Contribution of Li-ion batteries to the environmental impact of electric vehicles

Dominic A. Notter*, Marcel Gauch, Rolf Widmer, Patrick Wäger, Anna Stamp, Rainer Zah, Hans-

Jörg Althaus

Corresponding author email: dominic.notter@empa.ch; phone: +41 44 823 47 60

Number of pages: 42

Number of figures: 2

Number of tables: 21

Number of schemes: 2

Electric vehicle production and disposal

A typical middle-class passenger car from ecoinvent v2.0, represented by a Golf A4 (petrol, 55kW) is used as a base for the LCI [1]. This dataset originates on data from "Life Cycle Inventory for the Golf A4", a "Volkswagen" report from the year 2000 [2]. All sub-components constituting the ICE drive train were subtracted from the ecoinvent dataset, leaving the LCI of a motor less vehicle glider. Thus, two new LCI datasets for a Glider and an ICE drive train were generated which combined match the Golf A4 (Table S1 to S3). A new LCI dataset for an electric drive train are selected in such a way, that the same maximal permanent power of 55 kW followed from the ICE drive train. The LCI for the entire BEV finally consists of the LCI of the glider, the electric drive train and the Li-ion battery.

Scheme S1. The model of an internal combustion vehicle (ICE Vehicle) and a battery vehicle.

ICE Vehicle	Battery Vehicle
Glider Body and Frame, Axle, Brakes, Wheels, Bumpers, Cockpit, A/C System, Seats, Doors, Lights Entertainment etc.	Glider Body and Frame, Axle, Brakes, Wheels, Bumpers, Cockpit, A/C System, Seats, Doors, Lights Entertainment etc.
DriveTrain Engine, Gearbox, Cooling System, Fuel System, Starting System, Exhaust System, Lubrication etc.	DriveTrain El. Motor, Gearbox, Controller, Charger, Cables, Cooling System etc. Battery Li-lon battery 300 kg

Using the same glider for both the ICEV and the BEV allows a fair comparison between the two cars in terms of space, comfort and top speed (171 km/h (106 mph)). Differences appear in acceleration

(BEV: 85 Nm nominal torque, max. 223 Nm; ICEV: 128 Nm) and in driving autonomy (ICEV approximately 820 km with 50 liter-tank and 6.1 liter per 100 km; BEV maximal 200 km with 34 kWh battery and 17 kWh/100 km).

The dataset for maintenance and disposal of the passenger car in ecoinvent has been used for this ICEV vehicle and the BEV with exception of the lead acid battery replacement in case of the BEV.

The energy consumption of the electric vehicle's operation is estimated based on existing vehicles and theoretical considerations. 14.1 kWh of electric energy is needed per 100 km to propel a golf-class vehicle with an overall efficiency of 80% (including charging losses and recuperation gains) in a standard driving cycle (New European Driving Cycle, NEDC). This energy consumption refers to a combination of the urban (12.8 kWh/100km) and extra-urban (16.8 kWh/100km) energy consumption in a NEDC and is calculated based on mechanical energy considerations and efficiency.

Auxiliary energy consumption for heating accounts for 2 kWh/100km. The energy consumption for heating is calculated assuming that there is a heating demand of four month within a year. In addition, 0.5 kWh/100 km electric energy is needed for air conditioning. The energy consumption for air conditioning is calculated assuming that there is an air conditioning demand of four month within a year. Other electricity consumer (light, windshield wiper, ventilation, radio, navigation) need 0.5 kWh/100km based on the assumption that each of these consumers is utilized during 50% of the time the BEV is in use. Heating, cooling and electronic devices consume altogether 2.9 kWh/100 km. The BEV thus requires in total 17 kWh/100 km.

Reference vehicle

The ICEV consumes 5.2 liters of gasoline per 100 km in the NEDC plus 0.9 litres per 100 km for air conditioning, electronics etc., resulting in a direct emission of 0.14 kg CO_2 per km.

Inventory for the Glider

Table S1. Detailed life cycle inventory for the glider

						ط ال	ctor	пП
						int i le [J	e fa	inti
Phase	Component	Sub1	Sub2	Ecoinvent composition	Unit	Amou	Vast	Amo(kg]
production	Glider	Body&Frame	Chassis and body, shee	t reinforcing steel, at plant	kg	283	1.5	424.5
production	Glider	Body&Frame	Gaskets EPDM	Synthetic rubber, at plant/RER U	kg	10	1	10
production	Glider	Body&Frame	Front screen	Flat glass, uncoated, at plant/RER U	kg	10	1	10
production	Glider	Body&Frame	Zinc coating	Zinc, primary, at regional storage/RER U	kg	6	1	6
production	Glider	Body&Frame	Insulation	glass fibre reinforced plastic, polyester, hand-lamina	kg	6	1	6
production	Glider	Body&Frame	Paint	Alkyd paint, white, 60% in H2O, at plant/RER U	kg	4	1.1	4.4
production	Glider	Body&Frame	Wiper liquid (Glycol/Wat	Ethylene glycol, at plant/RER U	kg	5	1	5
production	Glider	Axle	Front axle steering	steel, low-alloyed, at plant	kg	40	1.25	50
production	Glider	Axle	Rear axle	steel, low-alloyed, at plant	kg	30	1.25	37.5
production	Glider	Breaks	Brake shoes, disks, sup	r steel, low-alloyed, at plant	kġ	25	1.25	31.25
production	Glider	Breaks	Brake pressure hoses	# Polyphenylene sulfide, at plant/GLO U	kg	2	1.1	2.2
production	Glider	Breaks	Brake oil	Lubricating oil, at plant/RER U	kg	2	1	2
production	Glider	Breaks	Brake shoes, supports	Aluminium, production mix, at plant/RER U	kg	2	1.25	2.5
production	Glider	Wheels	Rims	reinforcing steel, at plant	kg	18	1.5	27
production	Glider	Wheels	Tyres	Synthetic rubber, at plant/RER U	kg	30	1	30
production	Glider	Bumper (4 pcs)	Dampers and springs	steel, low-alloyed, at plant	kg	24	1.25	30
production	Glider	Air Conditioning	Compressor	reinforcing steel, at plant	kg	5	1.5	7.5
production	Glider	Air Conditioning	Compressor	Aluminium, production mix, at plant/RER U	kg	1	1.25	1.25
production	Glider	Air Conditioning	Air distribution	polyethylene, HDPE, granulate, at plant	kg	10	1.1	11
production	Glider	Air Conditioning	Adapters	Synthetic rubber, at plant/RER U	kg	1	1	1
production	Glider	Air Conditioning	Refrigerant R134a Tetra	t Refrigerant R134a, at plant/RER U	kg	1	1	1
production	Glider	Cockpit	Cockpit	glass fibre reinforced plastic, polyester, hand-lamina	kg	20	1.1	22
production	Glider	Safety (Belts, Airb	a Belts airbags	reinforcing steel, at plant	kg	10	1.5	15
production	Glider	Safety (Belts, Airb	a Belts airbags	Polyethylene terephthalate, granulate, amorphous,	kg	10	1.1	11
production	Glider	Interior / Linings	Linings	glass fibre reinforced plastic, polyester, hand-lamina	kg	57	1.1	62.7
production	Glider	Interior / Linings	Insulation	glass fibre reinforced plastic, polyester, hand-lamina	kg	10	1.1	11
production	Glider	Seats	Seat structure	reinforcing steel, at plant	kg	30	1.5	45
production	Glider	Seats	Seat covers	Polyethylene terephthalate, granulate, amorphous,	kg	30	1.1	33
production	Glider	Doors	Frames	reinforcing steel, at plant	kg	55	1.5	82.5
production	Glider	Doors	Windows side and rear	Flat glass, uncoated, at plant/RER U	kg	20	1	20
production	Glider	Electrics / Lights	Lights	Light emitting diode, LED, at plant/GLO U	kg	0.1	1	0.1
production	Glider	Electrics / Lights	Cables 3x1.5mm2 65g/r	n Cable, connector for computer, without plugs, at pla	kg	3.25	1	3.25
production	Glider	Electrics / Lights	El. Motors St. 50%	steel, low-alloyed, at plant	kg	10	1.25	12.5
production	Glider	Electrics / Lights	El. Motors Al 30%	Aluminium, production mix, at plant/RER U	kg	6	1.25	7.5
production	Glider	Electrics / Lights	El. Motors Cu 20%	copper, at regional storage	kg	4	1	4
production	Glider	Electronics	Electronics	Printed wiring board, mixed mounted, unspec., sold	kg	2	1	2
production	Glider	Auxiliaries	processing copper	wire drawing, copper	kg			4
production	Glider	Auxiliaries	processing sheet steel	sheet rolling, steel	kg			425
production	Glider	Auxiliaries		Heat, natural gas, at industrial furnace >100kW/RE	MJ	5'476		1639
production	Glider	Auxiliaries		Electricity, medium voltage, production UCTE, at gr	kWh	1'956		1580
production	Glider	Auxiliaries		light fuel oil, burned in industrial furnace 1MW, non-	MJ			47
production	Glider	Auxiliaries		Tap water, at user/RER U	kg			2378
production	Glider	Auxiliaries		transport, lorry >16t	tkm			39
production	Glider	Auxiliaries		Transport, freight, rail/RER U	tkm			391
production	Glider	Auxiliaries		Road vehicle plant/RER/I U	р			2.15E-07
production	Glider	Emissions	emissions to water	COD, Chemical Oxygen Demand	kg			0.142517
production	Glider	Emissions	emissions to water	BOD5, Biological Oxygen Demand	kg			0.019199
production	Glider	Emissions	emissions to water	Phosphate	kg	I		0.000738
production	Glider	Emissions	emissions to air	NMVOC, non-methane volatile organic compounds,	kg			3.54
production	Glider	Emissions	emissions to air	Heat, waste	MJ			5686

