Supporting Information

'Click' Reaction in Conjunction with Diazeniumdiolate Chemistry: Developing High-Load Nitric Oxide DonorsOyebola A. Oladeinde, Sam Y. Hong, Ryan J. Holland, Anna E. Maciag, Larry K.Keefer, Joseph E. Saavedra* and Rahul S. Nandurdikar*E-mail: saavedjo@mail.nih.gov; nandurdikarr@mail.nih.gov
Table of Contents
Synthesis of bis-azide 10 and tetrakis-azide 11 S2
Synthesis of alkynes 12, 13, and 15 S2
General methods, procedures and characterization data S2
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for new compounds S11
References S26

Synthesis of bis-azide (10) and tetrakis-azide (11).

Scheme S1. Synthesis of bis-azide 10 and tetrakis-azide 11.
Synthesis of alkynes (12), (13), and (15).

Scheme S2. Synthesis of alkynes 12, 13, and 15.
General. Starting materials were purchased from Aldrich Chemical Co. (Milwaukee, WI) unless otherwise indicated. NMR spectra were recorded on a 400 MHz Varian UNITY INOVA spectrometer; chemical shifts (δ) are reported in parts per million (ppm) downfield from tetramethylsilane. Ultraviolet (UV) spectra were recorded on an Agilent Model 8453 or a Hewlett-Packard model 8451A diode array spectrophotometer. Elemental analyses were performed by Midwest Microlab (Indianapolis, IN). IR spectra were acquired by using a Buck Scientific M-500 spectrometer. High resolution mass spectra (HRMS) were recorded on Agilent 6250 series Accurate-Mass Q-TOF LC/MS by electrospray ionization (ESI). Chromatography was performed on a Biotage SP1 Flash Purification System. Prepacked silica gel flash chromatography columns were purchased from Silicycle (Quebec City, Canada). Compounds $\mathbf{4}^{1}, \mathbf{1 4}^{2}, \mathbf{S}-\mathbf{3}^{3}, \mathbf{S}-\mathbf{4}^{3}$, and $\mathbf{S}-\mathbf{5}^{4}$ were prepared by using the reported procedures. benzaldehyde dimethyl acetal $\mathbf{S - 1}(1.04 \mathrm{~g}, 6.98 \mathrm{mmol})$, and 2,2-di(azidomethyl)propane-
 1,3-diol $4(1.69 \mathrm{~g}, 9.07 \mathrm{mmol})$ in dry toluene $(15 \mathrm{~mL})$ was added paratoluene sulfonic acid (p TSA) (100 mg). The reaction mixture was refluxed for 4 h , then cooled to rt , and diluted with ethyl acetate. The combined organic layer was washed with $5 \% \mathrm{NaHCO}_{3}$, then brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The crude product was purified by flash column chromatography (4:1 hexane/ethyl acetate) to give compound $\mathbf{1 0}$ as a white solid ($1.0 \mathrm{~g}, 65 \%$). UV (ethanol) $\lambda_{\max }(\varepsilon) 237 \mathrm{~nm}\left(3.98 \mathrm{mM}^{-1} \mathrm{~cm}^{-1}\right)$; IR (neat) 3020, 2978, 2909, 2125, 1590, $1428,1290,1078 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 3.25(\mathrm{~s}, 2 \mathrm{H}), 3.75(\mathrm{~d}, J=10.5 \mathrm{~Hz}$, $2 \mathrm{H}), 3.84(\mathrm{~s}, 2 \mathrm{H}), 4.05(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.41(\mathrm{~s}, 1 \mathrm{H}), 7.36-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.45-7.48$ $(\mathrm{m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 134.87,126.58,125.75,123.36,99.46,67.86$, 49.67, 48.96, 35.47.

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{6} \mathrm{O}_{2}$: C, 52.55 ; H, $5.14 ; \mathrm{N}, 30.64$, Found: C, $52.68 ; \mathrm{H}$, 5.25; N, 30.31.

