mathrm{CO}_{2} \mathrm{Me}$
$\mathrm{n}=4 \mathrm{R}=\mathrm{CO}_{2} \mathrm{Me}$
$\xrightarrow[\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}-\mathrm{rt}]{\mathrm{Et}_{3} \mathrm{~N}, \text { TBSOTf }}$

1a $\mathrm{n}=2 \mathrm{R}=\mathrm{CO}_{2} \mathrm{Et}$
1c $n=2 R=B z$
1d $n=1 \quad R=\mathrm{CO}_{2} \mathrm{Me}$
1e $n=3 R=\mathrm{CO}_{2} \mathrm{Me}$
1f $n=4 \mathrm{R}=\mathrm{CO}_{2} \mathrm{Me}$

Ethyl 2-Oxo-1-(4-pentyn-1-yl)cyclohexanecarboxylate (3a)

To a suspension of $\mathrm{NaH}(60 \mathrm{wt} . \%, 910 \mathrm{mg}, 22.8 \mathrm{mmol})$ in THF (10 mL) and DMF (10 mL) was added dropwise ethyl 2-oxocyclohexanecarboxylate (7) ($3.28 \mathrm{~mL}, 20.0 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The mixture was stirred at this temperature for 10 min and at room temperature for 1 h . Then, 5 -iodo-1-pentyne $(4.67 \mathrm{~g}$, 24.1 mmol) was added, and the reaction mixture was stirred for 18 h (monitored by TLC). The resulting suspension was diluted with ether, and quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The organic layer was washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(3 \times 20 \mathrm{~mL})$, and separated. The combined aqueous layer was extracted with ether $(3 \times 20 \mathrm{~mL})$. The organic layers were combined, dried over MgSO_{4}, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (hexane/EtOAc 99:1 to 92:8) to afford 3a as a colorless oil ($4.68 \mathrm{~g}, 99 \%$). IR (neat) 636, 1181, $1708,2941,3287 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.27(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.35-1.80(\mathrm{~m}, 7 \mathrm{H}), 1.89-2.06(\mathrm{~m}$, $2 \mathrm{H}), 1.95(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{td}, J=6.9,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.37-2.56(\mathrm{~m}, 3 \mathrm{H}), 4.24(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 13.80,18.43,22.20,23.10,27.25,33.54,35.77,40.74,60.29,60.94,68.42,83.60$, 171.78, 207.72. HRMS (ESI $)$ Calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: m / z 259.13047$. Found: m / z 259.13018.

Ethyl 2-(tert-Butyldimethylsiloxy)-1-(4-pentyn-1-yl)-2-cyclohexenecarboxylate (1a)

To a solution of $\mathbf{3 a}(1.19 \mathrm{~g}, 5.05 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(1.39 \mathrm{~mL}, 10.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, TBSOTf ($1.76 \mathrm{~mL}, 7.51 \mathrm{mmol}$) was added at $0^{\circ} \mathrm{C}$ under Ar atmosphere, then the reaction mixture was slowly warmed to room temperature and stirred overnight. The resulting suspension was diluted with ether, and quenched with saturated aqueous NaHCO_{3}. The organic layer was washed with water $(2 \times 10$ mL) and brine (10 mL), and separated. The combined aqueous layer was extracted with ether (3×10 mL). The organic layers were combined, dried over MgSO_{4}, filtered and concentrated under reduced pressure. Purification by flash chromatography on silica gel (hexane/EtOAc 99.5:0.5 to 97:3) provided 1a as a colorless oil ($1.66 \mathrm{~g}, 94 \%$). IR (neat) $777,833,926,1156,1662,1726,2931,2951,3313 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.14(\mathrm{~s}, 3 \mathrm{H}), 0.17(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 1.25(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.42-1.72(\mathrm{~m}, 5 \mathrm{H})$, $1.88-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.94(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.95-2.08(\mathrm{~m}, 3 \mathrm{H}), 2.19(\mathrm{td}, J=7.2,2.7 \mathrm{~Hz}, 2 \mathrm{H})$, $4.03-4.21(\mathrm{~m}, 2 \mathrm{H}), 4.84$ (aprox. dd, $J=4.5,3.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta-5.46,-4.55,14.07$, $17.85,18.84,19.19,23.57,23.82,25.46,31.81,34.22,50.53,60.34,68.16,84.39,103.93,149.80$, 175.81. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{Si}$: C, 68.52; H, 9.78\%. Found: C, $68.21 ; \mathrm{H}, 9.78 \%$.

Ethyl 1-(4-Pentyn-1-yl)-2-(triisopropylsiloxy)-2-cyclohexenecarboxylate (1b)

To a solution of $\mathbf{3 a}(1.19 \mathrm{~g}, 5.05 \mathrm{mmol})$ and 2,6-lutidine $(0.399 \mathrm{~mL}, 3.40 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.4 \mathrm{~mL})$, TIPSOTf ($0.685 \mathrm{~mL}, 2.55 \mathrm{mmol}$) was added at $0^{\circ} \mathrm{C}$ under Ar atmosphere. Then the reaction mixture was slowly warmed to room temperature and stirred for 18 h . The resulting suspension was diluted with ether, and quenched with saturated aqueous NaHCO_{3}. The organic layer was washed with water (2 $\times 5 \mathrm{~mL}$) and brine (5 mL), and separated. The combined aqueous layer was extracted with ether (3×5 mL). The organic layers were combined, dried over MgSO_{4}, filtered and concentrated under reduced pressure. Purification by flash chromatography on silica gel (hexane/EtOAc 99.5:0.5 to 97:3) provided 1b as a colorless oil ($0.645 \mathrm{~g}, 97 \%$). IR (neat) 624, 881, 925, 1185, 1463, 1662, 1727, 2866, 2943, 3313 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.03-1.20(\mathrm{~s}, 21 \mathrm{H}), 1.24(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.52-1.68(\mathrm{~m}, 5 \mathrm{H}), 1.80-2.00$ $(\mathrm{m}, 3 \mathrm{H}), 1.93(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{td}, J=7.2,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.00-4.21(\mathrm{~m}, 2 \mathrm{H}), 4.85(\mathrm{t}, J=4.2 \mathrm{~Hz}$, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 12.66,14.02,17.97,18.08,18.90,19.15,23.63,23.79,31.74,34.37,50.49$, 60.35, 68.13, 84.41, 103.16, 150.01, 175.75. HRMS (ESI ${ }^{+}$) Calcd for $\mathrm{C}_{23} \mathrm{H}_{40} \mathrm{O}_{3} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}: \mathrm{m} / \mathrm{z}$ 415.26389. Found: $m / z 415.26293$.

2-Benzoyl-2-(4-pentyn-1-yl)cyclohexanone (3c)

The compound $\mathbf{3 c}$ was prepared according to the procedure for the preparation of $\mathbf{3 a}$, employing 2-benzoylcyclohexanone $\mathbf{8}(2.01 \mathrm{~g}, 10.0 \mathrm{mmol})$, $\mathrm{NaH}(481 \mathrm{mg}, 12.0 \mathrm{mmol})$, 5-iodo-1-pentyne (2.33 g , 12.0 mmol) and hexane/EtOAc ($99: 1$ to $85: 15$) as an eluent. Colorless oil ($951 \mathrm{mg}, 35 \%$). IR (neat) 634, $689,1212,1667,1709,2943,3292 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.13-1.30(\mathrm{~m}, 1 \mathrm{H}), 1.35-1.58(\mathrm{~m}, 2 \mathrm{H})$, $1.63-1.85(\mathrm{~m}, 3 \mathrm{H}), 1.87(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.92-2.34(\mathrm{~m}, 6 \mathrm{H}), 2.39-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.87-2.96(\mathrm{~m}, 1 \mathrm{H})$, $7.38-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.83-7.88(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 18.58,22.05,22.56$, $28.92,34.32,37.42,42.83,66.30,68.63,83.54,128.70,128.72,133.08,136.54,197.75,212.25$. HRMS (ESI ${ }^{+}$) Calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: m / z$ 291.12555. Found: m / z 291.13521. O-Alkylation product 12 was also obtained as by-product (ca. 35%).

[2-(tert-Butyldimethylsiloxy)-1-(4-pentyn-1-yl)-2-cyclohexen-1-yl](phenyl)methanone (1c)

The compound $\mathbf{1 c}$ was prepared according to the procedure for the preparation of 1a, employing $\mathbf{3 c}$ ($674 \mathrm{mg}, 2.51 \mathrm{mmol}$), $\mathrm{Et}_{3} \mathrm{~N}(0.525 \mathrm{~mL}, 3.77 \mathrm{mmol})$, TBSOTf ($0.706 \mathrm{~mL}, 3.01 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 mL) and hexane/EtOAc (99.5:0.5 to 95:5) as an eluent. Colorless oil ($861 \mathrm{mg}, 90 \%$). IR (neat) 832, 1174, 1249, 1655, 1680, 2930, 2950, $3311 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-0.05(\mathrm{~s}, 3 \mathrm{H}), 0.12(\mathrm{~s}, 3 \mathrm{H}), 0.65$ (s, 9H), 1.55-1.81 (m, 5H), 1.90-2.09 (m, 3H), 2.11-2.31 (m, 5H), 4.89 (dd, $J=4.5,3.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.31-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.93-8.00(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-5.31,-5.22,17.51$, $18.63,19.00,23.64,24.38,25.09,31.72,35.92,54.91,68.08,84.33,101.95,127.71,128.48,131.35$, 137.72, 152.13, 203.49. HRMS (EI^{+}) Calcd for $\mathrm{C}_{24} \mathrm{H}_{35} \mathrm{O}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: m / z$ 383.24063. Found: m / z 383.24211 .