Table S2. Detailed life cycle inventory for the ICE drive-train

Phase	Component	Sub1	Sub2	Ecoinvent composition	Unit	Amount in ehicle [kg]	Vaste factor	Nmount in El kg]
production	ICE Drivetrain	Gearbox	Casing (100% sec. AlSi	Aluminium production mix at plant/BEB II	ka	17	1 25	21 25
production	ICE Drivetrain	Gearbox	Input shaft with gears	steel low-alloved at plant	ka	7	1.25	8 75
production		Goarbox	Output shaft with goars	steel, low-alloyed, at plant	kg	,	1.25	10
production	ICE Drivetrain	Gearbox	Differential	steel, low-alloyed, at plant	kg	0	1.20	11.05
production	ICE Drivetrain	Gearbox	Differential	steel, low-alloyed, at plant	кg	9	1.25	11.25
production	ICE Drivetrain	Gearbox	Shift parts	steel, low-alloyed, at plant	кg	1	1.25	1.25
production	ICE Drivetrain	Gearbox	Others	steel, low-alloyed, at plant	kg	8	1.25	10
production	ICE Drivetrain	Gearbox	Clutch	steel, low-alloyed, at plant	kg	5	1.25	6.25
production	ICE Drivetrain	Engine	Crankcase	steel, low-alloyed, at plant	kg	15	1.25	18.75
production	ICE Drivetrain	Engine	Crankcase	Aluminium, production mix, at plant/RER U	kg	15	1.25	18.75
production	ICE Drivetrain	Engine	Crankshaft	steel, low-alloyed, at plant	kg	8	1.25	10
production	ICE Drivetrain	Engine	Flywheel	steel, low-alloyed, at plant	kg	6	1.25	7.5
production	ICE Drivetrain	Engine	Ring gear	steel, low-alloyed, at plant	kg	0.5	1.25	0.625
production	ICE Drivetrain	Engine	Connecting rod (4 pc.)	steel, low-alloyed, at plant	kg	1.5	1.25	1.875
production	ICE Drivetrain	Engine	Cylinder head	Aluminium, production mix, at plant/RER U	ka	8	1.25	10
production	ICF Drivetrain	Engine	Camshaft	steel low-alloved at plant	ka	2	1 25	2.5
production	ICE Drivetrain	Engine	Intake valve (4 pc)	steel low-alloved at plant	ka	0.2	1 25	0.25
production	ICE Drivetrain	Engine	Hydraulic valve lifter (8	r steel low-alloyed, at plant	kg	0.2	1.20	0.20
production	ICE Drivetrain	Engino	Expansion values	steel, low-alloyed, at plant	kg	0.3	1.25	0.075
production	ICE Drivetrain	Engine	Distance (4 non)	Aluminium production mix at plant/DED II	kg	0.2	1.20	0.20
production	ICE Drivetrain	Engine	Pistons (4 pcs)	Aluminium, production mix, at plant/RER U	кg	0.5	1.25	0.625
production	ICE Drivetrain	Engine	Intake Manifold	Aluminium, production mix, at plant/RER U	кg	4	1.25	5
production	ICE Drivetrain	Engine	injection system	steel, low-alloyed, at plant	kg	1	1.25	1.25
production	ICE Drivetrain	Engine	injection system	Aluminium, production mix, at plant/RER U	kg	1	1.25	1.25
production	ICE Drivetrain	Engine	injection system	# Polyphenylene sulfide, at plant/GLO U	kg	2	1.1	2.2
production	ICE Drivetrain	Engine	Air Filter	# Polyphenylene sulfide, at plant/GLO U	kg	5	1.1	5.5
production	ICE Drivetrain	Engine	Others	# Polyphenylene sulfide, at plant/GLO U	kg	10	1.1	11
production	ICE Drivetrain	Engine	Others	Lubricating oil, at plant/RER U	kg	6	1	6
, production	ICE Drivetrain	Cooling System	Water cooler	reinforcing steel, at plant	kg	2	1.5	3
production	ICE Drivetrain	Cooling System	Water cooler	Aluminium, production mix, at plant/RER U	ka	2	1.25	2.5
production	ICE Drivetrain	Cooling System	Water cooler	polvethylene HDPE granulate at plant	ka	1	11	11
production	ICE Drivetrain	Cooling System	Water cooler	Ethylene glycol, at plant/REB II	kg	7	1	7
production	ICE Drivetrain	Cooling System	Ventilator	reinforcing steel at plant	kg	, 1	15	15
production		Cooling System	Ventilator	nolvothylono HDPE granulato at plant	kg		1.5	1.0
production	ICE Drivetrain	Cooling System	Disise	# Delumbarry lang sulfide, at plant	kg	1	1.1	1.1
production	ICE Drivetrain	Cooling System	Piping	# Polyphenylene suilide, at plant/GLO U	кg	4	1.1	4.4
production	ICE Drivetrain	Cooling System	Piping	Synthetic rubber, at plant/RER U	кg	2	1	2
production	ICE Drivetrain	Starting System	Starter motor	steel, low-alloyed, at plant	kg	4	1.25	5
production	ICE Drivetrain	Starting System	Starter motor	Aluminium, production mix, at plant/RER U	kg	1	1.25	1.25
production	ICE Drivetrain	Starting System	Starter motor	copper, at regional storage	kg	1	1	1
production	ICE Drivetrain	Starting System	Alternator	steel, low-alloyed, at plant	kg	4	1.25	5
production	ICE Drivetrain	Starting System	Alternator	Aluminium, production mix, at plant/RER U	kg	1	1.25	1.25
production	ICE Drivetrain	Starting System	Alternator	copper, at regional storage	kg	1	1	1
production	ICE Drivetrain	Starting System	Starter Battery	# Polyphenylene sulfide, at plant/GLO U	kg	4	1.1	4.4
production	ICE Drivetrain	Starting System	Starter Battery	lead, at regional storage	ka	13	1	13
production	ICF Drivetrain	Starting System	Starter Battery	Sulphuric acid liquid at plant/BEB U	ka	1	1	1
production	ICE Drivetrain	Fuel System	Tubes fuel nump fitting	s reinforcing steel at plant	ka	1	15	15
production	ICE Drivetrain	Fuel System	Tank	nolvethylene HDPF granulate at plant	ka	12	11	12.0
production	ICE Drivetrain	Fuel System	Gasoline	Petrol low-sulphur at regional storage/REP !!	ka	42	1.1	10.2
production		Exhaust Sustan	Exhaust Manifold	roinforcing stool at plant	kg ka	42	1 5	42
production	ICE Drivetrain	Exhaust System	Exhaust Dinge Muffler		kg	0	1.5	12
production	ICE Drivetrain	Exhaust System	Exhaust Pipes, Mullier	Preinforcing steel, at plant	кg	10	1.5	24
production	ICE Drivetrain	Exhaust System	Exhaust Pipes, Muttier	Synthetic rubber, at plant/RER U	кg	_	1	
production	ICE Drivetrain	Exhaust System	Catalyzer	steel, low-alloyed, at plant	кg	5	1.5	7.5
production	ICE Drivetrain	Exhaust System	Catalyzer	platinum, at regional storage	kg	0.0016	1	0.0016
production	ICE Drivetrain	Exhaust System	Catalyzer	palladium, at regional storage	kg	0.0003	1	0.0003
production	ICE Drivetrain	Auxiliaries	processing copper	wire drawing, copper	kg			2
production	ICE Drivetrain	Auxiliaries	processing HDPE	Injection moulding/RER U	kg			13
production	ICE Drivetrain	Auxiliaries		Heat, natural gas, at industrial furnace >100kW/RE	MJ	1'933		581
production	ICE Drivetrain	Auxiliaries		Electricity, medium voltage, production UCTE, at gr	kWh	691		560
production	ICE Drivetrain	Auxiliaries		light fuel oil, burned in industrial furnace 1MW. non-	MJ			16
production	ICE Drivetrain	Auxiliaries		Tap water, at user/RER U	ka			842
production	ICE Drivetrain	Auxiliaries		transport, lorry >16t	tkm			14
production	ICE Drivetrain	Auxiliaries		Transport freight rail/BER U	tkm			139
production	ICE Drivetrain	Δuviliaries		Road vehicle plant/RER/LU	n			7 61 E-09
production		Emissions	omioniono to water	COD Chamical Oxygon Domand	P ka			0.050400
production			emissions to water	DOD, Chemical Oxygen Demand	кg			0.050483
production	ICE Drivetrain	⊨missions	emissions to water	BODS, Biological Oxygen Demand	кg			0.006801
production	ICE Drivetrain	Emissions	emissions to water	Phosphate	kg			0.000262
production	ICE Drivetrain	Emissions	emissions to air	NMVOC, non-methane volatile organic compounds,	kg			1.26
production	ICE Drivetrain	Emissions	emissions to air	Heat, waste	MJ			2014

Inventory for the electric drive-train

Table S3. Detailed life cycle inventory for the ICE drive-train

						ر ا	tor	Ш
						e [k	fac	ntir
	0	0	S		11	mou	aste	nou []
Phase	Component	Subi	Sub2		Unit	Ā	3	<u> </u>
production	El drivetrain	el. motor	magnetic circuit sneet s	steel, low-alloyed, at plant	кg	25.00	1.5	37.5
production	El drivetrain		shan	steel, low-alloyed, at plant	кд	2.00	1.25	2.0
production	El drivetrain	el. motor	permanent magnet	remie, al plant	кg	1.15	1.25	1.4375
production	El drivetrain	el motor	permanent magnet	heodymum oxide, at plant	кg	0.42	1.25	0.525
production	El drivetrain	el. motor	permanent magnet	boron carbide, at plant	кg	10.02	1.25	0.025
production	El drivetrain		windings	Copper, at regional storage	кд	10.00	1 05	10
production	El. drivetrain	el. motor	nousing	Aluminium, production mix, at plant/RER U	кд	14.00	1.25	17.5
production	El. drivetrain	el. motor	nousing	# Polypnenylene sulfide, at plant/GLO U	кд	1.10	1.1	1.21
production	El drivetrain	gearbox	differential, transaxie, p	Alveriative and deating min. at a last/DED U	кд	10.00	1.25	12.5
production	El. drivetrain	gearbox	nousing	Aluminium, production mix, at plant/RER U	кд	9.00	1.25	11.25
production	El drivetrain	controller	electronics	Aluminium and duction mixed mounted, unspec., sold	кд	2.00	1 05	2
production	El. drivetrain	controller	nousing	Aluminium, production mix, at plant/RER U	кд	7.00	1.25	8.75
production	El. drivetrain	controller	nousing	# Polypnenylene sulfide, at plant/GLO U	кд	0.50	1.1	0.55
production	El. drivetrain	charger	electronics	Printed wiring board, mixed mounted, unspec., sold	кg	2.00	1	2
production	El. drivetrain	charger	nousing	Aluminium, production mix, at plant/RER U	кg	3.70	1.25	4.625
production	El. drivetrain	cnarger	nousing	# Polyphenylene sulfide, at plant/GLO U	кg	0.50	1.1	0.55
production	El. drivetrain	cables	high power 3x16mm2	cable, three-conductor cable, at plant	kg	3.12	1	3.12
production	El. drivetrain	Cooling System	Water cooler	reinforcing steel, at plant	kg	0.6	1.5	0.9
production	El. drivetrain	Cooling System	Water cooler	Aluminium, production mix, at plant/RER U	kg	0.6	1.25	0.75
production	El. drivetrain	Cooling System	Water cooler	polyethylene, HDPE, granulate, at plant	kg	0.3	1.1	0.33
production	El. drivetrain	Cooling System	Water cooler	Ethylene glycol, at plant/RER U	kg	2.1	1	2.1
production	El. drivetrain	Cooling System	Ventilator	reinforcing steel, at plant	kg	0.3	1.5	0.45
production	El. drivetrain	Cooling System	Ventilator	polyethylene, HDPE, granulate, at plant	kg	0.3	1.1	0.33
production	El. drivetrain	Cooling System	Piping	# Polyphenylene sulfide, at plant/GLO U	kg	1.2	1.1	1.32
production	El. drivetrain	Cooling System	Piping	Synthetic rubber, at plant/RER U	kg	0.6	1	0.6
production	El. drivetrain	Auxiliaries	processing steel	sheet rolling, steel	kg			37.5
production	El. drivetrain	Auxiliaries	processing copper	wire drawing, copper	kg			10
production	El. drivetrain	Auxiliaries		Heat, natural gas, at industrial furnace >100kW/REI	MJ	683		252
production	El. drivetrain	Auxiliaries		Electricity, medium voltage, production UCTE, at gr	kW h	244		243
production	El. drivetrain	Auxiliaries		light fuel oil, burned in industrial furnace 1MW, non-	MJ			7
production	El. drivetrain	Auxiliaries		Tap water, at user/RER U	kg			365
production	El. drivetrain	Auxiliaries		transport, lorry >16t	tkm			6
production	El. drivetrain	Auxiliaries		Transport, freight, rail/RER U	tkm			60
production	El. drivetrain	Auxiliaries		Road vehicle plant/RER/I U	р			3.30E-08
production	El. drivetrain	Emissions	emissions to water	COD, Chemical Oxygen Demand	kg			0.021882
production	El. drivetrain	Emissions	emissions to water	BOD5, Biological Oxygen Demand	kg			0.002948
production	El. drivetrain	Emissions	emissions to water	Phosphate	kg			0.000113
production	El. drivetrain	Emissions	emissions to air	NMVOC, non-methane volatile organic compounds,	kg			0.54
production	El. drivetrain	Emissions	emissions to air	Heat, waste	MJ			873