1,3-Bis-[5,5-di(azidomethyl)-1,3-dioxan-2-yl]benzene (11) [RN-2-151]. To a solution of isophthalaldehyde $\mathbf{S - 2}$ ($358 \mathrm{mg}, 2.67 \mathrm{mmol}$), 2,2-di(azidomethyl)propane-1,3diol $4(1.50 \mathrm{~g}, 8.05 \mathrm{mmol})$, and trimethyl orthoformate ($1.2 \mathrm{~mL}, 10.68 \mathrm{mmol}$) in dry
 toluene (13 mL) was added p TSA ($102 \mathrm{mg}, 0.53 \mathrm{mmol}$). The reaction mixture was refluxed for 4 h , then cooled to RT, and diluted with ethyl acetate. The combined organic layer was washed with $5 \% \mathrm{NaHCO}_{3}$, then brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The crude product was purified by flash column chromatography (4:1 hexane/ethyl acetate) to give compound $\mathbf{1 1}$ as a white solid ($1.04 \mathrm{~g}, 83 \%$). UV (ethanol) $\lambda_{\max }(\varepsilon) 237 \mathrm{~nm}\left(4.59 \mathrm{mM}^{-1} \mathrm{~cm}^{-1}\right)$; IR (neat) $3149,3052,2909,2134,1590,1392,1340$, $1092 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 3.25(\mathrm{~s}, 4 \mathrm{H}), 3.75(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 4 \mathrm{H}), 3.83(\mathrm{~s}$, $4 \mathrm{H}), 4.05(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 4 \mathrm{H}), 5.42(\mathrm{~s}, 2 \mathrm{H}), 7.38-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.56(\mathrm{~s}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 137.67,128.36,126.66,123.60,101.63,70.40,52.22,51.51,38.03$.

Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{12} \mathrm{O}_{4}$: C, 45.95; H, 4.71; N, 35.73, Found: C, 45.93; H, 4.73; N, 35.48.

General procedure for synthesis of compounds (12) and (13).

Propargyl chloroformate (1.5 equiv) was added to a solution of amine $\mathbf{S - 3}$ or $\mathbf{S - 4}$ (1 equiv) and diisopropylethylamine (DIPEA) (3 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 mL per mmol of diazeniumdiolate). The reaction mixture was stirred at rt for 3 h . Solvent was evaporated and crude mass was purified by flash column chromatography.
$O^{\mathbf{2}}$-Methyl 1-[4-(Propargyloxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2diolate (12) [RN-2-103]. Starting from S-3 ($600 \mathrm{mg}, 3.75 \mathrm{mmol}$), DIPEA ($960 \mu \mathrm{~L}, 5.63$
 mmol), and propargyl chloroformate ($556 \mu \mathrm{~L}, 5.63 \mathrm{mmol}$), 12 was isolated as a white solid ($695 \mathrm{mg}, 77 \%$). UV (ethanol) $\lambda_{\text {max }}$ (ع) $247 \mathrm{~nm}\left(6.5 \mathrm{mM}^{-1} \mathrm{~cm}^{-1}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$ $2.49(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.39-3.42(\mathrm{~m}, 4 \mathrm{H}), 3.68-3.71(\mathrm{~m}, 4 \mathrm{H}), 4.03(\mathrm{~s}, 3 \mathrm{H}), 4.73(\mathrm{~d}, J=$ $2.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 153.96,77.97,74.81,61.11,53.28,51.02$, 42.56.

Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{4}$: C, 44.63; H, 5.83; N, 23.13, Found: C, 44.60; H, 5.85; N, 22.90.
$O^{\mathbf{2}}$-Vinyl 1-[4-(Propargyloxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate (13) [RN-2-146]. Starting from S-4 ($500 \mathrm{mg}, 2.90 \mathrm{mmol}$), DIPEA ($803 \mu \mathrm{~L}, 4.35 \mathrm{mmol}$),

13 and propargyl chloroformate ($426 \mu \mathrm{~L}, 4.35 \mathrm{mmol}$), $\mathbf{1 3}$ was isolated as a white solid ($647 \mathrm{mg}, 88 \%$). UV (ethanol) $\lambda_{\text {max }}(\varepsilon)$ $259 \mathrm{~nm}\left(7.8 \mathrm{mM}^{-1} \mathrm{~cm}^{-1}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 2.49(\mathrm{t}$, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 4 \mathrm{H}), 3.71(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 4 \mathrm{H}), 4.44(\mathrm{dd}, J=6.7,2.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.73(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.87(\mathrm{dd}, J=14.1,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{dd}, J=14.1,6.7$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 153.95,148.42,92.71,77.92,74.86,53.33$, 50.76, 42.48.