Methyl 2-Oxo-1-(4-pentyn-1-yl)cyclopentanecarboxylate (3d)

3d
The compound $\mathbf{3 d}$ was prepared according to the procedure for the preparation of $\mathbf{3 a}$, employing methyl 2-oxocyclopentanecarboxylate 9 ($1.24 \mathrm{~mL}, 9.99 \mathrm{mmol}$), $\mathrm{NaH}(482 \mathrm{mg}, 12.0 \mathrm{mmol}$) and 5-iodo-1-pentyne ($2.15 \mathrm{~g}, 11.1 \mathrm{mmol}$). Purification by flash chromatography on silica gel (hexane/EtOAc 99:1 to $85: 15$) provided 3d as a mixture of a trace amount of impurities. This mixture was used in the next step without further purification.

Methyl 2-(tert-Butyldimethylsiloxy)-1-(4-pentyn-1-yl)-2-cyclopentenecarboxylate (1d)

The compound $\mathbf{1 d}$ was prepared according to the procedure for the preparation of 1a, employing $\mathbf{3 d}$ (a mixture of impurities, <9.99 mmol), $\mathrm{Et}_{3} \mathrm{~N}(2.03 \mathrm{~mL}, 14.6 \mathrm{mmol})$, TBSOTf ($2.27 \mathrm{~mL}, 9.68 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and hexane/EtOAc (99.5:0.5 to 95:5) as an eluent. Colorless oil ($2.14 \mathrm{~g}, 2$ steps overall 96%). IR (neat) $781,837,854,1251,1647,1730,2858,2931,2951,3313 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $0.16(\mathrm{~s}, 3 \mathrm{H}), 0.20(\mathrm{~s}, 3 \mathrm{H}), 0.94(\mathrm{~s}, 9 \mathrm{H}), 1.46-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.96(\mathrm{~m}, 3 \mathrm{H}), 1.98(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H})$, 2.19-2.28 (m, 3H), 2.30-2.41 (m, 2H), $3.69(\mathrm{~s}, 3 \mathrm{H}), 4.69(\mathrm{br} \mathrm{d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $-5.79,-5.12,17.64,18.65,23.57,25.21,26.20,31.53,33.55,51.44,57.85,68.22,84.09,102.23$, 154.06, 175.66. HRMS (EI^{+}) Calcd for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}: m / z$ 345.18564. Found: m / z 345.18531.

Methyl 2-Oxo-1-(4-pentyn-1-yl)cycloheptanecarboxylate (3e)

The compound $\mathbf{3 e}$ was prepared according to the procedure for the preparation of $\mathbf{3 a}$, employing methyl 2-oxocycloheptanecarboxylate $10(1.58 \mathrm{~g}, 10.0 \mathrm{mmol})$, NaH ($482 \mathrm{mg}, 12.1 \mathrm{mmol}$), 5-iodo-1-pentyne ($2.15 \mathrm{~g}, 11.1 \mathrm{mmol}$) and hexane/EtOAc ($99: 1$ to $85: 15$) as an eluent. Colorless oil $(2.26 \mathrm{~g}, 96 \%)$. R (neat) 631, 1150, 1168, 1224, 1701, 1732, 2962, 2934, $3286 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 1.40-1.82(\mathrm{~m}, 10 \mathrm{H}), 1.95(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.00-2.24(\mathrm{~m}, 4 \mathrm{H}), 2.44-2.54(\mathrm{~m}, 1 \mathrm{H}), 2.58-2.68(\mathrm{~m}$, $1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 18.52, 23.56, 24.59, 25.37, 29.66, 32.61, 34.33, 41.77, 52.01, 62.47, 68.54, 83.65, 172.90, 209.48. HRMS (ESI ${ }^{+}$) Calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: m / z 259.13047$. Found: $m / z 259.13016$.

Methyl 2-(tert-Butyldimethylsiloxy)-1-(4-pentyn-1-yl)-2-cycloheptenecarboxylate (1e)

The compound $\mathbf{1 e}$ was prepared according to the procedure for the preparation of $\mathbf{1 a}$, employing $\mathbf{3 e}$ $(958 \mathrm{mg}, 4.06 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(1.70 \mathrm{~mL}, 12.2 \mathrm{mmol})$, TBSOTf$(1.90 \mathrm{~mL}, 8.10 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8.1 \mathrm{~mL})$ and hexane/ $\mathrm{EtOAc} / \mathrm{Et}_{3} \mathrm{~N}$ (99:0:1 to 95:4:1) as an eluent. Colorless oil ($1.24 \mathrm{~g}, 87 \%$). IR (neat) 776, 837, 1164, 1732, 2858, 2930, 2950, $3313 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.14(\mathrm{~s}, 3 \mathrm{H}), 0.16(\mathrm{~s}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H})$, $1.48-1.75(\mathrm{~m}, 6 \mathrm{H}), 1.79-2.95(\mathrm{~m}, 5 \mathrm{H}), 1.96-2.05(\mathrm{~m}, 2 \mathrm{H}), 2.20(\mathrm{td}, J=7.2,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H})$, $4.97(\mathrm{dd}, J=7.2,5.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-5.18,-4.70,17.89,18.87,22.69,23.47,23.58$, $25.50,26.43,31.35,35.40,51.38,55.99,68.20,84.36,108.47,153.13,175.54$. HRMS (EI ${ }^{+}$) Calcd for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}: m / z 373.21694$. Found: $m / z 373.21606$

Methyl 2-Oxo-1-(4-pentyn-1-yl)cyclooctanecarboxylate (3f)

The compound $\mathbf{3 f}$ was prepared according to the procedure for the preparation of $\mathbf{3 a}$, employing methyl 2-oxocyclooctanecarboxylate $\mathbf{1 1}^{3}(1.47 \mathrm{~g}, 8.03 \mathrm{mmol}$), NaH ($386 \mathrm{mg}, 9.64 \mathrm{mmol}$), 5-iodo-1-pentyne ($1.87 \mathrm{~g}, 9.64 \mathrm{mmol}$) and hexane/EtOAc ($99: 1$ to $85: 15$) as an eluent. Colorless oil ($1.81 \mathrm{~g}, 90 \%$). IR (neat) 631, 1077, 1166, 1219, 1704, 2858, 2930, $3287 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $0.90-1.05(\mathrm{~m}, 1 \mathrm{H}), 1.26-1.90(\mathrm{~m}, 9 \mathrm{H}), 1.95(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.97-2.32(\mathrm{~m}, 6 \mathrm{H}), 2.43-2.55(\mathrm{~m}, 1 \mathrm{H})$, $2.71(\mathrm{td}, J=12.0,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 18.51,22.87,23.61,23.90,25.23$, 28.13, 29.03, 29.88, 38.28, 52.12, 61.82, 68.46, 83.67, 172.19, 212.25. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{3}$: C, 71.97 ; H, 8.86%. Found: C, 71.69 ; H, 8.90%.

Methyl 2-(tert-Butyldimethylsiloxy)-1-(4-pentyn-1-yl)-2-cyclooctenecarboxylate (1f)

The compound $\mathbf{1 f}$ was prepared according to the procedure for the preparation of $\mathbf{1 a}$, employing $\mathbf{3 f}$ $(785 \mathrm{mg}, 3.13 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(1.31 \mathrm{~mL}, 9.40 \mathrm{mmol})$, TBSOTf$(1.47,3.01 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and
hexane/EtOAc (99.5:0.5 to 95:5) as an eluent. Colorless oil ($861 \mathrm{mg}, 90 \%$). IR (neat) 627, 776, 837, 1146, 1648, 1731, 2929, 2950, $3313 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.18(\mathrm{~s}, 6 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 1.32-1.45(\mathrm{~m}$, $1 \mathrm{H}), 1.46-1.67(\mathrm{~m}, 6 \mathrm{H}), 1.73-2.03(\mathrm{~m}, 5 \mathrm{H}), 1.93(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.13-2.42(\mathrm{~m}, 2 \mathrm{H}), 2.18(\mathrm{td}, J=$ $7.8,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 4.75(\mathrm{dd}, J=11.5,9.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-5.15,-5.55,17.92$, $18.79,22.94,23.10,23.41,25.40,25.59,27.36,34.13,36.79,51.24,56.23,68.23,84.35,104.81$, 152.01, 175.55. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{O}_{3} \mathrm{Si}$: C, 69.18 ; H, 9.95%. Found: C, $68.83 ; \mathrm{H}, 10.02 \%$.

Scheme 2. Preparation of 1g. ${ }^{4}$

1-Phenyl-8-nonyn-1-one (3g)

To a solution of the 8-iodo-1-trimethylsilyl-1-octyne $(\mathbf{1 3})^{5}(1.96 \mathrm{~g} 6.35 \mathrm{mmol})$ in pentane/ $\mathrm{Et}_{2} \mathrm{O}(3: 2$, 60 mL) was added dropwise ${ }^{t} \mathrm{BuLi}\left(7.98 \mathrm{~mL}\right.$ of 1.59 M in $\mathrm{Et}_{2} \mathrm{O}, 12.7 \mathrm{mmol}$) at $-78{ }^{\circ} \mathrm{C}$ under Ar atmosphere. The reaction mixture was stirred at this temperature for 20 min . Then a solution of benzaldehyde ($656 \mathrm{mg}, 6.15 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(6 \mathrm{~mL})$ was added and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h before being quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The organic layer was washed with water (2 $\times 50 \mathrm{~mL}$) and brine (50 mL), and separated. The combined aqueous layer was extracted with ether ($3 \times$ 50 mL). The organic layers were combined, dried over MgSO_{4}, filtered and concentrated under reduced pressure to afford $\mathbf{1 4}$ as a crude product. This crude product was used in the next step without further purification.