Scheme S2. Flow Diagram of the production steps from lithium containing brine to the lithium ion battery.

⁽¹⁾ Activating: Charge and discharge cycles of the battery

Table S4. Input-output table for the production of concentrated lithium brine.

		Gener	ral	Flow info	orma	ation		Repr	esent	ation	in ecoinvent					Unc	ertainty
Input		Process Name		Output		Remarks	Cate gory	Sub category	Infra struc ture	Loca tion	Modul name in ecoinvent	Mean value	Unit	Source mean value	Ty pe	StDv 95%	General Comment
Li containing salt from salina Iake	m,	lithium brine : plant: Input				Brine Input: 43.8 kg; Li-content: 0.15 % loss: 2%	resource	in ground			Lithium, 0.15% in brine, in ground	6.70E-02	kg	SEIA-CONAMA (2006)	1	1.13	(2,2,1,3,1,4,4)
diesel fuel	m,	concentrated (6.7 % Li), at					construction processes	machinery	No	GLO	diesel, burned in building machine	1.94E-01	MJ	SEIA-CONAMA (2006)	1	1.13	(2,2,1,3,1,4,11)
	-	concentrated lithium brine (6.7 % Li), at plant: Output	m,	Concentrated lithium brine (6.7 %Li), at plant			chemicals	inorganics	No	GLO	concentrated lithium brine (6.7 % Li), at plant	1.00E+00	kg				

The production of concentrated lithium brine includes inspissations of lithium containing brine by sun energy in the desert of Atacama. The diesel fuel is required for pumping the brine from ground and between different basins as well as for machinery used on the facility [6].

	General Flow information					Repr	esenta	tion	in ecoinvent					Unce infor	rtainty mation
Input		Process Name	Output	Remarks	Cate gory	Sub category	Infra struc ture	Loca tion	Modul name in ecoinvent	Mean value	Uni t	Source mean value	Typ e	StDv 95%	General Comment
concentrated lithium chloride brine	ε				chemicals	inorganics	No	GLO	concentrated lithium brine (6.7 % Li), at plant	9.38E+00	kg	SEIA-CONAMA (2006)	1	1.13	(2,2,1,3,1,4,4)
Quicklime	з				construction materials	additives	No	СН	quicklime, milled, loose, at plant	1.76E-01	kg	SEIA-CONAMA (2006)	1	1.13	(2,2,1,3,1,4,4)
Sulphuric acid	ε				chemicals	inorganics	No	RER	sulphuric acid, liquid, at plant	3.57E-02	kg	SEIA-CONAMA (2006)	1	1.13	(2,2,1,3,1,4,4)
Hydrochloric acid	ε	put			chemicals	inorganics	No	RER	hydrochloric acid, 30% in H2O, at plant	5.71E-02	kg	SEIA-CONAMA (2006)	1	1.13	(2,2,1,3,1,4,4)
Filtering earth	8			Proxy for "filtering earth"	construction materials	additives	No	DE	bentonite, at processing	1.44E-02	kg	SEIA-CONAMA (2006)	1	1.53	(2,2,1,3,4,4,4)
Alcohol	ε	olant		Proxy for 7-12 carbon alcohol	chemicals	organics	No	RER	2-methyl-2-butanol, at plant	1.19E-03	kg	SEIA-CONAMA (2006)	1	1.53	(2,2,1,3,4,4,4)
Soda ash	3	at p			chemicals	inorganics	No	RER	soda, powder, at plant	3.73E+00	kg	SEIA-CONAMA (2006)	1	1.13	(2,2,1,3,1,4,4)
Organic solvent	а	ate,		Proxy for a solvent containing "parafines and aromatic compunds"	chemicals	organics	No	GLO	solvents, organic, unspecified, at plant	4.75E-03	kg	SEIA-CONAMA (2006)	1	1.53	(2,2,1,3,4,4,4)
Sodium hydroxide	8	rbon			chemicals	inorganics	No	RER	sodium hydroxide, 50% in H2O, production mix, at plant	1.88E-04	kg	SEIA-CONAMA (2006)	1	1.13	(2,2,1,3,1,4,4)
Electricity	3	n ca		Proxy for "electricity mix Chile"	electricity	supply mix	No	BR	electricity, medium voltage, at grid	5.60E-04	kWh	SEIA-CONAMA (2006)	1	1.53	(2,2,1,3,4,4,2)
Natural gas	8	ithiur		use heat: natural gas and heat from liquified gas	natural gas	heating systems	No	RER	natural gas, burned in industrial furnace >100kW	6.09E+00	MJ	SEIA-CONAMA (2006)	1	1.13	(2,2,1,3,1,4,1)
Natural gas	ε	<u> </u>		credit: processing of natural gas subtracted, equal to the value of liquified gas	natural gas	fuels	No	RER	natural gas, high pressure, at consumer	-2.00E+00	MJ	SEIA-CONAMA (2006)	1	1.13	(2,2,1,3,1,4,1)
liquified natural gas	ε			The plant uses liq. gas. Liq. gas is not available as "heat" or "burned" . Thus we balanced more heat from natural gas and made a credit for preparation of natural gas, highg pressure.	natural gas	production	No	JP	natural gas, liquefied, at freight ship	9.53E-05	Nm3	SEIA-CONAMA (2006)	1	1.53	(2,2,1,3,4,4,11)

Table S5. Input-output table for the production of lithium carbonate (Li_2CO_3).

diesel oil	8					construction processes	machinery	No	GLO	diesel, burned in building machine	2.84E-01	MJ	SEIA-CONAMA (2006)	1	1.13	(2,2,1,3,1,4,11)
Transport lorry 16-32t	3				according to ecoinvent standars transport distance for inorganic chemicals and metals (Europe)	transport systems	road	No	RER	transport, lorry 16- 32t, EURO3	2.59E+00	tkm	SEIA-CONAMA (2006)	1	2.25	(5,2,1,3,1,4,5)
Transport lorry 7.5-16t	8				according to ecoinvent standars transport distance for inorganic chemicals and metals (Europe)	transport systems	road	No	RER	transport, lorry 7.5- 16t, EURO3	2.40E-03	tkm	SEIA-CONAMA (2006)	1	2.25	(5,2,1,3,1,4,5)
Infrastructure, chemical plant	8				ecoinvent standard dataset	chemicals	organics	Yes	RER	chemical plant, organics	4.00E-10	unit	ecoinvent standard dataset	1	3.24	(5,2,1,3,1,4,9)
	_	at plant:	3	hazardous waste, underground deposit		waste management	underground deposit	No	DE	disposal, hazardous waste, 0% water, to underground deposit	2.05E-04	kg	SEIA-CONAMA (2006)	1	1.13	(2,2,1,3,1,4,6)
		bonate, Output	8	non - hazardous waste, residual material landfill		waste management	residual material landfill	No	СН	disposal, decarbonising waste, 30% water, to residual material landfill	6.41E+00	kg	SEIA-CONAMA (2006)	1	1.13	(2,2,1,3,1,4,6)
		ium car	8	Waste heat to air		air	unspecified			Heat, waste	2.02E-03	μ	calculated from eletricity input	1	1.24	(4,2,1,3,1,4,13)
		lithi	ε	Lithium carbonate, at plant		chemicals	inorganics	No	GLO	lithium carbonate, at plant	1.00E+00	kg				

The concentrated lithium brine is further treated with additives. After removal of boron and a purification step, soda is added for carbonation. As a result, Li₂CO₃ precipitates. The salt is then filtered, washed and dried. After this purification step, Li₂CO₃ reaches a purity of 99% or higher [7].