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{4}$: C, 47.24; H, 5.55; N, 22.04, Found: C, 47.30; H, 5.55; N, 21.93. mL) was added to an ice-cold mixture of carboxylic acid S-5, and DIPEA ($0.32 \mathrm{~mL}, 1.88$
$\mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. After 10 min , propargyl amine $(0.16 \mathrm{~mL})$ was added to the reaction mixture and allowed to stir at rt for 3 h . Then the reaction was diluted with
 $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the organic layer was washed with 5% $\mathrm{NaHCO}_{3}, 3 \mathrm{M} \mathrm{HCl}$, then brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The crude product was purified by flash column chromatography ($19: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}$) to give compound 15 as white solid ($425 \mathrm{mg}, 66 \%$). UV (ethanol) $\lambda_{\max }(\varepsilon) 244 \mathrm{~nm}(7.6$ $\left.\mathrm{mM}^{-1} \mathrm{~cm}^{-1}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.95(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 2.09$ $(\mathrm{s}, 3 \mathrm{H}), 2.31(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{ddd}, J=10.0,4.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.02-$ $4.16(\mathrm{~m}, 5 \mathrm{H}), 4.18-4.20(\mathrm{~m}, 1 \mathrm{H}), 4.27(\mathrm{dd}, J=12.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{t}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H})$, $5.44(\mathrm{dd}, J=10.5,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{t}$, $J=5.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 170.94,170.67,170.63,169.36,100.09$, $72.64,71.91,68.15,61.84,59.21,56.40,52.66,41.23,23.19,20.68,20.56$; HRMS (ESI) m / z calculated for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{~N}_{5} \mathrm{O}_{11}[\mathrm{M}+\mathrm{H}]^{+} 516.19363$, found 516.19352.

General procedures for the 'Click' reaction.

Method A: $\mathrm{CuSO}_{4} / \mathrm{Na}$-ascorbate

To a solution of azide $\mathbf{1 0}$ or $\mathbf{1 1}$ (1.0 equiv), alkyne $\mathbf{1 2 - 1 4}$ (1.1 equiv per azido group), and Na-ascorbate ($40 \mathrm{~mol} \%$ per azido group), in THF (7.5 mL per mmol of azide) was added a solution of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ ($20 \mathrm{~mol} \%$ per azido group) in water (2.5 mL per mmol of azide). The reaction was stirred at rt for $15-45 \mathrm{~min}$ (TLC monitoring). The reaction was extracted ethyl acetate three times. The combined organic layer was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The crude mass was purified by flash column chromatography.

Method B: CuI/DIPEA

To a solution of azide 10 (1.0 equiv), alkyne 12-14 (2.2 equiv), and CuI (2.0 equiv) in acetonitrile (20 mL per mmol of azide) was added DIPEA dropwise. The reaction was stirred at rt for $15-45 \mathrm{~min}$ (TLC monitoring). The solvent was removed under vacuum; ethyl acetate was added to the residual solid and filtered. The filtrate was evaporated. The crude mass was purified by flash column chromatography.

Compound (16) [OA-1-112]. Using Method A, starting from 10 ($50 \mathrm{mg}, 0.18$ mmol), alkyne 12 ($100 \mathrm{mg}, 0.4 \mathrm{mmol}$), $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(18 \mathrm{mg}, 0.07 \mathrm{mmol})$, and $\mathrm{Na}-$
ascorbate ($29 \mathrm{mg}, 0.14 \mathrm{mmol}$), compound 16 was isolated as a white solid ($81 \mathrm{mg}, 60 \%$). UV (ethanol) $\lambda_{\max }(\varepsilon) 247 \mathrm{~nm}\left(15.9 \mathrm{mM}^{-1} \mathrm{~cm}^{-1}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 3.37$
 (broad, 8H), 3.64-3.70 (m, 8H), 3.77 (d, $J=12.2$ $\mathrm{Hz}, 2 \mathrm{H}), 4.00(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.02(\mathrm{~s}, 6 \mathrm{H})$, 4.36 (s, 2H), $4.61(\mathrm{~s}, 2 \mathrm{H}), 5.27(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 4 \mathrm{H})$, $5.54(\mathrm{~s}, 1 \mathrm{H}), 7.41-7.50(\mathrm{~m}, 5 \mathrm{H}), 7.80(\mathrm{~s}, 1 \mathrm{H}), 8.24$ (s, 1H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 154.52$, $143.05,143.04,136.89,129.40,128.42,126.51$, $126.44,125.84,102.23,70.38,61.11,58.60,58.41,51.04,50.16,48.45,42.53,39.34$; HRMS (ESI) m / z calculated for $\mathrm{C}_{30} \mathrm{H}_{43} \mathrm{~N}_{14} \mathrm{O}_{10}[\mathrm{M}+\mathrm{H}]^{+} 759.32811$, found 759.32858.