To a solution of $\mathbf{1 4}(6.15 \mathrm{mmol})$ in acetone $(25 \mathrm{~mL})$, Jones reagent $\left(6.50 \mathrm{~mL}\right.$ of 1.00 M in $\mathrm{H}_{2} \mathrm{SO}_{4}$ and $\mathrm{H}_{2} \mathrm{O}, 6.50 \mathrm{mmol}$) was added dropwise at $0^{\circ} \mathrm{C}$ under air and a mixture was stirred at this temperature for 15 min . Then $\mathrm{MeOH}(5 \mathrm{~mL})$ was added at $0^{\circ} \mathrm{C}$, and the precipitates were filtered off and washed with $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$. The filtrate was washed with brine ($2 \times 50 \mathrm{~mL}$) and $15 \% \mathrm{NaOH}(50$ $\mathrm{mL})$, and separated. The combined aqueous layer was extracted with ether $(3 \times 50 \mathrm{~mL})$. The organic layers were combined, dried over MgSO_{4}, filtered and concentrated under reduced pressure to afford 1-phenyl-9-(trimethylsilyl)-8-nonyn-1-one as a crude product.

To a solution of this crude product ($895 \mathrm{mg}, 3.12 \mathrm{mmol}$) in THF (6.2 mL), TBAF (3.44 mL of 1.0 M in THF, 3.44 mL) was added at $0^{\circ} \mathrm{C}$. After stirring at this temperature for 6 h , the reaction mixture was diluted with water $(10 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$. The organic layer was washed with water $(3 \times 10 \mathrm{~mL})$, and separated. The combined aqueous layer was extracted with ether ($3 \times 10 \mathrm{~mL}$). The organic layers were combined, dried over MgSO_{4}, filtered and concentrated under reduced pressure to afford $\mathbf{3 g}$ as a crude product. The residue was purified by flash chromatography on silica gel (hexane/EtOAc 99:1 to 95:5) to afford $\mathbf{3 g}$ as a white solid ($466 \mathrm{mg}, 3$ steps overall 35%). IR (neat) $624,688,1266,1447,1679$, 2859, 2932, $3289,3306 \mathrm{~cm}^{-1}$; Mp 31.5-33.6 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.35-1.62(\mathrm{~m}, 6 \mathrm{H}), 1.76$ (quint, J $=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.94(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{td}, J=6.9,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.98(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.43-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.94-7.99(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 17.95,23.73,27.91$, $28.18,28.41,38.06,68.10,84.24,127.83,128.37,132.71,136.85,200.11$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}: \mathrm{C}$, 84.07; H, 8.47%. Found: C, 83.72 ; H, 8.48%.

(Z)-tert-Butyldimethyl[(1-phenyl-1-nonen-8-yn-1-yl)oxy]silane (1g) (E/Z = 14/86)

The compound $\mathbf{1 g}$ was prepared according to the procedure for the preparation of $\mathbf{1 a}$, employing $\mathbf{3 g}$ $(446 \mathrm{mg}, 2.09 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(0.873 \mathrm{~mL}, 4.18 \mathrm{mmol})$, TBSOTf ($0.980 \mathrm{~mL}, 4.18 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (4.1 mL) and hexane/EtOAc ($99.5 / 0.5$ to $95 / 5$) as the eluent. Colorless oil ($651 \mathrm{mg}, 95 \%, E / Z=14 / 86$). IR (neat) 626, 696, 765, 778, 836, 1063, 1253, 2857, 2930, $3312 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR of $(\boldsymbol{E}) \mathbf{- 1 g}\left(\mathrm{CDCl}_{3}\right) \delta 0.06$ $(\mathrm{s}, 0.86 \times 6 \mathrm{H}), 0.03(\mathrm{~s}, 0.14 \times 6 \mathrm{H}), 0.91(\mathrm{~s}, 0.14 \times 9 \mathrm{H}), 0.98(\mathrm{~s}, 0.86 \times 9 \mathrm{H}), 1.35-1.55(\mathrm{~m}, 6 \mathrm{H}), 1.93(\mathrm{~m}$, $0.14 \times 1 \mathrm{H}), 1.94(\mathrm{t}, J=2.7 \mathrm{~Hz}, 0.86 \times 1 \mathrm{H}), 2.05-2.24(\mathrm{~m}, 6 \mathrm{H}), 5.01(\mathrm{t}, J=7.2 \mathrm{~Hz}, 0.14 \times 1 \mathrm{H}), 5.10(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 0.86 \times 1 \mathrm{H}), 7.19-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.40-7.45(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR of $\left(\mathrm{CDCl}_{3}\right) \delta-4.24(0.86 \times 1 \mathrm{C})$, $-4.71(0.14 \times 1 \mathrm{C}), 17.97(0.14 \times 1 \mathrm{C}), 18.13(0.86 \times 1 \mathrm{C}), 18.15(0.14 \times 1 \mathrm{C}), 18.20(0.86 \times 1 \mathrm{C}), 25.61$ $(0.14 \times 1 \mathrm{C}), 25.73(0.86 \times 1 \mathrm{C}), 25.86(0.86 \times 1 \mathrm{C}), 27.28(0.14 \times 1 \mathrm{C}), 28.13(0.14 \times 1 \mathrm{C}), 28.23(0.86 \times 1 \mathrm{C})$, $28.42(0.86 \times 1 \mathrm{C}), 29.02(0.86 \times 1 \mathrm{C}), 30.09(0.14 \times 1 \mathrm{C}), 68.16$ ($0.14 \times 1 \mathrm{C}), 68.16(1 \mathrm{C}), 84.38$ ($0.14 \times 1 \mathrm{C})$, $84.43(0.86 \times 1 \mathrm{C}), 110.96(0.14 \times 1 \mathrm{C}), 111.64(0.86 \times 1 \mathrm{C}), 125.87(0.86 \times 1 \mathrm{C}), 127.36(0.86 \times 1 \mathrm{C}), 127.60$ $(0.14 \times 1 \mathrm{C}), 127.74(0.14 \times 1 \mathrm{C}), 127.88(0.86 \times 1 \mathrm{C}), 128.32(0.14 \times 1 \mathrm{C}), 137.93(0.14 \times 1 \mathrm{C}), 139.83$ $(0.86 \times 1 \mathrm{C}), 149.44(0.86 \times 1 \mathrm{C}), 149.55(0.14 \times 1 \mathrm{C})$. Another one peak of E-isomer was probably overlapped with that of Z-isomer. HRMS (APCI^{+}) Calcd for $\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{OSi}[\mathrm{M}+\mathrm{H}]^{+}: \mathrm{m} / \mathrm{z} 329.22952$. Found: m / z 329.22888. The geometry of major Z-isomer was confirmed by an NOE experiment as shown below.

Scheme 3. Preparation of $\mathbf{1 h}$.

6-iodo-1-triisopropylsilyl-1-hexyne (15)

15
To a solution of triisopropylsilylacetylene ($3.55 \mathrm{~g}, 19.5 \mathrm{mmol}$) in THF (40 mL) was added ${ }^{n} \mathrm{BuLi}$ (11.6 mL of 1.67 M in hexane, 19.4 mL) at $0^{\circ} \mathrm{C}$, and the mixture was stirred at this temperature for 1 h . Then 1-bromo-4-chloro-butane ($3.16 \mathrm{~g}, 18.2 \mathrm{mmol}$) and HMPA ($3.38 \mathrm{~mL}, 19.4 \mathrm{mmol}$ was added at 0 ${ }^{\circ} \mathrm{C}$, and the reaction mixture was allowed to warm to room temperature and stirred for 15 h . The
resulting mixture was treated with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(30 \mathrm{~mL})$ and hexane (30 mL), and the aqueous layer was separated. The organic layer was washed with water (30 mL) and brine (30 mL), and separated. The combined aqueous layer was extracted with hexane $(3 \times 30 \mathrm{~mL})$. The organic layers were combined, dried over MgSO_{4}, filtered and concentrated under reduced pressure to afford the 6 -chloro-1-triisopropylsilyl-1-hexyne as a crude product (pale yellow oil, 4.99 g). This crude product was used in the next step without further purification.

To a solution of 6-chloro-1-triisopropylsilyl-1-hexyne (4.99 g) in acetone (100 mL), $\mathrm{NaI}(14.6 \mathrm{~g}$, 96.9 mmol) was added, and the mixture was stirred at $80^{\circ} \mathrm{C}$ overnight. The resulting orange suspension was cooled to rt, solvent was removed by an evaporator, and saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(50 \mathrm{~mL})$ and hexane (100 mL) was added. The organic layer was washed with water $(2 \times 50 \mathrm{~mL})$ and brine (50 mL), and separated. The combined aqueous layer was extracted with hexane ($3 \times 50 \mathrm{~mL}$). The organic layer was combined, dried over MgSO_{4}, filtered and concentrated under reduced pressure. Flash silica gel column purification (hexane) of the crude product afforded $\mathbf{1 5}$ as a colorless oil ($5.58 \mathrm{~g}, 2$ steps overall 84%). IR (neat) $659,674,882,1462,2171,2863,2941 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.00-1.10(\mathrm{~m}, 21 \mathrm{H})$, 1.65 (quint., $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 1.98 (quint., $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), $2.30(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}$), $3.23(\mathrm{t}, J=6.9 \mathrm{~Hz}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.04,11.10,18.49,18.60,29.21,32.12,80.99,107.92$. HRMS (EI^{+}) Calcd for $\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{ISi}[\mathrm{M}]^{+}: m / z 364.10832$. Found: $m / z 364.10752$.

3-Methyl-1-phenyl-8-nonyn-1-one (3h)

To a solution of $\mathbf{1 5}(4.64 \mathrm{~g}, 12.7 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(120 \mathrm{~mL})$ was added ${ }^{t} \mathrm{BuLi}(16.3 \mathrm{~mL}$ of 1.55 M in pentane, 25.3 mmol) at $-78^{\circ} \mathrm{C}$, and the mixture was stirred for 40 min . Then, $\mathrm{CuCN}(533 \mathrm{mg}, 6.36$ mmol) was added one portion to a mixture, and the pale yellow suspension was stirred at $-78^{\circ} \mathrm{C}$ for additional 15 min . To this suspension, a solution of (E)-1-phenyl-2-buen-1-one ($888 \mathrm{mg}, 6.07 \mathrm{mmol}$) was added dropwise at $-78^{\circ} \mathrm{C}$ over 7 min . The resulting dark red solution was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(120 \mathrm{~mL})$ after being stirred for 20 min (the consumption of SM was checked by TLC), and a mixture was stirred until the color of organic phase turned to blue. The organic phase was washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5 \times 100 \mathrm{~mL})$, and separated, dried over MgSO_{4}, filtered and concentrated under reduced pressure to afford the 1,4 -adduct 16 as a crude product (yellow oil, 3.51 g ,). The residue was purified by flash chromatography on silica gel (hexane/EtOAc 99.5:0.5 to 97:3) to afford 16 as a colorless oil ($611 \mathrm{mg}, 26 \%$).