There bot input there for the production of mangaments of the 203	Table S	6. Input-output	table for the p	roduction of	manganese oxi	de (Mn_2O_3)
---	---------	-----------------	-----------------	--------------	---------------	----------------

		Genera	al F	low informa	tic	on		Repre	esenta	tion	in ecoinvent					Unce infor	rtainty mation
Input		Process Name		Output		Remarks	Cate gory	Sub category	Infra struc ture	Loca tion	Modul name in ecoinvent	Mean value	Uni t	Source mean value	Typ e	StDv 95%	General Comment
Manganese carbonate	а	rt				basic material, no specific quality demand (Kajiya (2005)	metals	extraction	No	GLO	manganese concentrate, at beneficiation	1.71E+00	kg	stoichiometrical calculation according to Kajiya (2005)	1	1.58	(2,4,1,3,4,5,12)
Nitrogen	3	t: Inp				liquid, for inert atmosphere	chemicals	inorganics	No	RER	nitrogen, liquid, at plant	2.56E+00	kg	Kajiya (2005)	1	1.24	(1,4,1,3,1,5,4)
Oxygen	8	at plan				liquid, for oxidizing atmosphere	chemicals	inorganics	No	RER	oxygen, liquid, at plant	5.37E-01	kg	Kajiya (2005)	1	1.24	(1,4,1,3,1,5,4)
Electricity	а	203), 2				mechanical drive of the rotary kiln	electricity	supply mix	No	CN	electricity, medium voltage, at grid	5.00E-03	kWh	Estimation M. Gauch, R. Widmer	1	1.48	(4,5,3,5,3,5,2)
Process heat	8	de (Mn2				Heat	natural gas	heating systems	No	RER	heat, natural gas, at industrial furnace >100kW	4.13E+00	MJ	calculated according to stoichiometry including enthalpy of reaction	1	1.40	(4,4,1,3,3,5,1)
Transport lorry	ε	se oxi				according to ecoinvent standars transport distance for inorganic chemicals and metals (Europe)	transport systems	road	No	RER	transport, lorry >16t, fleet average	4.81E-01	tkm	ecoinvent standard distances	1	3.20	(5,5,5,2,5,5,5)
Transport train	8	angane				according to ecoinvent standars transport distance for inorganic chemicals and metals (Europe)	transport systems	train	No	RER	transport, freight, rail	2.20E+00	tkm	ecoinvent standard distances	1	3.20	(5,5,5,2,5,5,5)
Infrastructure, chemical plant	8	Ĕ				ecoinvent standard dataset	chemicals	organics	Yes	RER	chemical plant, organics	4.00E-10	unit	ecoinvent standard dataset	1	3.36	(5,5,2,3,3,5,9)
	1	oxide at :put	ε	manganese carbonate		85 % manganese conversion from MnCO3 to Mn2O3, 15% loss	waste management	inert material landfill	No	СН	disposal, inert waste, 5% water, to inert material landfill	2.57E-01	kg	Kajiya (2005)	1	1.33	(2,4,1,1,3,5,6)
		anese 1203), it: Out	ε	waste heat to air			air	unspecified			Heat, waste	1.80E-02	MJ	calculated from eletricity input	1	1.32	(4,4,1,3,1,5,13)
		mang; (Mr plan	ε	C02		amount of CO2 that results from the stoichiometry	air	unspecified			Carbon dioxide, fossil	2.79E-01	kg	stoichiometrical calculation according to Kajiya (2005)	1	1.32	(4,4,1,3,1,5,14)

3	Equal amount of CO as CO2 (stoichiometry), conversion of CO to CO2,	Assumption: CO (stoichiometry) is redirected to the rotary kiln and oxidised to CO2	air	unspecified			Carbon dioxide, fossil	2.79E-01	kg	calculated, conversion of CO to CO2	1	1.32	(4,4,1,3,1,5,14)
3	со	Assumption: CO to the atmosphere is equal to the CO after thermal post- combustion (<20mgC/Nm3)	air	unspecified			Carbon monoxide, fossil	4.67E-05	kg	stoichiometrical calculation according to Kajiya (2005)	1	5.38	(4,4,1,3,4,5,17)
ε	Mn2O3		chemicals	inorganics	No	CN	manganese oxide (Mn2O3), at plant	1.00E+00	kg				

 Mn_2O_3 is produced by a two stage roasting whereby manganese carbonate is roasted in an atmosphere low in oxygen content, followed by roasting in an atmosphere high in oxygen content [8]. According to Kajiya [8], the process does not require any specific quality to the basic raw material (manganese carbonate). Applying this process, Mn_2O_3 reaches battery grade quality. Thermal heat input is calculated from specific heat energy (heating up to 500°C) of manganese carbonate, nitrogen and oxygen and the reaction of enthalpy (stoichiometrical consideration) from the conversion of manganese carbonate to manganese oxide [9]. We assumed thermal post combustion for the carbon monoxide (CO- emission < 20 ppm). The conversion factor for manganese carbonate is 85%.

	General Flow information					Repro	esenta	tion i	in ecoinvent					Unce infor	rtainty mation
Input		Process Name	Output	Remarks	Cate gory	Sub category	Infra struc ture	Loca tion	Modul name in ecoinvent	Mean value	Uni t	Source mean value	Typ e	StDv 95%	General Comment
Manganese oxide	a			manganese component	chemicals	inorganics	No	CN	manganese oxide (Mn2O3), at plant	9.18E-01	kg	stoichiometrical calculation according to Heil (2003)	1	1.25	(2,4,2,3,1,5,4)
Lithium carbonate	8	ut		lithium component	chemicals	inorganics	No	GLO	lithium carbonate, at plant	2.15E-01	kg	stoichiometrical calculation according to Heil (2003)	1	1.25	(2,4,2,3,1,5,12)
Oxygen	ε	t: Inp		liquid, for oxidising atmosphere	chemicals	inorganics	No	RER	oxygen, liquid, at plant	7.15E-01	kg	according to Heil (2003)	1	1.24	(1,4,2,3,1,5,4)
Nitrogen	ε	plan		liquid, for inert atmosphere	chemicals	inorganics	No	RER	nitrogen, liquid, at plant	7.86E-01	kg	according to Heil (2003)	1	1.24	(1,4,2,3,1,5,4)
Water	ε	de, at		for suspension: 3 parts water, 1 part Mn2O3 and Li2CO3 powder	water supply	production	No	СН	water, deionised, at plant	3.40E+00	kg	according to Heil (2003)	1	1.25	(2,4,2,3,1,5,4)
Electricity	8	e oxic		mechanical drive of the rotary kiln	electricity	supply mix	No	CN	electricity, medium voltage, at grid	5.00E-03	kWh	Estimation M. Gauch, R. Widmer	1	1.48	(4,5,3,5,3,5,2)
Process heat	ε	ıganes		furnace for rotary kiln	natural gas	heating systems	No	RER	heat, natural gas, at industrial furnace >100kW	1.53E+01	MJ	calculated according to stoichiometry including enthalpy of reaction	1	1.33	(4,4,2,3,1,5,1)
Transport lorry	ε	um mar		according to ecoinvent standars transport distance for inorganic chemicals and metals (Europe)	transport systems	road	No	RER	transport, lorry >16t, fleet average	5.64E-01	tkm	ecoinvent standard distances	1	3.20	(5,5,5,2,5,5,5)
Transport train	ε	lithi		according to ecoinvent standars transport distance for inorganic chemicals and metals (Europe)	transport systems	train	No	RER	transport, freight, rail	3.23E+00	tkm	ecoinvent standard distances	1	3.20	(5,5,5,2,5,5,5)
Infrastructure, chemical plant	ε			ecoinvent standard dataset	chemicals	organics	Yes	RER	chemical plant, organics	4.00E-10	unit	ecoinvent standard dataset	1	3.36	(5,5,2,3,3,5,9)

Table S7. Input-output table for the production of lithium manganese oxide $(LiMn_2O_4)$.

, at		3	Manganese oxide	95 % manganese conversion, 5% loss according to ecoinvent guidelines	waste management	inert material landfill	No	сн	disposal, inert waste, 5% water, to inert material landfill	4.59E-02	kg	5% loss, according to ecoinvent assumption for missing information	1	1.25	(2,4,2,3,1,5,6)
oxide	ut	8	Lithium carbonate	95 % manganese conversion, 5% loss according to ecoinvent guidelines	waste management	inert material landfill	No	СН	disposal, inert waste, 5% water, to inert material landfill	1.07E-02	kg	5% loss, according to ecoinvent assumption for missing information	1	1.25	(2,4,2,3,1,5,6)
lese	Jutp	8	Waste heat to air		air	unspecified			Heat, waste	1.80E-02	MJ	calculated from eletricity input	1	1.33	(4,4,2,3,1,5,13)
angar	ant: (3	Waste water to air	evaporated water	air	high population density			Water	3.40E+00	kg	Heil (2003)	1	1.33	(4,4,2,3,1,5,4)
nium ma plai	8	CO2	amount of CO2 that results from the stoichiometry	air	unspecified			Carbon dioxide, fossil	1.28E-01	kg	stoichiometrical calculation according to Heil (2003)	1	1.33	(4,4,2,3,1,5,14)	
lith		3	Lithium manganese oxide		chemicals	inorganics	No	GLO	lithium manganese oxide, at plant	1.00E+00	kg				

The production of LiMn₂O₄ contains several roasting stages of Li₂CO₃ and Mn₂O₃ in a rotary kiln [10]. During the different stages, the atmosphere in the rotary kiln changes from inert (addition of N₂) to oxidizing (addition of O₂) condition. The powder is then suspended with water followed by spray drying (evaporation of the water). Thermal heat input is calculated from specific heat energy (heating up to 750°C) of Li₂CO₃, Mn₂O₃, N₂ and O₂ and the reaction of enthalpy (stoichiometrical consideration) from the conversion Li₂CO₃ and Mn₂O₃ [9] to LiMn₂O₄ [11]. CO₂ emissions are calculated considering stoichiometrical considerations.

		Genera	al Fl	low inform	nati	ion		Repr	resent	ation	in ecoinvent					Unce infor	rtainty mation
Input		Process Name		Output		Remarks	Cate gory	Sub category	Infra struc ture	Loca tion	Modul name in ecoinvent	Mean value	Uni t	Source mean value	Typ e	StDv 95%	General Comment
Phosphorus trichloride	a					calculated conversion: 93.9%	chemicals	inorganics	No	RER	phosphorous chloride, at plant	7.03E-01	kg	stoichiometrical calculation according to Münster (1981)	1	1.58	(2,4,5,3,1,5,4)
Chlorine	3	it: Input				calculated conversion: 93.9%	chemicals	inorganics	No	RER	chlorine, liquid, production mix, at plant	3.63E-01	kg	stoichiometrical calculation according to Münster (1981)	1	1.58	(2,4,5,3,1,5,4)
Electricity	3	at plan				mechanical drive for stirring and pumping	electricity	supply mix	No	CN	electricity, medium voltage, at grid	2.00E-03	kWh	Estimation M. Gauch, R. Widmer	1	1.48	(4,5,3,5,3,5,2)
Process heat	8	ntachloride,				furnace of the reactor	natural gas	heating systems	No	RER	heat, natural gas, at industrial furnace >100kW	8.67E-02	WJ	calculated according to stoichiometry, specific heat and enthalpy of reaction according to Münster (1981)	1	1.64	(4,4,5,3,1,5,1)
Transport lorry	ε	ous per				according to ecoinvent standars transport distance for inorganic chemicals and metals (Europe)	transport systems	road	No	RER	transport, lorry >16t, fleet average	1.07E-01	tkm	ecoinvent standard distances	1	3.20	(5,5,5,2,5,5,5)
Transport train	а	ohosphoi				according to ecoinvent standars transport distance for inorganic chemicals and metals (Europe)	transport systems	train	No	RER	transport, freight, rail	4.58E-01	tkm	ecoinvent standard distances	1	3.20	(5,5,5,2,5,5,5)
Infrastructure, chemical plant	8	1			_	ecoinvent standard dataset	chemicals	organics	Yes	RER	chemical plant, organics	4.00E-10	unit	ecoinvent standard dataset	1	3.36	(5,5,2,3,3,5,9)
		plant:	ε	Phosphorus trichloride		Conversion: 93.8%	air	high population density			Phosphorus trichloride	4.32E-02	kg	Münster (1981)	1	2.29	(2,4,5,3,1,5,23)
		orous e, at p ut	3	Chlorine		Conversion: 93.8%	air	high population density			Chlorine	2.23E-02	kg	Münster (1981)	1	1.58	(2,4,5,3,1,5,24)
		phospho chloride Outp	З	Waste heat to air			air	unspecified			Heat, waste	7.20E-03	MJ	calculated from eletricity input	1	1.64	(4,4,5,3,1,5,13)
		penta	ε	Phosphorus pentachloride			chemicals	inorganics	No	CN	phosphorous pentachloride, at plant	1.00E+00	kg				

Table S8. Input-output table for the production of phosphorous pentachloride (PCl₅).

