The Multicomponent Reaction of Imidazo[1,5-a]pyridine Carbenes with Aldehydes and Dimethyl Acetylenedicarboxylate or Allenoates: A Straightforward Approach to Fully Substituted Furans

Huan-Rui Pan, Yong-Jia Li, Cai-Xia Yan, Juan Xing, Ying Cheng*

College of Chemistry, Beijing Normal University, Beijing, 100875, China
E-mail: ycheng2@bnu.edu.cn

Table of contents:

2. General procedure for the preparation of 2-aryl (alkyl)imidazo[1,5-a]pyridinium salts 1......S2-S3
3. Copies of NMR spectra of products $\mathbf{5}, \mathbf{6}, \mathbf{8}$ and $\mathbf{9}$

6a

8e

Figure S1. ORTEP drawing of X-ray structures of compounds 6a and 8e.

General procedure for the preparation of 2-aryl (alkyl)imidazo[1,5-a]pyridinium salts 1

At $0^{\circ} \mathrm{C}$, amines $\mathbf{1 8}(0.1 \mathrm{~mol})$ were added to the mixture of picolinaldehyde $\mathbf{1 7}(0.1 \mathrm{~mol})$ and anhydrous $\mathrm{MgSO}_{4}(5 \mathrm{~g})$ in dry diethyl ether $(150 \mathrm{~mL})$. The reaction mixture was stirred at room temperature for 8-12h. After removal of MgSO_{4} and solvent, the imines 19 were obtained as yellow solids. The imines $\mathbf{1 9}$ were reduced by $\mathrm{NaBH}_{4}(0.13 \mathrm{~mol})$ in anhydrous ethanol (200 mL) at room temperature for 24 h . After the evaporation of ethanol, the residue was added slowly to water (100 ml) and the aqueous solution was extracted with chlorform $(100 \times 5 \mathrm{~mL})$. The extraction was dried and removed solvent to give amines $\mathbf{2 0}$ as yellow solids. The amines $\mathbf{2 0}$ were formylated by refluxing in anhydrous formic acid (60 mL) for 8 h . After removal of formic acid under vacuum, the residue was added to water (20 mL) and was neutralized with solid $\mathrm{Na}_{2} \mathrm{CO}_{3}$. The aqueous solution was extracted with chlorform $(100 \times 5 \mathrm{~mL})$, and the combined extraction was dried and evaporated to afforded amides $\mathbf{2 1}$ as white solids. The amides $\mathbf{2 1}$ reacted with $\mathrm{POCl}_{3}(0.13 \mathrm{~mol})$ in refluxing toluene $(60 \mathrm{~mL})$ for 3 days, and then toluene and the excess POCl_{3} were removed under vacuum. The residue was chromatographed on a neutral $\mathrm{Al}_{2} \mathrm{O}_{3}$ column eluting with a mixture of ethanol and acetone (1:4) to give imidazo[1,5-a]pyridinium salts $\mathbf{1}$ in $27-86 \%$ total yields of four steps from picolinaldehyde 17.

2-Phenylimidazo[1,5-a]pyridin-2-ium chloride 1a (Known compound) ${ }^{1}$: 86%, white solids, mp 96-97 ${ }^{\circ} \mathrm{C} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 12.0(\mathrm{~s}, 1 \mathrm{H}), 9.35(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~s}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H})$, $7.64(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.57(\mathrm{~m}, 3 \mathrm{H}), 7.17(\mathrm{dd}, J=9.3,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H})$.

2-(4-Methoxyphenyl)imidazo[1,5-a]pyridin-2-ium chloride 1b (Known compound) ${ }^{1}: 85 \%$, white solids, $\operatorname{mp} 217-218^{\circ} \mathrm{C} ; v_{\max } / \mathrm{cm}^{-1} 3060,1655,1608,1593,1545,1519 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 12.0(\mathrm{~s}, 1 \mathrm{H}), 9.41(\mathrm{~d}$, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~s}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.04-7.10 (m, 3H), 3.88 (s, 3H).

2-(4-Chlorophenyl)imidazo[1,5-a]pyridin-2-ium chloride 1c

[2-(4-Chlorophenyl)imidazo[1,5-a]pyridin-2-ium perchlorate is known ${ }^{2}$]: 69\%, white solids, mp 244-245 ${ }^{\circ} \mathrm{C} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 12.2(\mathrm{~s}, 1 \mathrm{H}), 9.33(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~s}, 1 \mathrm{H}), 7.86(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H})$, $7.66(\mathrm{~d}, \mathrm{~J}=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.11(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H})$.