To a solution of $16(611 \mathrm{mg}, 1.59 \mathrm{mmol})$ in THF (8.0 mL), TBAF (2.38 mL of 1.0 M in THF, 2.38 mL) was added at $0^{\circ} \mathrm{C}$. After stirring at room temperature for 13 h , the reaction mixture was diluted with water $(10 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$. The organic layer was washed with water $(3 \times 10 \mathrm{~mL})$, and separated. The combined aqueous layer was extracted with ether ($3 \times 10 \mathrm{~mL}$). The organic layers were combined, dried over MgSO_{4}, filtered and concentrated under reduced pressure to afford $\mathbf{3 h}$ as a crude product. The residue was purified by flash chromatography on silica gel (hexane/EtOAc 99:1 to 96:4) to afford $\mathbf{3 h}$ as a colorless oil ($272 \mathrm{mg}, 75 \%$). IR (neat) 631, 690, 751, 1213, 1448, 1682, 2861, 2934, $3301 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.97(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.20-1.58(\mathrm{~m}, 6 \mathrm{H}), 1.94(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H})$, $2.11-2.23(\mathrm{~m}, 3 \mathrm{H}), 2.77(\mathrm{dd}, J=15.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{dd}, J=15.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.50(\mathrm{~m}, 2 \mathrm{H})$, $7.53-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.93-7.98(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 18.05,19.69,25.81,28.23,29.30,36.20$, 45.62, 68.16, 84.32, 127.99, 128.47, 132.79, 137.33, 200.21. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}: \mathrm{C}, 84.16 ; \mathrm{H}$, 8.83%. Found: C, 83.96 ; H, 8.90%.

The compound $\mathbf{1 h}$ was prepared according to the procedure for the preparation of $\mathbf{1 a}$, employing $\mathbf{3 h}$ $(257 \mathrm{mg}, 1.13 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(0.235 \mathrm{~mL}, 1.69 \mathrm{mmol})$, TBSOTf $(0.317 \mathrm{~mL}, 1.35 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5.6 mL) and hexane/EtOAc (99.5:0.5 to 97:3) as an eluent. Colorless oil ($342 \mathrm{mg}, 89 \%, E / Z=13 / 87$). IR (neat) $626,697,764,778,836,1062,1255,1647,2858,2930,2954,3313 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR of $(\boldsymbol{Z})-\mathbf{1 h}$ $\left(\mathrm{CDCl}_{3}\right) \delta-0.10(\mathrm{~s}, 3 \mathrm{H}),-0.03(\mathrm{~s}, 3 \mathrm{H}), 0.98(\mathrm{~s}, 9 \mathrm{H}), 1.01(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.24-1.58(\mathrm{~m}, 6 \mathrm{H}), 1.93$ (t, $J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{td}, J=6.9,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.62-2.74(\mathrm{~m}, 1 \mathrm{H}), 4.85(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.17-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.39-7.45(\mathrm{~m}, 2 \mathrm{H}) .[(\boldsymbol{E})-\mathbf{1 h}: 4.79(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H})] .{ }^{13} \mathrm{C}$ NMR of $(\boldsymbol{Z})-\mathbf{1 h}$ $\left(\mathrm{CDCl}_{3}\right) \delta-4.28,-4.11,18.13,18.27,20.82,25.80,26.53,28.54,30.08,37.07,68.13,84.48,118.23$, 126.18, 127.40, 127.86, 140.01, 148.62. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{OSi}$ C, $77.13 ; \mathrm{H}, 10.00 \%$. Found: C, $76.74 ; \mathrm{H}, 10.04 \%$. The geometry of major Z-isomer was confirmed by an NOE experiment as shown below.

Scheme 4. Preparation of 1i.

Dimethyl 2-(3-Oxo-3-phenylpropyl)-2-(4-pentyn-1-yl)malonate (3i)

The compound $\mathbf{3 i}$ was prepared according to the procedure for the preparation of $\mathbf{3 a}$, employing dimethyl 2-(4-pentyn-1-yl)malonate (17) ($1.13 \mathrm{~g}, 5.04 \mathrm{mmol}$), NaH ($241 \mathrm{mg}, 6.00 \mathrm{mmol}$), 3-chloro-1-phenyl-1-propanone ($1.05 \mathrm{~g}, 5.99 \mathrm{mmol}$), $\mathrm{NaI}(75.1 \mathrm{mg}, 0.500 \mathrm{mmol})$ at $80^{\circ} \mathrm{C}$ (reflux) for 11 h . Purification by silica gel chromatgraphy (hexane/EtOAc $95: 5$ to $80: 20$) afforded $\mathbf{3 i}$ as a colorless oil ($1.17 \mathrm{~g}, 70 \%$). IR (neat) $689,1173,1434,1448,1683,1727,2953,3288 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 1.42-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.96(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.03-2.11(\mathrm{td}, J=6.9,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.31-2.38(\mathrm{~m}, 2 \mathrm{H})$, 2.96-3.03 (m, 2H), $3.74(\mathrm{~s}, 6 \mathrm{H}), 7.44-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.93-7.98(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 18.43,23.18,27.13,32.73,33.59,52.41,56.66,68.85,83.48,128.06,128.63,133.18$, 136.68, 171.82, 198.92. HRMS (ESI ${ }^{+}$) Calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: m / z$ 353.13594. Found: m / z 353.13528 .
(Z)-Dimethyl 2-[3-(tert-Butyldimethylsiloxy)-3-phenylallyl]-2-(4-pentyn-1-yl)malonate (1i) (E/Z $=10 / 90$)

The compound $\mathbf{1 i}$ was prepared according to the procedure for the preparation of $\mathbf{1 a}$, employing $\mathbf{3 i}$ $(609 \mathrm{mg}, 1.84 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(0.770 \mathrm{~mL}, 5.53 \mathrm{mmol})$, TBSOTf ($0.864 \mathrm{~mL}, 3.68 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3.7 mL) and hexane/EtOAc (99:1 to $87: 13$) as an eluent. Colorless oil ($781 \mathrm{mg}, 87 \%, E / Z=10 / 90$). IR (neat) $760,779,837,1074,1254,1732,2931,2953,2931,2953,3308 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR of $(\boldsymbol{Z})-\mathbf{1 i}$ $\left(\mathrm{CDCl}_{3}\right) \delta-0.06(\mathrm{~s}, 3 \mathrm{H}), 0.99(\mathrm{~s}, 9 \mathrm{H}), 1.42-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.91(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.95-2.02(\mathrm{~m}, 2 \mathrm{H})$, $2.18(\mathrm{td}, J=7.2,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.84(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.31(\mathrm{~m}, 3 \mathrm{H})$, $7.36-7.41(\mathrm{~m}, 2 \mathrm{H}) .[(\boldsymbol{E})-1 \mathrm{i}: 2.74(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.77(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})] .{ }^{13} \mathrm{C}$ NMR of $(\boldsymbol{Z})-\mathbf{1 i}$ $\left(\mathrm{CDCl}_{3}\right) \delta-4.28,-4.11,18.13,18.27,20.82,25.80,26.53,28.54,30.08,37.07,68.13,84.48,118.23$, 126.18, 127.40, 127.86, 140.01, 148.62. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{OSi}$ C, 67.53 ; H, 8.16\%. Found: C, 67.29 ; H, 8.25%. The geometry of major Z-isomer was confirmed by an NOE experiment as shown below.

Scheme 5. Preparations of $\mathbf{1 j}$ and $\mathbf{1 k} .^{4}$

Dimethyl 2-(4-Oxo-4-phenyl-2-butanyl)-2-(4-pentyn-1-yl)malonate (3j)

To a suspension of $\mathrm{NaH}(0.224 \mathrm{~g}, 5.59 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(4.6 \mathrm{~mL})$ was added a solution of $\mathbf{1 7}(1.04 \mathrm{~g}$, $4.59 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(9.2 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under Ar atmosphere. After stirring for 10 min , the reaction mixture was allowed to warm to room temperature and stirred for 1 h . Then, the mixture was concentrated in vacuo to remove the solvent, and the reaction vessel was charged with Ar. To the reaction vessel, $\mathrm{CH}_{2} \mathrm{Cl}_{2}(23 \mathrm{~mL}$), (E)-1-phenyl-2-buten-1-one ($673 \mathrm{mg}, 4.61 \mathrm{mmol}$) and TMSOTf (1.69 $\mathrm{mL}, 9.17 \mathrm{mmol}$) was added in this order at $0^{\circ} \mathrm{C}$, and the mixture was stirred at this temperature for 10 h . The resulting trimethylsilyl enol ether was hydrolyzed with aq NaHCO_{3} to $\mathbf{3 j}$. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$ and separated. The combined aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3$ $\times 10 \mathrm{~mL}$). The organic layers were combined, dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel (hexane/EtOAc 95:5 to 80:20) to give 3j as a colorless oil (1.17 g, 74\%). IR (neat) 776, 835, 1186, $1252,1712,2933,2954,3288 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.97(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.42-1.59(\mathrm{~m}, 2 \mathrm{H})$, $1.96(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.03-2.11(\mathrm{~m}, 2 \mathrm{H}), 2.21(\mathrm{td}, J=7.2,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.82(\mathrm{dd}, J=16.5,10.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.91-3.04(\mathrm{~m}, 1 \mathrm{H}), 3.30(\mathrm{~d}, ~ J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 7.43-7.51(\mathrm{~m}, 2 \mathrm{H})$, $7.54-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.97-8.03(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 15.26,18.35,23.41,32.41,32.58,42.28$,
51.93, 52.02, 61.07, 68.76, 83.33, 128.02, 128.46, 132.95, 136.90, 171.00, 171.55, 198.87. HRMS $\left(\mathrm{ESI}^{+}\right)$Calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: m / z 367.15160$. Found: $m / z 367.15084$.
(Z)-Dimethyl 2-[4-(tert-Butyldimethylsiloxy)-4-phenyl-3-buten-2-yl]-2-(4-pentyn-1-yl)malonate (1j)