 PCl_5 is manufactured from chlorine and phosphorus trichloride in the presence of molten PCl_5 [12]. The process can be carried out such that the reaction product flows out from the reactor continuously as a melt. Thermal heat input is calculated from specific heat energy (heating up to $180^{\circ}C$) for phosphorus chloride and chlorine [9]. The conversion factor is 93.8%.

Table S9	Input-output	table for the	production	of lithium	fluoride	(LiF).
----------	--------------	---------------	------------	------------	----------	--------

	General Flow information					Repre	esenta	ition i	in ecoinvent					Unce infor	rtainty mation
Input		Process Name	Output	Remarks	Cate gory	Sub category	Infra struc ture	Loca tion	Modul name in ecoinvent	Mean value	Uni t	Source mean value	Typ e	StDv 95%	General Comment
lithium carbonate	ε			40% hydrogen fluoride in 60% water	chemicals	inorganics	No	GLO	lithium carbonate, at plant	1.49E+00	kg	stoichiometrical calculation according to Friedrich (1999)	1	1.25	(2,4,2,3,1,5,4)
hydrogen fluoride	8	Ŀ		40% hydrogen fluoride in 60% water	chemicals	inorganics	No	GLO	hydrogen fluoride, at plant	8.06E-01	Kg	stoichiometrical calculation according to Friedrich (1999)	1	1.25	(2,4,2,3,1,5,4)
Ammoniac	ε	nt: Inpu		Assumption Gregor Wernet: 5% of protons have to be neutralised with NH3	chemicals	inorganics	No	RER	ammonia, liquid, at regional storehouse	3.28E-02	kg	Interview with G. Wernet, J. Sutter, ETH Zürich	1	1.33	(4,4,2,3,1,5,4)
water	ε	at pla		1.) 60% water in 40%hydrogen fluoride,2.)1 liter from washing LiF	water supply	production	No	СН	water, deionised, at plant	2.21E+00	kg	Friedrich (1999)	1	1.25	(2,4,2,3,1,5,4)
Process heat	8	ride, ä		Assumption: water content of LiF according to Hansen (1985)	natural gas	heating systems	No	RER	heat, natural gas, at industrial furnace >100kW	1.21E+00	MJ	Hansen (1985)	1	1.33	(4,4,2,3,1,5,1)
Transport lorry	8	:hium fluo		according to ecoinvent standars transport distance for inorganic chemicals and metals (Europe)	transport systems	road	No	RER	transport, lorry >16t, fleet average	2.33E-01	tkm	ecoinvent standard distances	1	3.20	(5,5,5,2,5,5,5)
Transport train	3	[it		according to ecoinvent standars transport distance for inorganic chemicals and metals (Europe)	transport systems	train	No	RER	transport, freight, rail	1.40E+00	tkm	ecoinvent standard distances	1	3.20	(5,5,5,2,5,5,5)
Infrastructure, chemical plant	ε			ecoinvent standard dataset	chemicals	organics	Yes	RER	chemical plant, organics	4.00E-10	unit	ecoinvent standard dataset	1	3.36	(5,5,2,3,3,5,9)
		de , at	ε wastewater	water from HF solution	waste management	wastewater treatment	No	СН	treatment, sewage, to wastewater	2.21E-03	m3	Friedrich (1999)	1	1.33	(4,4,2,3,1,5,6)

							treatment, class 1						
8	wastewater	from chemical reaction	waste management	wastewater treatment	No	СН	treatment, sewage, to wastewater treatment, class 1	3.63E-04	m3	stoichiometrical calculation according to Friedrich (1999)	1	1.33	(4,4,2,3,1,5,6)
8	water	from washing the LiF, Assumption: 1 Liter water to wash 1 kg LIF	waste management	wastewater treatment	No	СН	treatment, sewage, to wastewater treatment, class 1	1.00E-03	m3	Friedrich (1999)	1	1.58	(5,4,2,3,1,5,6)
8	lithium carbonate	Li2CO3, 4.5% of input						6.70E-02	kg	Friedrich (1999)	1	1.25	(2,4,2,3,1,5,6)
8	hydrogen fluoride	HF, 4.5% of input	air	high population density			Hydrogen fluoride	3.63E-02	kg	Friedrich (1999)	1	1.25	(2,4,2,3,1,5,6)
8	Ammonium ion	mass calculated, based on 5% NH3 input	water	unspecified			Ammonium, ion	3.47E-02	kg	Friedrich (1999)	1	1.58	(2,4,2,3,1,5,33)
8	carbon dioxide	from chemical reaction	air	unspecified			Carbon dioxide, fossil	8.86E-01	kg	stoichiometrical calculation according to Friedrich (1999)	1	1.33	(4,4,2,3,1,5,24)
3	lithium fluoride		chemicals	inorganics	No	CN	lithium fluoride, at plant	1.00E+00	kg				

 Li_2CO_3 reacts with hydrogen fluoride at room temperature to LiF. The filtrate is titrated (pH 7.5) with ammoniac, washed with water and dried. The conversion factor regarding Lithium is 95.5% [13].

Table S10. Input-or	utput table for the	production of Lit	thium hexafluoroph	osphate (LiPF ₆).
---------------------	---------------------	-------------------	--------------------	-------------------------------

		Gener	ral I	Flow information	'n		Repr	esent	ation	in ecoinvent					Unce infori	rtainty mation
Input		Process Name		Output	Remarks	Cate gory	Sub category	Infra struc ture	Loca tion	Modul name in ecoinvent	Mean value	Uni t	Source mean value	Typ e	StDv 95%	General Comment
Lithium fluoride	ε				86.7% conversion of lithium	chemicals	inorganics	No	CN	lithium fluoride, at plant	1.97E-01	kg	stoichiometrical calculation according to Belt (1998)	1	1.27	(2,4,3,3,1,5,4)
Phosphorous pentachloride	ε				86.7% conversion of phosphorous chlorid, 25% overspill in relation to LiF	chemicals	inorganics	No	CN	phosphorous pentachloride, at plant	1.98E+00	kg	stoichiometrical calculation according to Belt (1998)	1	1.27	(2,4,3,3,1,5,4)
Hydrogen fluoride	ε	Input			Overspill: 532%	chemicals	inorganics	No	GLO	hydrogen fluoride, at plant	4.04E+00	kg	stoichiometrical calculation according to Belt (1998)	1	1.27	(2,4,3,3,1,5,4)
Nitrogen	ε	plant:			Inert atmosphere	chemicals	inorganics	No	RER	nitrogen, liquid, at plant	1.25E-03	kg	Assumption from G. Wernet, J. Sutter	1	1.33	(4,4,2,3,1,5,4)
Ca(OH)2	ε	ıte, at			Neutralisation and disposal of HF	construction materials	binder	No	СН	lime, hydrated, packed, at plant	7.44E+00	kg	Assumption from G. Wernet, J. Sutter, ETH	1	2.39	(4,5,5,5,5,5,4)
Electricity	8	phospha			Assumption:heat pump with coefficient of performance =1.5	electricity	supply mix	No	CN	electricity, medium voltage, at grid	5.39E-01	kWh	Calculation of cooling (including enthalpy of reaction) according to Belt (1985)	1	1.27	(2,4,3,3,1,5,2)
Electricity	ε	afluore			for pumps, stirring, milling of LiPF6, etc.	electricity	supply mix	No	CN	electricity, medium voltage, at grid	2.00E-03	kWh	Estimation M. Gauch, R. Widmer	1	1.48	(4,5,3,5,3,5,2)
Transport lorry	8	um hex;			according to ecoinvent standars transport distance for inorganic chemicals and metals (Europe)	transport systems	road	No	RER	transport, lorry >16t, fleet average	1.37E+00	tkm	ecoinvent standard distances	1	3.20	(5,5,5,2,5,5,5)
Transport train	8	lithi			according to ecoinvent standars transport distance for inorganic chemicals and metals (Europe)	transport systems	train	No	RER	transport, freight, rail	8.19E+00	tkm	ecoinvent standard distances	1	3.20	(5,5,5,2,5,5,5)
Infrastructure, chemical plant	8				ecoinvent standard dataset	chemicals	organics	Yes	RER	chemical plant, organics	4.00E-10	unit	ecoinvent standard dataset	1	3.36	(5,5,2,3,3,5,9)

, at	8	disposal of KF and KCL	disposal of salts from neutralisation process, proxy	waste management	inert material landfill	No	СН	disposal, limestone residue, 5% water, to inert material landfill	8.61E+00	kg	calculated	1	2.12	(4,4,3,3,5,5,6)
phate	3	wastewater	water from reaction for neutralisation of HF and HCl	waste management	wastewater treatment	No	СН	treatment, sewage, to wastewater treatment, class 1	3.61E-03	m3	calculated	1	2.12	(4,4,3,3,5,5,6)
ophos utput	8	LiF	LiF to recycling						2.62E-02	kg	stoichiometrical calculation according to Belt (1998)	2	1.56	
afluor ant: C	8	Phosphorous trichliride	PCl3 13.3% of input, proxy for PCl5	air	high population density			Phosphorus trichloride	2.63E-01	kg	Belt (1998)	1	1.60	(2,4,3,3,1,5,31)
ium hexa pla	8	waste heat to air	heat pump and laboratory apparatus	air	unspecified			Heat, waste	1.95E+00	M	calculated from electricity input	1	1.34	(4,4,3,3,1,5,13)
lith	3	Lithium hexafluororphosphate		chemicals	inorganics	No	CN	lithium hexafluorophosphate, at plant	1.00E+00	kg				

The production of LiPF₆ requires a reaction of PCl₅, LiF and hydrogen fluoride (HF), wherein PCl₅ and LiF are combined, cooled (to -78° C) and the HF is added in excess for complete chlorine-fluorine exchange in the PCl₅. Electric energy input is calculated for a heat pump with an assumed coefficient of performance of 1.5 [14]. The reaction in the autoclave occurs in an inert nitrogen atmosphere. The conversion factor regarding LiF is 87% [15].