2-(4-(Trifluoromethyl)phenyl)imidazo[1,5-a]pyridin-2-ium chloride 1d: 27%, white solids, mp $256-257^{\circ} \mathrm{C} ; v_{\max } / \mathrm{cm}^{-1} 3061,1656,1615,1548 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 12.1(\mathrm{~s}, 1 \mathrm{H}), 9.18(\mathrm{~d}, J=7.1 \mathrm{~Hz}$, $1 \mathrm{H}), 8.35(\mathrm{~s}, 1 \mathrm{H}), 8.15(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.88(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{dd}, J$ $=9.4,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{DMSO}_{6}\right) 138.1,130.7,130.5,130.2,129.9$, $129.8,127.52,127,49,127.45,127.41,126.5,125.4,124.9,124.2,123.8,122.2,118.3,112.2$; HRMS (TOF-ESI): $263.0790\left(\mathrm{M}^{+}\right) ; \mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{~N}_{2}{ }^{+}$required 263.0791.

2-Isopropylimidazo[1,5-a]pyridin-2-ium chloride 1e: $46 \%, 38-39^{\circ} \mathrm{C}$; $v_{\max } / \mathrm{cm}^{-1} 3123,1655,1626,1544$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 11.3(\mathrm{~s}, 1 \mathrm{H}), 9.07(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.29(\mathrm{~s}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.18$ (dd, $J=9.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}$), $7.01(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.16$ (quintet, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.76(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H})$. $\delta_{\mathrm{H}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 129.8,125.8,124.5,118.14,118.1,117.1,111.2,54.3,23.3$; HRMS (TOF-ESI): 161.1072 $\left(\mathrm{M}^{+}\right) ; \mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}_{2}^{+}$required 161.1073.

2-Benzylimidazo[1,5-a]pyridin-2-ium chloride $1 \mathbf{e}$ (Known compound) ${ }^{3}$: 75%, white solids, mp $44-45^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 11.4(\mathrm{~s}, 1 \mathrm{H}), 8.94(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=9.2 \mathrm{~Hz}$, 2H), $7.36(\mathrm{~d}, ~ J=2.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.87(\mathrm{~s}, 2 \mathrm{H})$.

2-(4-Methylphenyl)imidazo[1,5-a]pyridin-2-ium chloride 1g

[2-(4-Methylphenyl)imidazo[1,5-a]pyridin-2-ium perchlorate is known ${ }^{2}$]: 81%, white solids, mp 217-218 ${ }^{\circ} \mathrm{C} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 11.9(\mathrm{~s}, 1 \mathrm{H}), 9.40(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~s}, 1 \mathrm{H}), 7.71(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.67(\mathrm{~d}, ~ J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{dd}, J=9.2,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{t}, J=6.9 \mathrm{~Hz}$, $1 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{DMSO}_{6}\right) 140.3,132.6,130.6,129.7,125.7,125.1,124.2,122.3,118.2,118.0,112.0$, 20.6.

1. Chien, C.-H.; Fujita, S.; Yamoto, S.; Hara, T.; Yamagata, T.; Watanabe, M.; Mashima, K. Dalton Trans. 2008, 916-923.
2. (a) Mishra, D.; Naskar, S.; Adhikary, B.; Butcher, R. J.; Chattopadhyay, S. K. Polyhedron 2005, 24, 201-208. (b) Chattopadhyay, S. K.; Mitra, K.; Biswas, S.; Naskar, S.; Mishra, D.; Adhikary, B.; Harrison, R. G.; Cannon, J. F. Transition Met. Chem. 2004, 29, 1-6.
3. Alcarazo, M.; Roseblade, S. J.; Cowley, A. R.; Fernandez, R.; Brown, J. M.; Lassaletta, J. M. J. Am. Chem. Soc. 2005, 127, 3290-3291.

\section*{$\varepsilon 650{ }^{\circ} \varepsilon$

$8 \angle \angle 0^{\circ} \varepsilon$
 $8 \angle L 0^{\circ} \varepsilon$
$\angle \angle 60^{\circ} \varepsilon$
 LL60' ε
$019 \varepsilon^{\prime} \varepsilon$
 LL8E
 S66E ε
 七ย19 ${ }^{\circ}$

$8 i$