Compound (17) [OA-1-120]. Using Method B, starting from 10 ($50 \mathrm{mg}, 0.18$ mmol), alkyne 12 ($102 \mathrm{mg}, 0.41 \mathrm{mmol}$), CuI ($69 \mathrm{mg}, 0.36 \mathrm{mmol}$), and DIPEA ($62 \mu \mathrm{~L}$,
 mmol), compound 17 was isolated as a white solid ($102 \mathrm{mg}, 74 \%$). UV (ethanol) $\lambda_{\text {max }}(\varepsilon) 247 \mathrm{~nm}(14.1$ $\left.\mathrm{mM}^{-1} \mathrm{~cm}^{-1}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 3.38$ (broad, 8H), 3.62 (broad, 8 H), 3.98 (d, $J=11.5 \mathrm{~Hz}$, 2H), 4.02 (s, 6H), 4.06 (broad, 2H), 4.19 (d, $J=$ $11.5 \mathrm{~Hz}, 2 \mathrm{H}$), 4.77 (broad, 2H), 5.26 (d, $J=6.5 \mathrm{~Hz}$, $4 \mathrm{H}), 5.57(\mathrm{~s}, 1 \mathrm{H}), 7.40-7.54(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 154.00,153.95$, $142.06,142.00,136.55,129.48,128.41,125.95,124.16,102.25,71.61,61.11,57.55$, 51.12, 50.82, 50.10, 42.42; HRMS (ESI) m / z calculated for $\mathrm{C}_{30} \mathrm{H}_{41} \mathrm{~N}_{14} \mathrm{O}_{10}[\mathrm{M}+\mathrm{H}]^{+}$ 757.31246, found 757.31386.

Compound (18) [OA-1-117]. Using Method A, starting from 10 ($50 \mathrm{mg}, 0.18$ mmol), alkyne $\mathbf{1 3}$ ($93 \mathrm{mg}, 0.36 \mathrm{mmol}$), $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(18 \mathrm{mg}, 0.07 \mathrm{mmol})$, and $\mathrm{Na}-$
 ascorbate ($29 \mathrm{mg}, 0.14 \mathrm{mmol}$), compound $\mathbf{1 8}$ was isolated as a white solid ($96 \mathrm{mg}, 67 \%$). UV (ethanol) $\lambda_{\max }(\varepsilon) 259 \mathrm{~nm}\left(14.9 \mathrm{mM}^{-1} \mathrm{~cm}^{-1}\right) ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 3.45$ (broad, 8 H), $3.65-3.70(\mathrm{~m}, 8 \mathrm{H}), 3.77(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 2 \mathrm{H})$, 4.01 (d, $J=12.3 \mathrm{~Hz}, 2 \mathrm{H}$), 4.36 (s, 2H), 4.43 (ddd, $J=6.6,2.6,1.2,2 \mathrm{H}), 4.60(\mathrm{~s}, 2 \mathrm{H}), 4.86(\mathrm{dd}, J=14.1,2.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.28(\mathrm{~d}, J=5.9 \mathrm{~Hz}$,
$4 \mathrm{H}), 5.54(\mathrm{~s}, 1 \mathrm{H}), 6.78-6.83(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.50(\mathrm{~m}, 5 \mathrm{H}), 7.79(\mathrm{~s}, 1 \mathrm{H}), 8.24(\mathrm{~s}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ $\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 154.50,148.42,143.04,143.02,136.88,129.42,128.43$, $126.50,126.44,125.84,109.99,102.24,92.72,92.68,70.38,58.64,58.45,50.76,50.16$, 48.44, 42.43, 39.35, 30.87; HRMS (ESI) m / z calculated for $\mathrm{C}_{32} \mathrm{H}_{43} \mathrm{~N}_{14} \mathrm{O}_{10}[\mathrm{M}+\mathrm{H}]^{+}$ 783.32811, found 783.32926.

Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{42} \mathrm{~N}_{14} \mathrm{O}_{10} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 48.00 ; \mathrm{H}, 5.54 ; \mathrm{N}, 24.49$, Found: C, 48.08; H, 5.15; N, 24.22.

Compound (19) [OA-1-121]. Using Method B, starting from 10 ($50 \mathrm{mg}, 0.18$ mmol), alkyne 13 ($106 \mathrm{mg}, 0.41 \mathrm{mmol}$), CuI ($69 \mathrm{mg}, 0.36 \mathrm{mmol}$), and DIPEA ($62 \mu \mathrm{~L}$,
 0.36 mmol), compound 19 was isolated as a white solid ($63 \mathrm{mg}, 44 \%$). UV (ethanol) $\lambda_{\text {max }}(\varepsilon) 252 \mathrm{~nm}$ ($16.5 \mathrm{mM}^{-1} \mathrm{~cm}^{-1}$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$ 3.46 (broad, 8 H), 3.63 (broad, 8 H), 3.99 (d, $J=$ $11.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.07$ (broad s, 2H), $4.19(\mathrm{~d}, J=11.5$ $\mathrm{Hz}, 2 \mathrm{H}), 4.43$ (d, $J=5.3 \mathrm{~Hz}, 2 \mathrm{H}$), 4.78 (broad s, $2 \mathrm{H}), 4.86(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.24(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 4 \mathrm{H}), 5.57(\mathrm{~s}, 1 \mathrm{H}), 6.80(\mathrm{dd}, J=14.0$, $6.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.41-7.52(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 153.96,153.92$, 148.42, $141.95,141.88,136.56,129.49,128.41,125.95,124.17,102.24,92.68,71.60,57.57$, 51.14, 50.52, 50.12, 42.41; HRMS (ESI) m / z calculated for $\mathrm{C}_{32} \mathrm{H}_{41} \mathrm{~N}_{14} \mathrm{O}_{10}[\mathrm{M}+\mathrm{H}]^{+}$ 781.31246, found 781.31333.

Compound (20) [OA-1-110]. Using Method A, starting from 10 ($39 \mathrm{mg}, 0.14$ mmol), alkyne $14(113 \mathrm{mg}, 0.29 \mathrm{mmol}), \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(13 \mathrm{mg}, 0.06 \mathrm{mmol})$, and Na ascorbate ($23 \mathrm{mg}, 0.11 \mathrm{mmol}$), compound 20 was isolated as a yellow solid (113 mg ,
 75%). UV (ethanol) $\lambda_{\text {max }}(\varepsilon) 249 \mathrm{~nm}\left(14.6 \mathrm{mM}^{-}\right.$ ${ }^{1} \mathrm{~cm}^{-1}$), $\lambda_{\text {max }}(\varepsilon) 302 \mathrm{~nm}\left(16.1 \mathrm{mM}^{-1} \mathrm{~cm}^{-1}\right) ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 3.62$ (broad, 8 H), 3.73 (broad, 10H), $4.02(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H})$, $4.36(\mathrm{~s}, 2 \mathrm{H}), 4.61(\mathrm{~s}, 2 \mathrm{H}), 5.29(\mathrm{~d}, J=9.6 \mathrm{~Hz}$, $4 \mathrm{H}), 5.55(\mathrm{~s}, 1 \mathrm{H}), 7.40-7.49(\mathrm{~m}, 5 \mathrm{H}), 7.64-7.68$ $(\mathrm{m}, 2 \mathrm{H}), 7.81(\mathrm{~s}, 1 \mathrm{H}), 8.25(\mathrm{~s}, 1 \mathrm{H}), 8.46(\mathrm{~d}, \mathrm{~J}=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.87(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 154.42,153.58,153.53,142.95,142.91,142.45,137.35,136.84$,
$129.45,129.08,129.05,128.44,126.50,125.82,122.12,117.72,117.67,102.26,70.38$, 58.77, 58.53, 50.39, 50.16, 48.46, 42.29, 39.35; HRMS (ESI) m / z calculated for $\mathrm{C}_{40} \mathrm{H}_{43} \mathrm{~N}_{18} \mathrm{O}_{18}[\mathrm{M}+\mathrm{H}]^{+} 1063.29972$, found 1063.30243.