		General	l Fl	ow inforn	nat	ion		Repre	esenta	tion	in ecoinvent					Unce infor	rtainty mation
Input		Process Name		Output		Remarks	Cate gory	Sub category	Infra struc ture	Loca tion	Modul name in ecoinvent	Mean value	Uni t	Source mean value	Typ e	StDv 95%	General Comment
Ethylene oxide	3					99.95% conversion of ethylene oxide to ethylene carbonate	chemicals	organics	No	RER	ethylene oxide, at plant	5.01E-01	kg	stoichiometrical calculation according to Birnbach (2003)	1	1.25	(2,4,2,3,1,5,3)
Carbon dioxide	ε	: Input				1% CO2 excess	chemicals	inorganics	No	RER	carbon dioxide liquid, at plant	5.05E-01	kg	stoichiometrical calculation according to Birnbach (2003)	1	1.25	(2,4,2,3,1,5,4)
Infrastructure: chemical plant	8	plant				Ecoinvent standard dataset	chemicals	organics	Yes	RER	chemical plant, organics	4.00E-10	unit	ecoinvent standard dataset	1	3.36	(5,5,2,3,3,5,9)
Electricity	3	ate, at				mechanical drive of labor mixer and pumps	electricity	supply mix	No	CN	electricity, medium voltage, at grid	2.00E-03	kWh	Estimation M. Gauch, R. Widmer	1	1.48	(4,5,3,5,3,5,2)
Process heat	3	ie carbona				furnace of the reactor	natural gas	heating systems	No	RER	heat, natural gas, at industrial furnace >100kW	1.43E-01	ſŴ	calculated according to stoichiometry, specific heat and enthalpy of reaction according to Birnbach (2003)	1	1.33	(4,4,2,3,1,5,1)
Transport lorry	3	thyler				according to ecoinvent standars transport distance for inorganic chemicals and metals (Europe)	transport systems	road	No	RER	transport, lorry >16t, fleet average	1.01E-01	tkm	ecoinvent standard distances	1	3.20	(5,5,5,2,5,5,5)
Transport train	3	Ψ				according to ecoinvent standars transport distance for inorganic chemicals and metals (Europe)	transport systems	train	No	RER	transport, freight, rail	3.51E-01	tkm	ecoinvent standard distances	1	3.20	(5,5,5,2,5,5,5)
	-	onate, tput	8	catalyst		according to ecoinvent ethylenoxide production (0.5 kg / 1000 kg product)	waste management	residual material landfill	No	СН	disposal, catalyst base Eth.oxide prod., 0% water, to residual material landfill	5.00E-03	kg	according to ecoinvent ethylenoxide production (0.5 kg / 1000 kg product)	1	1.33	(2,4,2,3,3,5,6)
		arbo Out	а	ethylene oxide		loss: 0.05%	air	unspecified			Ethylene oxide	2.50E-04	kg	Birnbach (2003)	1	2.07	(2,4,2,3,1,5,23)
		lene ca plant:	8	carbon dioxide		loss: 0.05% from conversion, 1% excess	air	unspecified			Carbon dioxide, fossil	5.30E-03	kg	Birnbach (2003)	1	1.25	(2,4,2,3,1,5,24)
		ethyl at	8	Waste heat to air			air	unspecified			Heat, waste	7.20E-03	MJ	calculated from eletricity input	1	1.33	(4,4,2,3,1,5,13)

Table S11. Input-output table for the production of ethylene carbonate $(C_3H_4O_3)$.

6 Ethylene carbonate chemicals organics No CN ethylene carbonate, at plant 1.00E+00 kg
--

Ethylene oxide and CO_2 react with the aid of a catalyst under adiabatic conditions to $C_3H_4O_3$. Thermal heat input is calculated from specific heat energy (heating up to 126°C) for ethylene oxide and CO_2 [9]. The conversion factor regarding ethylene oxide is 99.95% [16].

		Genera	l Flow informa	ation		Repr	esenta	ation	in ecoinvent					Unce infor	rtainty mation
Input		Process Name	Output	Remarks	Cate gory	Sub category	Infra struc ture	Loca tion	Modul name in ecoinvent	Mean value	Uni t	Source mean value	Typ e	StDv 95%	General Comment
	г				1	1	1		[Faciny ant dataset			[
water	ε				resource	in water			Water, well, in ground	2.93E-05	m3	"graphite, at plant*	1	1.33	(2,4,1,3,3,5,4)
graphite containing rock	ε				resource	in ground			Metamorphous rock, graphite containing, in ground	1.05E+00	kg	Ecoinvent dataset "graphite, at plant*	1	1.33	(2,4,1,3,3,5,4)
Land use	ε				resource	land			Occupation, mineral extraction site	8.48E-05	m2a	Ecoinvent dataset "graphite, at plant*	1	1.33	(2,4,1,3,3,5,4)
Land transformation	8	nput			resource	land			Transformation, to mineral extraction site	6.52E-06	m2	Ecoinvent dataset "graphite, at plant*	1	1.33	(2,4,1,3,3,5,4)
Land transformation	8	nt:			resource	land			Transformation, from forest	6.52E-06	m2	Ecoinvent dataset "graphite, at plant*	1	1.16	(1,4,1,3,1,4,4)
Recultivation, limestone mine	8	t pla			construction materials	additives	No	СН	recultivation, limestone mine	6.52E-06	m2	Ecoinvent dataset "graphite, at plant*	1	1.16	(1,4,1,3,1,4,4)
Mine, limestone	ε	e, ai			construction materials	additives	Yes	СН	mine, limestone	5.25E-11	unit	Ecoinvent dataset "graphite, at plant*	1	1.32	(4,4,1,3,1,5,4)
Blasting	ε	grad			construction processes	civil engineering	No	RER	blasting	7.73E-05	kg	Ecoinvent dataset "graphite, at plant*	1	2.11	(4,4,1,3,1,5,5)
Heat	8	tery			oil	heating systems	No	RER	heat, light fuel oil, at industrial furnace 1MW	8.98E-02	MJ	Ecoinvent dataset "graphite, at plant*	1	3.36	(5,5,2,3,3,5,9)
Light fuel oil	8	bati			oil	heating systems	No	СН	light fuel oil, burned in boiler 100kW, non-modulating	3.59E-03	MJ	Ecoinvent dataset "graphite, at plant*	1	1.48	(4,5,3,5,3,5,2)
Diesel	ε	nite,			construction processes	machinery	No	GLO	diesel, burned in building machine	1.80E-02	M	Ecoinvent dataset "graphite, at plant*	1	1.32	(4,4,1,3,1,5,1)
Industrial machine	ε	graph			construction processes	machinery	Yes	RER	industrial machine, heavy, unspecified, at plant	2.31E-04	kg	Ecoinvent dataset "graphite, at plant*	1	3.20	(5,5,5,2,5,5,5)
Conveyer belt	ε	0.7			construction processes	machinery	Yes	RER	conveyor belt, at plant	2.78E-08	m	Ecoinvent dataset "graphite, at plant*	1	3.20	(5,5,5,2,5,5,5)
Electricity					electricity	supply mix	No	CN	electricity, medium voltage, at grid	1.03E+00	kWh	calculated according to www.timcal.com and Ecoinvent dataset "graphite, at plant*	1	1.53	(2,2,1,3,4,4,2)

Table S12. Input-output table for the production of battery grade graphite

This dataset is based on the ecoinvent dataset "graphite, at plant". Battery grade graphite is much more energy intense than industrial graphite. Hence, aditional inputs (coke and electricity) are added to the ecoinvent original graphite dataset. The purity of synthetic graphite is >99.9%.

Table S13	. Input-output	table for the	production of a	cathode.
-----------	----------------	---------------	-----------------	----------

	General Flow information					Repr	esenta	ition i	in ecoinvent					Unce infor	rtainty mation
Input		Process Name	Output	Remarks	Cate gory	Sub category	Infra struc ture	Loca tion	Modul name in ecoinvent	Mean value	Uni t	Source mean value	Typ e	StDv 95%	General Comment
Latex	ε	e,		Binder, (Styrene-butadiene)	chemicals	organics	No	RER	latex, at plant	9.89E-03	kg	advanced battery materials	1	1.33	(2,4,1,3,3,5,4)
Water	ε	xid		Solvent for the binder	water supply	production	No	СН	water, deionised, at plant	2.00E-01	kg	advanced battery materials	1	1.33	(2,4,1,3,3,5,4)
Lithium manganese oxide	ε	se o		Active material, LiMn2O4	chemicals	inorganics	No	GLO	lithium manganese oxide, at plant	6.23E-01	kg	advanced battery materials	1	1.33	(2,4,1,3,3,5,4)
Carbon black	ε	ne:		Conductive carbon	chemicals	inorganics	No	GLO	carbon black, at plant	2.64E-02	kg	advanced battery materials	1	1.33	(2,4,1,3,3,5,4)
Aluminium foil	ε	anga		Aluminium for the collector	metals	extraction	No	RER	aluminium, production mix, wrought alloy, at plant	3.93E-01	kg	Measurement M. Gauch, Kokam cell	1	1.16	(1,4,1,3,1,4,4)
Aluminium foil rolling	ε	u u		Sheet in the range of 0.2 to 6 mm	metals	processing	No	RER	sheet rolling, aluminium	3.93E-01	kg	Measurement M. Gauch, Kokam cell	1	1.16	(1,4,1,3,1,4,4)
Sodium hydroxide	3	, lithiur : Input		NaOH, 50 % water, value per m2 from powder coating, aluminium sheet,	chemicals	inorganics	No	RER	sodium hydroxide, 50% in H2O, production mix, at plant	1.30E-01	kg	equivalent amount of protons as in "cathode li- ion battery" OH- for treatment of alu foil	1	1.32	(4,4,1,3,1,5,4)
Sulfuric acid	ε	tery lant		H2SO4 from the process "Anode,, lithium-ion battery" to neutralise NaOH						8.08E-02	kg	equivalent amount of OH- to neutralise H2SO4	1	1.32	(4,4,1,3,1,5,4)
Infrastructure, chemical plant	ε	oat t p		Ecoinvent standard dataset	chemicals	organics	Yes	RER	chemical plant, organics	4.00E-10	unit	ecoinvent standard dataset	1	3.36	(5,5,2,3,3,5,9)
Electricity	ε	n t a		Mechanical drive for pumping slurry, coating, coiling, cutting	electricity	supply mix	No	CN	electricity, medium voltage, at grid	2.00E-03	kWh	Estimation M. Gauch, R. Widmer	1	1.48	(4,5,3,5,3,5,2)
Process heat	ε	um-ic		Evaporating water, heating active amterial, alu-foil, binder, solvent, black carbon	natural gas	heating systems	No	RER	heat, natural gas, at industrial furnace >100kW	6.46E-01	MJ	calculated from specific heat of the base materials	1	1.32	(4,4,1,3,1,5,1)
Transport lorry	8	e, lithiı		according to ecoinvent standars transport distance for inorganic chemicals and metals (Europe)	transport systems	road	No	RER	transport, lorry >16t, fleet average	1.26E-01	tkm	ecoinvent standard distances	1	3.20	(5,5,5,2,5,5,5)
Transport train	3	Cathod		according to ecoinvent standars transport distance for inorganic chemicals and metals (Europe)	transport systems	train	No	RER	transport, freight, rail	7.58E-01	tkm	ecoinvent standard distances	1	3.20	(5,5,5,2,5,5,5)