The compound $\mathbf{1} \mathbf{j}$ was prepared according to the procedure for the preparation of $\mathbf{1 a}$, employing $\mathbf{3} \mathbf{j}$ ($996 \mathrm{mg}, 2.89 \mathrm{mmol}$), $\mathrm{Et}_{3} \mathrm{~N}(1.21 \mathrm{~mL}, 8.68 \mathrm{mmol})$, TBSOTf ($1.36 \mathrm{~mL}, 5.80 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.8 \mathrm{~mL}$) and hexane/EtOAc ($99: 1$ to $92: 8$) as the eluent. The further purification was conducted by GPC. Colorless oil ($871 \mathrm{mg}, 66 \%$). IR (neat) 698, 766, 779, 838, 1062, 1252, 1646, 1727, 2932, 2953, 3310 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-0.15(\mathrm{~s}, 3 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H}), 1.00(\mathrm{~s}, 9 \mathrm{H}), 1.12(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.32-1.50$ (m, 1H), 1.62-1.78 (m, 1H), $1.90(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.94-2.02(\mathrm{~m}, 2 \mathrm{H}), 2.16(\mathrm{td}, J=6.9,2.7 \mathrm{~Hz}, 2 \mathrm{H})$, $3.49(\mathrm{dq}, J=10.5,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 4.95(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.32(\mathrm{~m}, 3 \mathrm{H})$, $7.35-7.41(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-4.49,-4.08,17.42,17.99,18.60,23.63,25.61,33.93,34.50$, 51.56, 51.83, 61.47, 68.44, 83.63, 111.87, 126.44, 127.76, 127.82, 139.51, 150.51, 171.22, 171.64. HRMS (ESI ${ }^{+}$Calcd for $\mathrm{C}_{26} \mathrm{H}_{38} \mathrm{O}_{5} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}: m / z 481.23807$. Found: $m / z 481.23699$. The geometry of major Z-isomer was confirmed by an NOE experiment as shown below.

Dimethyl 2-(3-Oxo-1,3-diphenylpropyl)-2-(4-pentyn-1-yl)malonate (3k)

The compound $\mathbf{3 k}$ was prepared according to the procedure for the preparation of $\mathbf{3} \mathbf{j}$, employing $\mathbf{1 7}$ $(896 \mathrm{mg}, 4.00 \mathrm{mmol}), \mathrm{NaH}(193 \mathrm{~mL}, 4.83 \mathrm{mmol}),(E)$-chalcone ($836 \mathrm{mg}, 4.01 \mathrm{mmol}$), TMSOTf (1.17 $\mathrm{mL}, 5.99 \mathrm{mmol}$) and hexane/EtOAc ($90: 10$ to $80: 20$) as an eluent. Colorless viscose oil ($1.29 \mathrm{~g}, 79 \%$). IR (neat) 690, 702, 749, 1170, 1213, 1433, 1448, 1597, 1685, 1726, 2951, $3288 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.40-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.73(\mathrm{dd}, J=4.8,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.84(\mathrm{dd}, J=8.1,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}$, $3 \mathrm{H}), 3.78(\mathrm{dd}, J=17.4 \mathrm{~Hz}, 10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 4.17(\mathrm{dd}, J=10.5,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-7.17(\mathrm{~m}$, 2H), 7.17-7.26 (m, 3H), 7.38-7.45 (m, 2H), 7.48-7.55 (m, 2H). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 18.49,23.89$, $33.65,41.99,44.75,52.18,52.47,61.74,68.69,83.54,127.46,128.13,128.35,128.54,129.08,132.99$, 137.02, 138.94, 171.17, 171.65, 197.96. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{O}_{5}: \mathrm{C}, 73.87$, H, 6.45%. Found: C, 73.49; H, 6.57\%.
(Z)-Dimethyl 2-[3-(tert-Butyldimethylsiloxy)-1,3-diphenylallyl]-2-(4-pentyn-1-yl)malonate (1k) $(E / Z=4 / 96)$

The compound $\mathbf{1 k}$ was prepared according to the procedure for the preparation of $\mathbf{1 a}$, employing $\mathbf{3 k}$ $(1.02 \mathrm{~g}, 2.50 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(1.05 \mathrm{~mL}, 7.53 \mathrm{mmol})$, TBSOTf$(1.17 \mathrm{~mL}, 4.99 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$ and hexane/EtOAc (99.5:0.5 to 97:3) as an eluent. White solid ($1.26 \mathrm{mg}, 97 \%, E / Z 4: 96$). IR (neat) 700 , $769,780,1648,1722,1751,2933,2954,3277 \mathrm{~cm}^{-1}$; Mp: 71.9-73.0 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR of $(\boldsymbol{Z})-\mathbf{1 k}\left(\mathrm{CDCl}_{3}\right) \delta$ $-0.28(\mathrm{~s}, 3 \mathrm{H}),-0.25(\mathrm{~s}, 3 \mathrm{H}), 0.99(\mathrm{~s}, 9 \mathrm{H}), 1.24-1.43(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.90(\mathrm{t}, J=2.7 \mathrm{~Hz}$, $1 \mathrm{H}), 1.92-211(\mathrm{~m}, 2 \mathrm{H}), 2.15(\mathrm{brt}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 4.68(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H})$, $5.68(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.34(\mathrm{~m}, 8 \mathrm{H}), 7.36-7.42(\mathrm{~m}, 2 \mathrm{H}) .[(\boldsymbol{E})-1 \mathrm{k}: \delta-0.14(\mathrm{~s}, 3 \mathrm{H}),-0.10(\mathrm{~s}$, $3 \mathrm{H}), 1.02(\mathrm{~s}, 9 \mathrm{H}), 5.35(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H})] .{ }^{13} \mathrm{C}$ NMR of $(\mathbf{Z}) \mathbf{- 1} \mathbf{j}\left(\mathrm{CDCl}_{3}\right) \delta-4.60,-3.79,18.12,18.70$, $23.89,25.75,34.37,45.22,51.72,51.92,63.24,68.48,83.79,109.52,126.80,127.79,127.95,128.01$, $129.49,139.75,140.51,150.94,171.00$, 171.12. Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{40} \mathrm{O}_{5} \mathrm{Si}: \mathrm{C}, 71.50 ; \mathrm{H}, 7.74 \%$. Found: C, $71.34 ; \mathrm{H}, 7.78 \%$. The geometry of major Z-isomer was confirmed by an NOE experiment as shown below.

Scheme 6. Preparation of 11.

Dimethyl 2-(3-Butyn-1-yl)-2-(4-Oxo-4-phenylbutyl)malonate (31)

The compound 31 was prepared according to the procedure for the preparation of $\mathbf{3 a}$, employing dimethyl 2-(3-butyn-1-yl)malonate (18) ($1.04 \mathrm{~g}, 5.01 \mathrm{mmol}$), NaH ($240 \mathrm{mg}, 6.00 \mathrm{mmol}$), 4-iodo-1-phenyl-1-butanone ${ }^{6}(1.65 \mathrm{~g}, 6.02 \mathrm{mmol})$ at room temperature overnight. Purification by silica gel chromatography (hexane/EtOAc $95: 5$ to $75: 25$) afforded 31 as a colorless oil ($0.951 \mathrm{~g}, 57 \%$). IR (neat) $690,1175,1199,1434,1448,1683,1728,2953,3289 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.57-1.70(\mathrm{~m}$, $2 \mathrm{H}), 1.96-2.06(\mathrm{~m}, 3 \mathrm{H}), 2.21-2.24(\mathrm{~m}, 4 \mathrm{H}), 3.01(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.75(\mathrm{~S}, 6 \mathrm{H}), 7.43-7.50(\mathrm{~m}, 2 \mathrm{H})$, $7.54-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.93-7.97(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 13.42,18.07,30.88,31.60,37.71,52.11$, 56.57, 68.65, 82.83, 127.68, 128.36, 132.83, 136.58, 171.22, 198.98. HRMS (ESI ${ }^{+}$) Calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: m / z 353.135894$. Found: $m / z 353.13539$.
(Z)-Dimethyl 2-(3-butyn-1-yl)-2-[4-(tert-butyldimethylsiloxy)-4-phenyl-3-buten-1-yl]malonate (11) $(E / Z=19 / 81)$

The compound 11 was prepared according to the procedure for the preparation of 1a, employing $\mathbf{3 1}$ $(724 \mathrm{mg}, 2.19 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(0.458 \mathrm{~mL}, 3.29 \mathrm{mmol})$, TBSOTf ($0.617 \mathrm{~mL}, 2.63 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (8.8 mL) and hexanes/EtOAc ($99 / 1$ to $92 / 8$) as an eluent. Colorless oil ($794 \mathrm{mg}, 81 \%, E / Z=19 / 81$). IR
(neat) 697, 758, 779, 838, 1176, 1196, 1253, 1732, 2931, 2954, $3308 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR of (Z)-11 $\left(\mathrm{CDCl}_{3}\right)$ $\delta-0.11(\mathrm{~s}, 6 \mathrm{H}), 0.97(\mathrm{~s}, 9 \mathrm{H}), 1.91-2.28(\mathrm{~m}, 9 \mathrm{H}), 3.71(\mathrm{~s}, 6 \mathrm{H}), 4.93-5.05(\mathrm{~m}, 1 \mathrm{H}), 7.19-7.44(\mathrm{~m}, 5 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR of $(Z)-11\left(\mathrm{CDCl}_{3}\right) \delta-4.36,13.76,18.00,20.82,25.61,31.04,32.21,52.21,56.60,68.72$, 82.92, 109.88, 125.80, 127.54, 127.86, 139.36, 150.08, 171.47. HRMS (ESI ${ }^{+}$) Calcd for $\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{O}_{5} \mathrm{SiNa}$ $[\mathrm{M}+\mathrm{Na}]^{+}: m / z 467.22169$. Found: $m / z 467.22242$. The geometry of major Z-isomer was confirmed by NOE experiment as shown below.