Compound (21) [OA-1-136]. Using Method B, starting from 10 ($50 \mathrm{mg}, 0.18$ mmol), alkyne 14 ($165 \mathrm{mg}, 0.42 \mathrm{mmol}$), CuI ($69 \mathrm{mg}, 0.36 \mathrm{mmol}$), and DIPEA ($62 \mu \mathrm{~L}$,
 0.36 mmol), compound 21 was isolated as a yellow solid (109 mg, 72\%). UV (ethanol) $\lambda_{\text {max }}(\varepsilon) 251 \mathrm{~nm}\left(13.2 \mathrm{mM}^{-1} \mathrm{~cm}^{-1}\right), \lambda_{\text {max }}(\varepsilon) 302$ $\mathrm{nm}\left(12.4 \mathrm{mM}^{-1} \mathrm{~cm}^{-1}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}) \delta 3.69$ (broad, 16H), 4.00 (d, $J=11.6$ Hz, 2H), 4.09 (broad, 2H), 4.20 (d, $J=11.6$ $\mathrm{Hz}, 2 \mathrm{H}), 4.79$ (broad, 2H), 5.25 (d, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 5.58 (s, 1H), 7.41-7.52 (m, 5H), 7.67 $(\mathrm{d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.46(\mathrm{dd}, J=9.2,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 8.87(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 153.94,153.89,153.55,142.47,141.75,141.68,137.38,136.47$, 129.54, 129.08, 128.43, 125.92, 124.18, 122.11, 117.79, 102.27, 71.60, 57.71, 51.20, 50.16, 42.43; HRMS (ESI) m / z calculated for $\mathrm{C}_{40} \mathrm{H}_{41} \mathrm{~N}_{18} \mathrm{O}_{18}[\mathrm{M}+\mathrm{H}]^{+} 1061.28407$, found 1061.28523.

Compound (22) [OA-1-154]. Using Method A, starting from 10 ($50 \mathrm{mg}, 0.18$ mmol), alkyne $15(216 \mathrm{mg}, 0.42 \mathrm{mmol}), \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(18 \mathrm{mg}, 0.07 \mathrm{mmol})$, and $\mathrm{Na}-$ ascorbate ($29 \mathrm{mg}, 0.14 \mathrm{mmol}$), compound 22 was isolated as a white solid (152 mg , 63%). UV (ethanol) $\lambda_{\max }(\varepsilon) 250 \mathrm{~nm}\left(14.8 \mathrm{mM}^{-1} \mathrm{~cm}^{-1}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$
 $1.84(\mathrm{~s}, 3 \mathrm{H}), 1.88(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 9 \mathrm{H})$, 2.03 ($\mathrm{s}, 3 \mathrm{H}$), 2.07 ($\mathrm{s}, 6 \mathrm{H}), 3.25(\mathrm{~s}, 3 \mathrm{H})$, 3.26 (s, 3H), 3.81-3.88 (m, 4H), 3.95$4.28(\mathrm{~m}, 14 \mathrm{H}), 4.31(\mathrm{~s}, 2 \mathrm{H}), 4.52-4.65$ (m, 4H), $4.71(\mathrm{~s}, 2 \mathrm{H}), 5.08(\mathrm{t}, J=9.2$
$\mathrm{Hz}, 2 \mathrm{H}), 5.36-5.45(\mathrm{~m}, 4 \mathrm{H}), 5.52(\mathrm{~s}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.36-7.51(\mathrm{~m}, 5 \mathrm{H}), 7.70(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $173.44,170.82,170.66,170.53,169.37,167.73,167.66,144.62,144.28,137.10,129.35$, 128.41, 125.98, 124.91, 124.83, 102.14, 100.40, 100.30, 72.50, 72.03, 71.86, 70.45, $68.29,68.20,61.81,56.75,56.65,52.80,52.49,50.35,41.61,39.02,34.95,34.68,23.15$,
23.12, 20.68, 20.61, 20.56; HRMS (ESI) m / z calculated for $\mathrm{C}_{52} \mathrm{H}_{73} \mathrm{~N}_{16} \mathrm{O}_{24}[\mathrm{M}+\mathrm{H}]^{+}$ 1305.49781, found 1305.49776.