oattery, iide, at	3	Disposal coated cathode	5% loss, according to ecoinvent assumption for missing information, included waste from slitting the coils, copper to recycling	waste management	municipal incineration	No	сн	disposal, residues, shredder fraction from manual dismantling, in MSWI	5.26E-02	kg	5% loss, according to ecoinvent assumption for missing information	1	1.58	(5,4,1,3,1,5,6)
ganese ox	3 3 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Waste water	Assumption: NaOH is neutralized with H2SO4, only 50% disposed, the other 50% is disposed in the dataset Cathode, lithoim-iom battery"	waste management	wastewater treatment	No	сн	treatment, sewage, to wastewater treatment, class 3	1.05E-04	m3	equal to the amount of NaOH input	1	1.84	(5,4,1,3,1,5,33)
lith nang	3	Waste heat to air	Heat and electric power	air	unspecified			Heat, waste	7.20E-03	MJ	calculated from eletricity input	1	1.32	(4,4,1,3,1,5,13)
ode, li um ma pla	ε	Waste water	Solvent water evaporated from the slurry	air	unspecified			Water	2.00E-01	kg	calculated from NaOH input	1	1.63	(4,4,1,3,1,5,31)
Catho lithiu	3	Cathode, lithium-ion battery		electronics	component	No	CN	Cathode, lithium-ion battery, lithium manganese oxide, at plant	1.00E+00	kg				

The production of the cathode requires the mixture of the components (binder and solvent, $LiMn_2O_4$, black carbon) in a ball mill to a slurry [17, 18], followed by coating the collector (with soda lye pre-treated aluminium foil) with the slurry. The binder (modified styrene butadiene copolymer [19]) is water soluble and has the advantage that no organic solvent is needed. Thermal heat energy is used to heat up the slurry to130°C and to evaporate water and to dry the coated cathode in a dry channel (H₂O content < 20ppm) [20].

 Table S14. Input-output table for the production of an anode.

		Genera	l Flow informa	ation		Repre	esenta	tion i	n ecoinvent					Unce infor	rtainty mation
Input		Process Name	Output	Remarks	Cate gory	Sub category	Infra struc ture	Loca tion	Modul name in ecoinvent	Mean value	Uni t	Source mean value	Typ e	StDv 95%	General Comment
	-				r		•	1			1	1			1
Latex	з	٦		Binder, (Styrene-butadiene)	chemicals	organics	No	RER	latex, at plant	1.85E-02	kg	advanced battery materials	1	1.33	(2,4,1,3,3,5,4)
Water	3	ולנ		Solvent for the binder	water supply	production	No	СН	water, deionised, at plant	4.24E-01	kg	advanced battery materials	1	1.33	(2,4,1,3,3,5,4)
Graphite	з	<u> </u>		Active material	chemicals	inorganics	No	CN	graphite, battery grade, at plant	4.94E-01	kg	advanced battery materials	1	1.33	(2,4,1,3,3,5,4)
Carbon black	ε	Int		Conductive carbon	chemicals	inorganics	No	GLO	carbon black, at plant	1.59E-02	kg	advanced battery materials	1	1.33	(2,4,1,3,3,5,4)
copper	а	t pla		Copper for the collector	metals	extraction	No	RER	copper, at regional storage	5.24E-01	kg	Measurement M. Gauch, Kokam cell	1	1.16	(1,4,1,3,1,4,4)
Copper foil	8	e, at		Sheet in the range of 0.2 to 6 mm	metals	processing	No	RER	sheet rolling, copper	5.24E-01	kg	Measurement M. Gauch, Kokam cell	1	1.16	(1,4,1,3,1,4,4)
Sulfuric acid	а	graphite		Sulfuric acid, equivalent amount of protons as in "cathode li-ion battery" OH- for treatment of alu foil	chemicals	inorganics	No	RER	sulphuric acid, liquid, at plant	8.08E-02	kg	equivalent amount of protons as in "cathode li-ion battery" OH- for treatment of alu foil	1	1.32	(4,4,1,3,1,5,4)
Sodium hydroxide	8	ery,		NaOH from the process "Cathode, lithium-ion battery" to neutralise H2SO4						1.32E-01	kg	equivalent amount of OH- to neutralise H2SO4	1	2.11	(4,4,1,3,1,5,5)
Infrastructure, chemical plant	з	att		ecoinvent standard dataset	chemicals	organics	Yes	RER	chemical plant, organics	4.00E-10	unit	ecoinvent standard dataset	1	3.36	(5,5,2,3,3,5,9)
Electricity	в	ġ		Mechanical drive for pumping slurry, coating, coiling, cutting	electricity	supply mix	No	CN	electricity, medium voltage, at grid	2.00E-03	kWh	Estimation M. Gauch, R. Widmer	1	1.48	(4,5,3,5,3,5,2)
Process heat	ε	n-ion		Evaporating water, heating active amterial, alu-foil, binder, solvent, black carbon	natural gas	heating systems	No	RER	heat, natural gas, at industrial furnace >100kW	1.22E+00	MJ	calculated from specific heat of the base materials	1	1.32	(4,4,1,3,1,5,1)
Transport lorry	а	, lithiu		According to ecoinvent standars transport distance for inorganic chemicals and metals (Europe)	transport systems	road	No	RER	transport, lorry >16t, fleet average	1.13E-01	tkm	ecoinvent standard distances	1	3.20	(5,5,5,2,5,5,5)
Transport train	з	Anode		According to ecoinvent standars transport distance for inorganic chemicals and metals (Europe)	transport systems	train	No	RER	transport, freight, rail	4.70E-01	tkm	ecoinvent standard distances	1	3.20	(5,5,5,2,5,5,5)
L	_	batter y, graphi	coated copper to copper	5% loss, according to ecoinvent assumption for missing information, included						5.26E-02	kg	5% loss, according to ecoinvent assumption for	1	1.58	(5,4,1,3,1,5,6)

missing

		copper to recycling								information			
3	Waste water	Assumption:NaOH is neutralized with H2SO4, only 50% disposed, the other 50% is disposed in the dataset Cathode, lithoim-iom battery"	waste management	wastewater treatment	No	СН	treatment, sewage, to wastewater treatment, class 3	1.06E-04	m3	equal to the amount of NaOH input	1	1.84	(5,4,1,3,1,5,33)
8	Waste heat to air	Heat and electric power	air	unspecified			Heat, waste	7.20E-03	MJ	calculated from eletricity input	1	1.32	(4,4,1,3,1,5,13)
3	Waste water	Solvent water evaporated from the slurry	air	unspecified			Water	4.24E-01	kg	calculated from NaOH input	1	1.63	(4,4,1,3,1,5,31)
3	Anode, lithium-ion battery		electronics	component	No	CN	Anode, lithium-ion battery, graphite, at plant	1.00E+00	kg				

Basically the same process is applied for the production of the anode. Instead of $LiMn_2O_4$, graphite is used for the anode. The collector is a copper foil, pre-treated with sulphuric acid.

Table S15.	. Input-outpu	t table for the	production of a	separator.
------------	---------------	-----------------	-----------------	------------

		General I	-low informa	tion		Repro	esenta	ation	in ecoinvent					Unce infor	rtainty mation
Input		Process Name	Output	Remarks	Cate gory	Sub category	Infra struc ture	Loca tion	Modul name in ecoinvent	Mean value	Uni t	Source mean value	Typ e	StDv 95%	General Comment
Polyethylene fleese	ε			foil, carrier for slurry	plastics	polymers	No	RER	fleece, polyethylene, at plant	3.51E-01	kg	Assumption: Polytehylene foil is 33% of total weight (3 layers with equal weight)	1	1.64	(5,4,2,3,3,5,4)
PVDF	а	F		PVF is a proxy für PVDF	chemicals	organics	No	US	polyvinylfluoride, at plant	1.92E-01	kg	Hyung-Gon (2002)	1	1.33	(2,4,2,3,3,5,4)
Hexafluorethane	ε	npu		C2F6 is a proxy for C3F6 (recommended by G. Wernet)	chemicals	organics	No	GLO	hexafluorethane, at plant	2.62E-02	kg	Hyung-Gon (2002)	1	1.33	(2,4,2,3,3,5,4)
Phthalic anhydride	8	unt:		Phthalic anhydride is a proxy für dibutyl phthalate (recommended by G. Wernet)	chemicals	organics	No	RER	phthalic anhydride, at plant	2.91E-01	kg	Hyung-Gon (2002)	1	1.33	(2,4,2,3,3,5,4)
Silica	а	pla			construction materials	additives	No	DE	silica sand, at plant	2.18E-01	kg	Hyung-Gon (2002)	1	1.25	(2,4,2,3,1,5,4)
Acetone	8	ttery, at		Solvent, internally recycled (Brodd 2002), Recycling rate: 99% (Expert guess H-J. Althaus)	chemicals	organics	No	RER	acetone, liquid, at plant	1.44E-02	kg	Hyung-Gon (2002)	1	1.25	(2,4,2,3,1,5,4)
Infrastructure, chemical plant	8	bat		Ecoinvent standard dataset	chemicals	organics	Yes	RER	chemical plant, organics	4.00E-10	unit	ecoinvent standard dataset	1	3.36	(5,5,2,3,3,5,9)
Electricity	3	1-ion		Mechanical drive for pumping slurry, coating, coiling, cutting	electricity	supply mix	No	CN	electricity, medium voltage, at grid	2.00E-03	kWh	Estimation M. Gauch, R. Widmer	1	1.48	(4,5,3,5,3,5,2)
Process heat	ε	tor, lithium		evaporating solvent, heating seperator base materials	natural gas	heating systems	No	RER	heat, natural gas, at industrial furnace >100kW	1.93E-01	MJ	Assumption: Specific heat of the Seperator is equals to specific heat the anode in the dataset "Anode, lithium- ion battery"	1	1.33	(4,4,2,3,1,5,1)
Transport lorry	8	Separa		according to ecoinvent standars transport distance for inorganic chemicals and metals (Europe)	transport systems	road	No	RER	transport, lorry >16t, fleet average	9.84E-02	tkm	ecoinvent standard distances	1	3.20	(5,5,5,2,5,5,5)
Transport train	8			according to ecoinvent standars transport distance for inorganic chemicals and metals (Europe)	transport systems	train	No	RER	transport, freight, rail	5.25E-01	tkm	ecoinvent standard distances	1	3.20	(5,5,5,2,5,5,5)

hium-ion plant: t	3	Disposal coated cathode	5% loss, according to ecoinvent assumption for missing information, included waste from slitting the coils	waste management	municipal incineration	No	СН	disposal, residues, shredder fraction from manual dismantling, in MSWI	5.39E-02	kg	5% loss, according to ecoinvent assumption for missing information	1	1.64	(5,4,2,3,3,5,6)
, litl , at utpu	8	Acetone	evaporating solvent	air	unspecified			Acetone	1.44E-02	kg	equal the amount aceton input	1	1.63	(4,4,2,3,1,5,16)
ator, l ttery, a Out	8	Waste heat to air	Heat and electric power	air	unspecified			Heat, waste	7.20E-03	MJ	calculated from eletricity input	1	1.33	(4,4,2,3,1,5,13)
Separ bat	8	Seperator, lithium-ion battery		electronics	component	No	CN	separator, lithium- ion battery, at plant	1.00E+00	kg				

A porous polyethylene film is coated with a slurry consisting of a copolymer (polyvinylidedfluoride and hexafluorpropylene), dibutyl phthalate and silica dissolved in acetone [21]. Thermal heat energy is used to heat up the slurry to 130° C and to evaporate acetone and to dry the coated cathode in a dry channel (H₂O content < 20ppm) [20].