Scheme 7. Preparation of (E)-1j. ${ }^{4}$

(E)-Dimethyl 2-[4-(tert-Butyldimethylsiloxy)-4-phenyl-3-buten-2-yl]-2-(4-pentyn-1-yl)malonate $[(E)-1 \mathrm{j}](E / Z=86 / 14)$

To a suspension of $\mathrm{NaH}(149 \mathrm{mg}, 3.73 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL})$ was added a solution of $\mathbf{1 7}(679 \mathrm{mg}$, $3.04 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(6 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under Ar atmosphere. After stirring for 10 min , the reaction mixture was allowed to warm to room temperature and stirred for 1 h . Then, the mixture was concentrated in vacuo to remove the solvent, and the reaction vessel was charged with Ar. To the reaction vessel, $\mathrm{CH}_{2} \mathrm{Cl}_{2}(23 \mathrm{~mL})$, (E)-1-phenyl-2-buten-1-one ($452 \mathrm{mg}, 3.09 \mathrm{mmol}$) and TBSOTf ($1.07 \mathrm{~mL}, 4.56$ mmol) was added in this order at $-78{ }^{\circ} \mathrm{C}$, and the mixture was allowed to slowly warm to room temperature with stirring for 24 h . The resulting trimethylsilyl enol ether was hydrolyzed with aq NaHCO_{3} to $\mathbf{3 j}$. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$, and separated. The combined aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The organic layers were combined, dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel (hexane/EtOAc 99.5:0.5 to 92:8) and GPC to give (\boldsymbol{E}) $\mathbf{- 1} \mathbf{j}$ as a colorless oil ($735 \mathrm{~g}, 53 \%$). IR (neat) $699,778,836,1252,1646,1728,2931,2953,3310 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 1.04-1.22(\mathrm{~m}, 2 \mathrm{H}), 1.15(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.75-1.91(\mathrm{~m}$, $2 \mathrm{H}), 1.90(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{td}, J=7.2,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.96-3.08(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}$, $3 \mathrm{H}), 4.90(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.38(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta-4.82,-4.49,17.96,18.51$, $18.62,23.49,25.55,33.87,36.34,51.74,51.91,61.64,68.45,83.63,110.56,128.01,128.05,128.07$, 137.75, 151.25, 171.16, 171.47. HRMS (ESI^{+}) Calcd for $\mathrm{C}_{26} \mathrm{H}_{38} \mathrm{O}_{5} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}: \mathrm{m} / \mathrm{z} 481.23807$. Found: m/z 481.23733.

Scheme 8. Preparation of 1m.

Methyl 2-Acetyl-2-benzyl-6-heptynoate (3m)

The compound $\mathbf{3 m}$ was prepared according to the procedure for the preparation of $\mathbf{3 a}$, employing metyl 2-acetyl-6-heptynoate (19) ($729 \mathrm{mg}, 4.00 \mathrm{mmol}$), $\mathrm{NaH}(192 \mathrm{mg}, 4.80 \mathrm{mmol})$, benzyl bromide $(0.582 \mathrm{~mL}, 4.80 \mathrm{mmol})$ at room temperature for 20 min . Purification by silica gel chromatography (hexane/EtOAc 99:1 to 85:15) afforded $\mathbf{3 m}$ as a colorless oil ($0.834 \mathrm{~g}, 88 \%$). IR (neat) 635, 701, 1176, 1433, 1455, 1709, 1742, 2952, $3289 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.23-1.45(\mathrm{~m}, 1 \mathrm{H}), 1.45-1.61(\mathrm{~m}, 1 \mathrm{H})$, $1.87-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.96(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 2.15-2.23(\mathrm{~m}, 2 \mathrm{H}), 3.12(\mathrm{~d}, J=14.4,1 \mathrm{H})$, $3.23(\mathrm{~d}, J=14.4,1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 7.02-7.07(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.28(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 18.27$, $22.82,26.89,30.15,37.08,51.96,64.32,68.92,83.25,126.81,128.22,129.67,136.05,172.17,204.60$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{Si}$: C, 74.97 ; H, 7.40%. Found: C, $74.74 ; \mathrm{H}, 7.43 \%$.

Methyl 2-Benzyl-2-[1-(tert-butyldimethylsiloxy)vinyl]-6-heptynoate (1m)

The compound $\mathbf{1 n}$ was prepared according to the procedure for the preparation of $\mathbf{1 a}$, employing $\mathbf{3 m}$ $(732 \mathrm{mg}, 2.69 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(0.749 \mathrm{~mL}, 5.37 \mathrm{mmol})$, TBSOTf ($0.945 \mathrm{~mL}, 4.03 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5.4 mL) and hexane/EtOAc (99.5:0.5 to 94:6) as an eluent. White solid ($959 \mathrm{mg}, 92 \%$). $\mathrm{Mp}=47.2-50.4^{\circ} \mathrm{C}$. IR (neat) $829,992,1274,1633,1725,2931,2948,3277 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.19(\mathrm{~s}, 3 \mathrm{H}), 0.24(\mathrm{~s}$, $3 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 1.38-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.59-1.68(\mathrm{~m}, 3 \mathrm{H}), 1.95(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.15-2.21(\mathrm{~m}, 2 \mathrm{H})$, $3.09(\mathrm{~s}, 2 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 4.05(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.07-7.12(\mathrm{~m}, 2 \mathrm{H})$, $7.17-7.25(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-5.56,-4.97,17.79,18.53,23.48,25.33,30.09,37.03,51.59$, $56.82,68.57,83.93,89.80,126.50,127.86,130.21,137.05,158.19,174.15$. HRMS (ESI ${ }^{+}$) Calcd for $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}]^{+}: m / z 409.21694$. Found: $m / z 409.21632$.

Scheme 9. Preparation of 1n.

Methyl 2-[1-(tert-Butyldimethylsiloxy)vinyl]-2-(4-pentyn-1-yl)-6-heptynoate (1n)

The compound $\mathbf{3 n}$ was prepared according to the procedure for the preparation of $\mathbf{3 a}$, employing methyl 2-acetyl-6-heptanoate (20) ($929 \mathrm{mg}, 5.10 \mathrm{mmol}$), $\mathrm{NaH}(245 \mathrm{mg}, 6.13 \mathrm{mmol})$, 5-iodo-1-hexyne $(1.52 \mathrm{~g}, 7.65 \mathrm{mmol})$ at room temperature overnight. Purification by silica gel chromatography (hexanes/EtOAc $98: 2$ to $75: 25$) afforded $\mathbf{3 n}$ as a mixture of a small amount of a O-alkylation by-product (colorless oil, 917 mg , ca 73%). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.22-1.46(\mathrm{~m}, 4 \mathrm{H}), 1.97-2.04(\mathrm{~m}, 6 \mathrm{H})$, $2.15(\mathrm{~s}, 3 \mathrm{H}), 2.17-2.25(\mathrm{~m}, 4 \mathrm{H}), 3.75(\mathrm{~S}, 3 \mathrm{H})$. Then silyl enolization of 3 n took place by using the procedure for the preparation $\mathbf{3 a}$, employing $\mathbf{3 n}(917 \mathrm{mg}, 3.69 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(0.772 \mathrm{~mL}, 5.54 \mathrm{mmol})$, TBSOTf ($1.04 \mathrm{~mL}, 4.43 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7.4 \mathrm{~mL})$ and hexane/EtOAc (99.5/0.5 to $97 / 3$) as the eluent. Colorless oil ($887 \mathrm{mg}, 48 \%$ from 19). IR (neat) 626, 827, 1020, 1172, 1254, 1625, 1735, 2932, 2951, $3309 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.17(\mathrm{~s}, 6 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 1.20-1.40(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.53(\mathrm{~m}, 2 \mathrm{H})$, $1.80-1.87(\mathrm{~m}, 4 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 4.19(\mathrm{q}, J=2.1 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-5.27,17.74,18.60$, $23.04,25.30,30.58,51.70,55.40,68.52,83.99,89.12,158.62,174.63$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{Si}: \mathrm{C}$, 69.56; H, 9.45%. Found: C, 69.56; H, 9.59%.

Cyclization Products.

Ethyl cis-5-Methylene-10-oxobicyclo[4.3.1]decane-1-carboxylate (2a)

Colorless oil. IR (neat) $1175,1232,1704,1732,2935 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.28(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}), 1.61-2.26(\mathrm{~m}, 10 \mathrm{H}), 2.36-2.49(\mathrm{~m}, 2 \mathrm{H}), 3.34(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.20(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.93(\mathrm{~s}, 1 \mathrm{H})$, $5.03(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 13.78,17.89,23.66,31.76,34.00,35.08,35.26,55.08,60.85,60.94$, $112.50,145.33,173.58,211.03$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{3}: \mathrm{C}, 71.16 ; \mathrm{H}, 8.53 \%$. Found: C, 70.85; H, 86.68\%.
cis-1-benzoyl-5-methylenebicyclo[4.3.1]decan-10-one (2c)

Colorless oil. IR (neat) 1230, 1446, 1677, 1697, $2932 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}\right) \delta 1.72-1.83(\mathrm{~m}, 1 \mathrm{H})$, $1.84-1.96(\mathrm{~m}, 3 \mathrm{H}), 2.05-2.20(\mathrm{~m}, 4 \mathrm{H}), 2.23-2.40(\mathrm{~m}, 2 \mathrm{H}), 2.40-2.55(\mathrm{~m}, 2 \mathrm{H}), 3.61(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.96(\mathrm{~s}$, $1 \mathrm{H}), 5.10(\mathrm{~s}, 1 \mathrm{H}), 7.36-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.66-7.71(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $18.79,24.67,32.46,35.24,36.33,37.63,54.61,63.53,113.17,128.23,129.50,131.96,135.10,146.04$, 201.06, 213.17. HRMS (ESI ${ }^{+}$) Calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: m / z 291.13555$. Found: m / z 291.13523.