Compound (23) [OA-1-149]. Using Method B, starting from 10 ($38 \mathrm{mg}, 0.14$ mmol), alkyne 15 ($\mathrm{mg}, \mathrm{mmol}$), CuI ($53 \mathrm{mg}, 0.28 \mathrm{mmol}$), and DIPEA ($47 \mu \mathrm{~L}, 0.28 \mathrm{mmol}$),
 compound 23 was isolated as a white solid ($100 \mathrm{mg}, 56 \%$). UV (ethanol) $\lambda_{\text {max }}$ (ع) $250 \mathrm{~nm}\left(13.4 \mathrm{mM}^{-1} \mathrm{~cm}^{-1}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.86(\mathrm{~s}, 3 \mathrm{H}), 1.95$ $(\mathrm{s}, 3 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 6 \mathrm{H}), 2.03$ $(\mathrm{s}, 3 \mathrm{H}), 2.07(\mathrm{~s}, 6 \mathrm{H}), 3.17(\mathrm{~s}, 3 \mathrm{H}), 3.19(\mathrm{~s}, 3 \mathrm{H}), 3.79-3.85(\mathrm{~m}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 2 \mathrm{H}), 3.95(\mathrm{~s}$, $2 H), 3.99-4.19(\mathrm{~m}, 11 \mathrm{H}), 4.23-4.29(\mathrm{~m}, 2 \mathrm{H}), 4.58-4.67(\mathrm{~m}, 4 \mathrm{H}), 5.05-5.14(\mathrm{~m}, 2 \mathrm{H}), 5.38-$ $5.45(\mathrm{~m}, 4 \mathrm{H}), 5.58(\mathrm{~s}, 1 \mathrm{H}), 6.40(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.43$ $(\mathrm{m}, 3 \mathrm{H}), 7.52-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.68($ broad $\mathrm{t}, 1 \mathrm{H}), 7.75(\operatorname{broad} \mathrm{t}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $100 \mathrm{MHz}) 170.90$, 170.77, 170.64, 170.53, 169.38, 168.11, 143.27, 136.89, 129.47, $128.43,126.03,123.05,122.93,102.14,100.34,100.19,72.40,71.99,71.90,68.19$, 61.78, 56.42, 56.15, 52.92, 50.81, 42.31, 41.63, 41.53, 34.64, 23.27, 23.15, 20.70, 20.63, 20.60, 20.56; HRMS (ESI) m / z calculated for $\mathrm{C}_{52} \mathrm{H}_{71} \mathrm{~N}_{16} \mathrm{O}_{24}[\mathrm{M}+\mathrm{H}]^{+}$1303.48216, found 1303.48232.

Compound (24) [OA-1-128]. Under N_{2} using Method A, starting from 11 (50 mg , 0.11 mmol), alkyne 12 ($103 \mathrm{mg}, 0.43 \mathrm{mmol}$), $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(21 \mathrm{mg}, 0.09 \mathrm{mmol})$, and Na-
 ascorbate $(34 \mathrm{mg}, 0.17$ mmol), compound 24 was isolated as a white solid (83 $\mathrm{mg}, 54 \%) . \mathrm{UV}$ (ethanol) $\lambda_{\text {max }}(\varepsilon) 246 \mathrm{~nm}\left(23.9 \mathrm{mM}^{-}\right.$ $\left.{ }^{1} \mathrm{~cm}^{-1}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, 400 MHz) $\delta 3.37$ (broad,

16H), 3.66 (broad, 16H), 3.80 (d, $J=10.9 \mathrm{~Hz}, 4 \mathrm{H}$), 4.02 (s, 16H), 4.36 (s, 4H), 4.60 (s, $4 \mathrm{H}), 5.27(\mathrm{~s}, 8 \mathrm{H}), 5.57(\mathrm{~s}, 2 \mathrm{H}), 7.45-7.60(\mathrm{~m}, 4 \mathrm{H}), 7.79(\mathrm{~s}, 2 \mathrm{H}), 8.23(\mathrm{~s}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 154.52,143.04,143.00,137.22,128.57,126.73,126.53,126.47$,
$123.61,101.72,70.37,61.10,58.56,58.35,51.00,50.11,48.46,42.50,39.28$; HRMS (ESI) m / z calculated for $\mathrm{C}_{54} \mathrm{H}_{79} \mathrm{~N}_{28} \mathrm{O}_{20}[\mathrm{M}+\mathrm{H}]^{+}$1439.60199, found 1439.60359.