Methyl cis-5-Methylene-9-oxobicyclo[4.2.1]nonane-1-carboxylate (2d)

Colorless oil. IR (neat) $1174,1208,1268,1243,1727,1749,2935,2949 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$
$1.69-1.99(\mathrm{~m}, 4 \mathrm{H}), 2.02-2.20(\mathrm{~m}, 3 \mathrm{H}), 2.35-2.61(\mathrm{~m}, 3 \mathrm{H}), 3.34(\mathrm{dd}, J=8.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H})$, $4.81(\mathrm{~s}, 1 \mathrm{H}), 4.89(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 23.78,28.19,29.31,34.31,34.89,52.45,54.48,60.14$, 111.38, 146.20, 173.05, 214.61. HRMS (EI^{+}) Calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3}[\mathrm{M}]^{+}: m / z$ 208.10994. Found: m / z 208.10967.

Methyl cis-5-Methylene-11-oxobicyclo[4.4.1]undecane-1-carboxylate (2e)

Colorless oil. IR (neat) $901,1210,1690,1728,2925,2950 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.45-1.55(\mathrm{~m}$, $1 \mathrm{H}), 1.68-2.20(\mathrm{~m}, 12 \mathrm{H}), 2.45-2.55(\mathrm{~m}, 1 \mathrm{H}), 3.46-3.58(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 4.91(\mathrm{~s}, 1 \mathrm{H}), 4.93(\mathrm{~s}$, $1 \mathrm{H}), 5.00(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 24.71,25.55,25.69,27.91,30.73,33.20,36.23,52.01,61.79$, 64.39, 113.20, 144.54. HRMS (EI^{+}) Calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{3}[\mathrm{M}]^{+}: m / z$ 236.14124. Found: m / z 236.14115.

Methyl cis-8-Methylene-12-oxobicyclo[5.4.1]dodecane-1-carboxylate (2f)

Colorless oil. IR (neat) 1220, 1241, 1438, 1683, 1731, $2929 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.17-1.34(\mathrm{~m}$, $1 \mathrm{H}), 1.40-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.99(\mathrm{~m}, 9 \mathrm{H}), 2.03-2.14(\mathrm{~m}, 1 \mathrm{H}), 2.03-2.14(\mathrm{~m}, 1 \mathrm{H}), 2.30-2.56(\mathrm{~m}, 4 \mathrm{H})$, $3.34(\mathrm{dd}, J=9.0,4.2,1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 4.94(\mathrm{~s}, 1 \mathrm{H}), 4.97(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 23.06,23.82$, $24.77,25.11,30.08,34.44,34.68,35.82,51.88,62.75,63.35,112.99,145.77,173.83,213.61$. HRMS (EI^{+}) Calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{3}[\mathrm{M}]^{+}: m / z 250.15689$. Found: $m / z 250.15707$.

2-Benzoyl-1-methylenecycloheptane (2g)

Colorless oil. IR (neat) 689, 1206, 1446, 1677, 2853, $2924 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.31-1.57(\mathrm{~m}$, $3 \mathrm{H}), 1.71-1.95(\mathrm{~m}, 4 \mathrm{H}), 1.96-2.07(\mathrm{~m}, 1 \mathrm{H}), 2.31-2.52(\mathrm{~m}, 2 \mathrm{H}), 4.15(\mathrm{dd}, J=10.8,4.8,1 \mathrm{H}), 4.72(\mathrm{~s}$, $1 \mathrm{H}), 4.89(\mathrm{~s}, 1 \mathrm{H}), 7.40-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.91-7.97(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $27.43,28.53,29.46,30.69,35.24,52.54,114.69,128.53$ (2C), 132.72, 136.83, 149.57, 201.40. HRMS (EI^{+}) Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}[\mathrm{M}]^{+}: m / z$ 214.13576. Found: m / z 214.13583.
trans-1-Benzoyl-7-methyl-2-methylenecycloheptane (2g)

Colorless oil. IR (neat) 697, 1206, 1446, 1675, 2853, $2922 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.91$ (d, $J=6.6$ $\mathrm{Hz}, 3 \mathrm{H}), 1.34-1.69(\mathrm{~m}, 4 \mathrm{H}), 1.71-1.89(\mathrm{~m}, 2 \mathrm{H}), 2.18-2.27(\mathrm{~m}, 1 \mathrm{H}), 2.30-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.41-2.52(\mathrm{~m}$, $1 \mathrm{H}), 3.94(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{~s}, 1 \mathrm{H}), 4.87(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.58(\mathrm{~m}, 1 \mathrm{H})$, 7.94-8.00 (m, 2H). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 22.37,27.96,31.52,34.47,34.98,35.30,60.71,115.43$, 128.54, 128.60, 132.72, 137.52, 148.42, 201.03. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}: \mathrm{C}, 84.16$; H, 8.83%. Found: C, 83.94; H, 8.93\%. HRMS (EI $)$ Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}[\mathrm{M}]^{+}: m / z$ 228.15142. Found: m / z 228.15135. The
relative configuration of Bz and Me group was determined by comparing the coupling constant between H_{a} and H_{b} and that in the compound $\mathbf{2 k}$.

Dimethyl trans-3-Benzoyl-4-methylenecycloheptane-1,1-dicarboxylate (2i)

2i
Colorless oil. IR (neat) 690, 1207, 1225, 1239, 1681, 1728, $2952 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $1.52-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.87-2.03(\mathrm{~m}, 2 \mathrm{H}), 2.11(\mathrm{dd}, J=14.4 \mathrm{~Hz}, 11.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.30-2.47(\mathrm{~m}, 2 \mathrm{H})$, $2.47-2.58(\mathrm{~m}, 1 \mathrm{H}), 2.73(\mathrm{ddd}, J=14.4,3.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 4.39(\mathrm{dd}, J=11.4$, $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~s}, 1 \mathrm{H}), 4.87(\mathrm{~s}, 1 \mathrm{H}), 7.40-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.89-7.94(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 22.67,31.78,34.75,36.17,47.93,52.41,52.69,57.16,115.34,128.53,128.56,132.93$, 136.33, 147.65, 172.04, 172.88, 199.81. HRMS (EI ${ }^{+}$) Calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{5}[\mathrm{M}]^{+}: m / z 330.14672$. Found: $m / z 330.14679$.

Dimethyl trans-3-Benzoyl-2-methyl-4-methylenecycloheptane-1,1-dicarboxylate (2j)

2j
White solid (recrystallization from hot hexane gave a colorless crystalline). IR (neat) 699, 1245, $1672,1724,1743,2939,2956 \mathrm{~cm}^{-1} ; \mathrm{Mp}=47.2-50.4^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.04(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$, $1.40-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.88-2.00(\mathrm{~m}, 1 \mathrm{H}), 2.01-2.15(\mathrm{~m}, 2 \mathrm{H}), 2.27(\mathrm{td}, J=12.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{dt}, J=$ $14.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.04\left(\mathrm{dq}, J=10.5,6.6 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{CH}_{a}(\mathrm{Me})-\right), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 4.69(\mathrm{~d}, J=$ $\left.10.5 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{CH}_{b}(\mathrm{Bz})-\right), 4.84(\mathrm{~s}, 1 \mathrm{H}), 4.88(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.98-8.04$ $(\mathrm{m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 17.90,28.69,31.47,37.00,38.88,51.78,52.30,59.05,61.38,118.46$, 128.61, 128.84, 133.04, 136.90, 146.67, 171.04, 173.05, 199.60. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{5}: \mathrm{C}, 69.75 ; \mathrm{H}$, 7.02%. Found: C, $69.76 ; \mathrm{H}, 7.08 \%$. The relative configuration of Bz and Me group was determined by comparing the coupling constant between H_{a} and H_{b} and that in the compound $\mathbf{2 k}$.

Dimethyl trans-3-Benzoyl-4-methylene-2-phenylcycloheptane-1,1-dicarboxylate (2k)

White solid. IR (neat) $700,1246,1672,1725,1744,2939,2955 \mathrm{~cm}^{-1} ; \mathrm{Mp}=150.5-151.0^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.47$ (distorted qt, $\left.J=13.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.01-2.11(\mathrm{~m}, 1 \mathrm{H}), 2.16-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.32$ $(\mathrm{td}, J=13.8,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.43-2.57(\mathrm{~m}, 2 \mathrm{H}), 3.13(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 4.12\left(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{CH}_{a}\right.$ $(\mathrm{Ph})-), 4.91(\mathrm{~s}, 1 \mathrm{H}), 4.95(\mathrm{~s}, 1 \mathrm{H}), 5.46\left(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{CH}_{b}(\mathrm{Bz})-\right), 7.02-7.08(\mathrm{~m}, 1 \mathrm{H}), 7.11-7.18$ $(\mathrm{m}, 2 \mathrm{H}), 7.28-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.60(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 7.72-7.77(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 29.27,31.73,38.37,51.83,51.92,52.06,58.03,63.09,118.90,127.09,127.92,128.32,128.62$, $130.51,132.62,132.64,140.05,146.69,171.12,171.72,199.03$. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{O}$: $\mathrm{C}, 73.87 ; \mathrm{H}$, 6.45%. Found: C, 73.86 ; H, 6.47%. The relative configuration was determined by X-ray analysis as shown below. X-ray quality crystals were grown from hot hexane. Crystallographic data for the structure has been deposited at the Cambridge Crystallographic Data Centre (CCDC 787890). Copies of the data can be obtained, free of charge, on application to the Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK. Fax: 44-1223-3360033 or E-mail: deposit@ccdc.cam.ac.uk

Dimethyl 5-Benzoyl-4-methylenecycloheptane-1,1-dicarboxylate (21)

Colorless oil. IR (neat) 691, 1169, 1209, 1237, 1677, 1728, $2953 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $1.83-2.07(\mathrm{~m}, 4 \mathrm{H}), 2.39-2.63(\mathrm{~m}, 4 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 4.25(\mathrm{dd}, J=9.3,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{~s}$, $1 \mathrm{H}), 4.96(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.90-7.96(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $25.27,31.12,31.15,34.92,51.94,52.49,52.61,57.79,116.04,128.59,128.63,132.99,136.49,147.85$, 171.82, 173.04, 200.58. HRMS (EI^{+}) Calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{5}[\mathrm{M}]^{+}: m / z 330.14672$. Found: $m / z 330.14672$.

Methyl 1-Benzyl-4-methylene-2-oxocycloheptanecarboxylate (2m)

2m
Colorless oil. IR (neat) 691, 1169, 1209, 1237, 1677, 1728, $2953 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $1.62-1.83(\mathrm{~m}, 3 \mathrm{H}), 2.00-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.42(\mathrm{~m}, 1 \mathrm{H}), 2.97(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{~d}, J=14.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.32(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(J=14.7,1 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 4.87(\mathrm{~s}, 1 \mathrm{H}), 4.90(\mathrm{~s}, 1 \mathrm{H})$, 7.05-7.10 $(\mathrm{m}, \quad 2 \mathrm{H}), \quad 7.20-7.28 \quad(\mathrm{~m}, \quad 3 \mathrm{H}) . \quad{ }^{13} \mathrm{C} \quad$ NMR $\quad\left(\mathrm{CDCl}_{3}\right)$ $25.06,32.75,36.52,41.65,51.52,51.93,63.84,116.10,126.86,128.12,130.41,136.60,141.78,171.92$, 206.21. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{3}$: C, 74.94; H, 7.40\%. Found: C, $74.88 ; \mathrm{H}, 7.42 \%$.

Methyl 4-Methylene-2-oxo-1-(4-pentyn-1-yl)cycloheptanecarboxylate (2n)

Colorless oil. IR (neat) 637, 1172, 1214, 1434, 1701, 1738, 2948, $3288 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}\right) \delta$
$1.34-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.58-1.93(\mathrm{~m}, 4 \mathrm{H}), 1.95(\mathrm{t}, J=2.7 \mathrm{~Hz}), 1.96-2.28(\mathrm{~m}, 5 \mathrm{H}), 2.32-2.43(\mathrm{~m}, 1 \mathrm{H}), 3.21$ $(\mathrm{d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 4.89(\mathrm{~s}, 1 \mathrm{H})$, $4.94 \quad(\mathrm{~s}, \quad 1 \mathrm{H}) . \quad{ }^{13} \mathrm{C} \quad$ NMR $\quad\left(\mathrm{CDCl}_{3}\right)$ $18.61,23.56,25.15,33.50,35.13,36.59,51.30,52.12,62.07,68.59,83.80,116.22,141.98,172.53,206$.41. HRMS (EI^{+}) Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: m / z$ 248.14124. Found: m / z 248.14087.

References

1) Ochida, A.; Ito, H.; Sawamura, M. J. Am. Chem. Soc. 2006, 128, 16486-16487.
2) Williams, D. B; Stoll, M. E.; Scott, B. L.; Costa, D. A.; Oldham, W. J. Jr. Chem. Commun. 2005, 1438-1440.
3) Barabé, F.; Bétournay, G.; Bellavance, G.; Barriault, L. Org. Lett. 2009, 11, 4236-4238.
4) (a) Kusama, H.; Yamabe, H.; Onizawa, Y.; Hoshino, T.; Iwasawa, N. Angew. Chem. Int. Ed. 2005, 44, 468-470. (b) Kusama, H.; Onizawa, Y.; Iwasawa, N. J. Am. Chem. Soc. 2006, 128, 16500-16501. (c) Kusama, H.; Karibe, Y.; Onizawa, Y.; Iwasawa, N. Angew. Chem. Int. Ed. 2010, 49, 4269-4272.
5) Van der Louw, J.; Komen, C. M. D.; Knol, A.; De Kanter, F. J.; Van der Bann, J.; Bickelhaupt, F.; Klumpp, G. W.. Tetrahedron Lett. 1989, 30, 4453-4456.
6) Zhou, J.; Fu, G. C.; J. Am. Chem. Soc. 2003, 125, 14726-14727.


```
Original File: Jun 29 10
    C13 Statdard Observe 
    Mbsluce
l
\
\
\
M,
Mrinted 2010/Ju1/29 21:02:10
```



```
Original File: Jul 6 10
STANDARD 1H OBSERVE
Obsluc 
```


(2

```
Mriginal File: Jun 18 10
Obsluc 
```



```
Original File: Jun 28 10
    \)
Mt.ck=-none Tune=6.4 Match=0.4
```



```
Scan
l
l
M
lol
1.4902 s
6.501 s
6.0
\(\mu \mathrm{~s}\)
CDC13.0 C
coc
```



```
Original File: Jun 28 10
Masmen
```


NiNNNNVNN

```
Original File: Jun 28 10
    Cl3 Statdard Observe 
        M,
lc Reference RCain
Printed
Operator
2010/Ju1/29
21:39:29
```


180	160	140	120	100	80	60
	160	140		100		


```
Original File: Jun 12 10
Comnent STADARD iH OBSERvE
M,
```

(Z)

$$
\begin{aligned}
& \begin{array}{c}
\text { Original File: } \\
\text { Date } \\
\text { Comentent } \\
\text { Jun } 12 \\
10
\end{array} \\
& \begin{array}{l}
\text { Clis Statdard Observe } \\
\text { Ctick=none Tune } 6.4 \text { Match=0.4 }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { Original File: Jun } 1210 \\
\text { Date } \\
\text { Coment }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { Original File: }{ }_{\text {Jun } 1510} \text { Date } \\
\text { Camenent } \\
\text { Coment }
\end{array}
\end{aligned}
$$

Original File:Deb 2310ComenantCTANDARD 1H OBSERVE	
Obslluc	${ }^{1 / 1}$
Exxlode	
ssireq	299.96 M14z
sfine	${ }^{955.0047}{ }^{\text {Hz }}$
int	
equecy(Span)	15
q^{7} ine	983 s
Isel	
vent	
eren	
inted 20	10:32

(B (-1 j


```
Original File: 
lol
```


CBSO2

Stat dard Observe	
$\begin{aligned} & \text { ExMode } \\ & \text { ObsFreq } \end{aligned}$	
ObsSet ObsFine	
Point	
Scan	
${ }_{\text {PD }}^{\text {AcqT }}$ ine	
Pulsel Temperature	
SolventReference	
pad.Factor	
${ }_{\text {Printed }}$ 2010/Ju1/30 ${ }^{\text {Reas }}$ 14:03:51	

Crinted 2010/Ju1/29 21:07:42

Solvent
$\begin{aligned} & \text { Referene } \\ & \text { Broad.Factor }\end{aligned}$
Ber


```
l
    l
        Moskick=none Tune=6.4 (13,
M,
```


Original File:DateJul3	
Coment \qquad	
ObsNuc ExMod	
spreq	75.4
sFine	996
int (equecy(Span)	${ }_{18761.73 \mathrm{~Hz}}^{32768}$
	10944
Acqlim	
sel	
pera	
in	
nted 201	29 21:53


```
Original File: Jun 15 10
\begin{tabular}{|c|c|}
\hline Obsfluc & \\
\hline Obsfreq & 299.96 uHz \\
\hline Set & \\
\hline Fine & \\
\hline int & 163 \\
\hline (equecy (span) & \\
\hline \({ }_{\text {Acat ime }}\) & 3.4983 s \\
\hline & \\
\hline & \\
\hline Temper & \\
\hline feren & \\
\hline Broad.Fact & \\
\hline & \\
\hline & \\
\hline
\end{tabular}
```



```
Mriginal File: Jun 15 10
N
Stick=none Tune=6.4 Matc
Mos
```


Original File:
Dun 2510
Comentent
nument Stard Observe
Ctick- Stone Tune=6.4 Match=0.4

3

Original File: ${ }^{\text {Jun }} 1510$DateComentSTANOARD $1 H$ OSSERVE	
Obstiuc	\%
Exilde	${ }_{299.96}$
Sset	
Fine	${ }^{995.0047 ~ H z}$
${ }_{\text {F }}$ Frequecy (span)	${ }_{96}^{500.45 \mathrm{~Hz}}$
${ }^{\text {Acq }}$ Tine	
sel	
erent	
Broad.Factor	
ted 2010	29
rator	

9 , 8

$$
\begin{aligned}
& \begin{array}{lll}
\text { Original File: } \\
\text { Date } \\
\text { Coment } & \text { Oct } & 209
\end{array} \\
& \begin{array}{l}
\text { Clis Statdard Observe } \\
\text { Stick }=\text { none Tune } 6.4 \text { Match }=0.4
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 2010/Ju1/29 }{ }^{30}{ }^{31: 36: 16}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { Original File: } \\
\text { Dun } \\
\text { Date } \\
\text { Coment } \\
\text { 10 }
\end{array} \\
& \begin{array}{l}
\text { C13 Statdard Observe } \\
\text { Stick-none Tune=6.4 Match=0.4 }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& 0.4
\end{aligned}
$$


```
Mriginal File: Feb 20 10
M,
```



```
Original File: Jun 25 10
STAMDRD 1H OSSERVE
Masmen
```


15

$$
\begin{aligned}
& \begin{array}{l}
\text { Original File: } \\
\text { Duate } \\
\text { ast } \\
\\
10
\end{array}
\end{aligned}
$$

15