Compound (25) [RN-2-152]. Under N_{2} using Method A, starting from 11 (71 mg , $0.15 \mathrm{mmol})$, alkyne $12(173 \mathrm{mg}, 0.68 \mathrm{mmol}), \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(30 \mathrm{mg}, 0.12 \mathrm{mmol})$, and $\mathrm{Na}-$
 ascorbate ($71 \mathrm{mg}, 0.36 \mathrm{mmol}$), compound 24 was isolated as a white solid (103 mg, 46\%). UV (ethanol) $\lambda_{\text {max }}(\varepsilon) 259 \mathrm{~nm}$ (23.8 $\mathrm{mM}^{-1} \mathrm{~cm}^{-1}$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 3.45$ (broad, 16H), 3.65-3.70 (m,
$16 \mathrm{H}), 3.80(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 4 \mathrm{H}), 4.02(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 4 \mathrm{H}), 4.35(\mathrm{~s}, 4 \mathrm{H}), 4.44(\mathrm{dd}, J=6.6$, $2.6 \mathrm{~Hz}, 4 \mathrm{H}), 4.60(\mathrm{~s}, 4 \mathrm{H}), 4.86(\mathrm{td}, J=14.1,2.1 \mathrm{~Hz}, 4 \mathrm{H}), 5.27(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 8 \mathrm{H}), 5.57$ (s, 2H), 6.81 (ddd, $J=14.1,6.6,1.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.45-7.58(\mathrm{~m}, 4 \mathrm{H}), 7.79(\mathrm{~s}, 2 \mathrm{H}), 8.22(\mathrm{~s}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 154.58,148.48,143.12,143.08,137.28,128.67$, 126.81, 126.57, 126.53, 123.67, 101.82, 92.80, 92.75, 70.47, 58.68, 58.46, 50.81, 50.19, 48.51, 42.47, 39.38; HRMS (ESI) m / z calculated for $\mathrm{C}_{58} \mathrm{H}_{79} \mathrm{~N}_{28} \mathrm{O}_{20}[\mathrm{M}+\mathrm{H}]^{+} 1487.60199$, found 1487.60508 .

∞
-

$\stackrel{\circ}{\circ}$
へ̣

Figure S1. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{1 0}$.

Figure S2. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound 11.

Figure S3. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound 12.

13

Figure S4. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound 13.

Figure S5. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound 15.

N
Ǹ
O-

గ్

16
$\underset{\text { Chemical Shift (ppm) }}{ }{ }^{80}{ }^{60}$
Figure S6. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound 16.

-102.25

$90 \quad{ }^{80}{ }_{\text {Chemical Shift (ppm) }}{ }^{60}$

Figure S7. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound 17.

Figure S8. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound 18.

$\begin{array}{cc}\underset{\sim}{N} & \infty \\ \text { N } & \text { O. } \\ \underset{\sim}{1} & 1\end{array}$

Figure S9. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound 19.

Figure S10. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound 20.

Figure S11. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound 21.

Figure S12. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound 22.

Figure S13. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound 23.

$\stackrel{N}{i}$

Figure S14. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound 24.

Figure S15. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound 25.

References:

1) Grassing, C. R.; Bitha, P.; Hlavka, J. J.; Lin, Y. I. Eur. Patent 0231847 A2, 1987.
2) Nandurdikar, R. S.; Maciag, A. E.; Citro, M. L.; Shami, P. J.; Keefer, L. K.; Saavedra, J. E.; Chakrapani, H., Bioorg. Med. Chem. Lett. 2009, 19, 2760-2762.
3) Saavedra, J. E.; Booth, M. N.; Hrabie, J. A.; Davies, K. M.; Keefer, L. K. J. Org. Chem. 1999, 64, 5124-5131.
4) Nandurdikar, R. S.; Maciag, A. E.; Hong, S. Y.; Chakrapani, H.; Citro, M. L.; Keefer, L. K.; Saavedra, J. E., Org. Lett. 2010, 12, 56-59.