 Table S16. Input-output table for the production of a single cell.

		Genera	al Fl	low inform	ation		Repr	esenta	ation	in ecoinvent					Unce infor	rtainty mation
Input		Process Name		Output	Remarks	Cate gory	Sub category	Infra struc ture	Loca tion	Modul name in ecoinvent	Mean value	Uni t	Source mean value	Typ e	StDv 95%	General Comment
Cathode	ε	lant:			Based on LiMn2O4	electronics	component	No	CN	Cathode, lithium-ion battery, lithium manganese oxide, at plant	3.27E-01	kg	Measurement M. Gauch, Kokam cell	1	1.24	(2,4,1,3,1,5,3)
Anode	ε	e, at pl			Based on graphite	electronics	component	No	CN	Anode, lithium-ion battery, graphite, at plant	4.01E-01	kg	Measurement M. Gauch, Kokam cell	1	1.24	(2,4,1,3,1,5,3)
Separator	8	graphit			coated polethylene film	electronics	component	No	CN	separator, lithium-ion battery, at plant	5.37E-02	kg	Measurement M. Gauch, Kokam cell	1	1.24	(2,4,1,3,1,5,3)
Electrolyt: Solvent	8	e oxide/			Ethylencarbonate	chemicals	organics	No	CN	ethylene carbonate, at plant	1.60E-01	kg	Measurement M. Gauch, Kokam cell	1	1.24	(2,4,1,3,1,5,3)
Electrolyt: Salt	ε	nganese			1 molar solution of LiPF6 in EC	chemicals	inorganics	No	CN	lithium hexafluorophosphate, at plant	1.90E-02	kg	calculated	1	1.24	(2,4,1,3,1,5,3)
Aluminium electrode tab	8	ium ma Input			Electrode, current collector, aluminium	metals	extraction	No	RER	aluminium, production mix, wrought alloy, at plant	1.65E-02	kg	Measurement M. Gauch, Kokam cell	1	1.24	(2,4,1,3,1,5,12)
Aluminium sheet rolling	ε	ery, lith			thickness of the Alu-tab: 1 mm	metals	processing	No	RER	sheet rolling, aluminium	1.65E-02	kg	Measurement M. Gauch, Kokam cell	1	3.06	(2,4,1,3,1,5,9)
Inert atmosphere	ε	on batte			Nitrogen	chemicals	inorganics	No	RER	nitrogen, liquid, at plant	1.00E-02	kg	Assumption: R. Widmer, M. Gauch	1	1.32	(4,4,1,3,1,5,4)
Package	ε	thium-i			Assumption: Polyethylen envelope	plastics	polymers	No	RER	polyethylene, LDPE, granulate, at plant	7.33E-02	kg	Measurement M. Gauch, Kokam cell	1	1.24	(2,4,1,3,1,5,4)
Package	ε	e cell, li			Polyethylen envelope production	plastics	processing	No	RER	extrusion, plastic film	7.33E-02	kg	Measurement M. Gauch, Kokam cell	1	1.24	(2,4,1,3,1,5,4)
Infrastructure, chemical plant	ε	single			ecoinvent standard dataset	chemicals	organics	Yes	RER	chemical plant, organics	4.00E-10	unit	ecoinvent standard dataset	1	3.36	(5,5,2,3,3,5,9)

Electricity	8				Calendaring anode, seperato cathode	r, electricity	supply mix	No	CN	electricity, medium voltage, at grid	2.00E-03	kWh	Estimation by M. Gauch, R. Widmer	1	1.48	(4,5,3,5,3,5,2)
Electricity	3				charge of the single cell, 70% (of 0.148 kWh)	electricity	supply mix	No	CN	electricity, medium voltage, at grid	1.04E-01	kWh	Estimation by M. Gauch, R. Widmer	1	1.48	(4,5,3,5,3,5,2)
Process heat	8				Heating anode, cathode and seperator,	natural gas	heating systems	No	RER	heat, natural gas, at industrial furnace >100kW	6.52E-02	MJ	calculated from specific heat of the base materials based on the specific heat of the components	1	1.32	(4,4,1,3,1,5,1)
Transport lorry	8				according to ecoinvent standars transport distance inorganic chemicals and metals (Europe)	or transport systems	road	No	RER	transport, lorry >16t, fleet average	2.78E-02	tkm	ecoinvent standard distances	1	3.20	(5,5,5,2,5,5,5)
Transport train	3				according to ecoinvent standars transport distance inorganic chemicals and metals (Europe)	or transport systems	train	No	RER	transport, freight, rail	1.67E-01	tkm	ecoinvent standard distances	1	3.20	(5,5,5,2,5,5,5)
		nium se te, at	8	single cell	5% loss, according to ecoinvent assumption for missing information,	waste management	recycling	No	GLO	disposal, Li-ions batteries, mixed technology	5.25E-02	kg	5% loss, according to ecoinvent assumption for missing information	1	1.58	(5,4,1,3,1,5,6)
		ery, lith angane / graphi	8	Waste heat to air	Heat and electric power	air	unspecified			Heat, waste	3.80E-01	MJ	calculated from eletricity input	1	1.32	(4,4,1,3,1,5,13)
		batt m oxide	8	singel cell, lithium ion battery		electronics	component	No	CN	single cell, lithium- ion battery, lithium manganese oxide/graphite, at plant	1.00E+00	kg				

Cathode, separator and anode are calendared, slit to size, winded and packed in a polyethylene envelope. In an inert atmosphere, the $LiPF_6$ dissolved in the electrolyte is added to the electrode [17].

		General	Flo	ow inform	at	ion		Repr	esenta	ation	in ecoinvent				Unc	ertainty i	nformation
Input	Process Name Output		Output		Remarks	Cate gory	Sub category	Infra struc ture	Loca tion	Modul name in ecoinvent	Mean value	Uni t	Source mean value	Typ e	StDv 95%	General Comment	
r	1		1				1	1	r	1			-	1	-		1
Single cell	3	Iput				weight per kg battery	electronics	component	No	CN	single cell, lithium- ion battery, lithium manganese oxide/graphite, at plant	7.99E-01	kg	Estimation M. Gauch, R. Widmer	1	1.16	(1,4,1,3,1,4,3)
Steelbox, material	в	nt: Ir				unalloyed steel	metals	extraction	No	RER	reinforcing steel, at plant	1.45E-01	kg	Estimation M. Gauch, R. Widmer	1	1.27	(2,4,1,3,3,4,12)
steelbox, production	3	at pla				steel, sheet rolling	metals	processing	No	RER	sheet rolling, steel	1.45E-01	kg	Estimation M. Gauch, R. Widmer	1	1.27	(2,4,1,3,3,4,3)
Battery management system, mounting	в	matic, a				mounting	electronics	module	No	GLO	printed wiring board, surface mounted, unspec., solder mix, at plant	3.38E-03	kg	Estimation M. Gauch, R. Widmer	1	1.16	(1,4,1,3,1,4,3)
Data cable	ε	, pris					electronics	component	No	GLO	cable, data cable in infrastructure, at plant	3.73E-01	m	Estimation M. Gauch, R. Widmer	1	1.19	(3,4,1,3,1,4,3)
3 phase cable	в	eable					electronics	component	No	GLO	cable, three- conductor cable, at plant	2.50E-02	m	Estimation M. Gauch, R. Widmer	1	1.19	(3,4,1,3,1,4,3)
Testing/activating	ε	echarge				Electricity	electricity	production mix	No	UCTE	electricity, low voltage, production UCTE, at grid	1.08E-01	kWh	Estimation M. Gauch, R. Widmer, 1 batter charge	1	1.48	(4,5,3,5,3,5,2)
metal working factory	8	y, Lilo, r				ecoinvent standard dataset	metals	general manufacturing	Yes	RER	metal working factory	4.58E-10	unit	reference unit of metal working factory according to Ecoinvent (Report 23)	1	3.36	(5,5,2,3,3,5,9)
Transport ship	а	batter				Assumption: single cell imported from China, battery pack produced in Europe	transport systems	ship	No	OCE	transport, transoceanic freight ship	7.81E+00	tkm	ecoinvent standard distances	1	2.12	(3,4,1,2,3,5,5)
Transport lorry	з					Assumption: single cell imported from China, battery pack produced in Europe	transport systems	road	No	RER	transport, lorry >16t, fleet average	1.02E+00	tkm	ecoinvent standard distances	1	2.12	(3,4,1,2,3,5,5)
		Lilo, able, t, at tput	8	Waste heat to air		Electric power	air	unspecified			Heat, waste	3.87E-01	MJ	calculated from eletricity input	1	1.60	(4,4,1,2,4,4,13)
		battery, recharges prismatic plant: Ou	ε	Lithium-ion battery 2009			electronics	module	No	GLO	battery, Lilo, rechargeable, prismatic, at plant	1.00E+00	kg				

Table S17. Input-output table for the production of a battery pack.

Finally, single cells, the battery management system and cables are assembled in a steel box.

The production of concentrated lithium brine and Li_2CO_3 takes place in Chile. Therefore, we used an electricity mix from Brasil as a proxy for an electricity mix from Chile. For all other datasets, except assembly of the battery, we assumed the production in China. Thus, a Chinese electricity mix was utilized for these datasets. Cell assembly is expected to be accomplished in Europe, using therefore a European electricity mix [22].

Transport distances for the production of Li_2CO_3 are calculated with provided data from SEIA-CONAMA [7]. For all datasets produced in China, we hypothesise equal average transport distances for China as for Europe. Thus, European standard transport distances are balanced as recommended by ecoinvent [1]. All single components are transported by ship and road to Europe for the cell assembly.

Infrastructure is incorporated by accounting a chemical plant [23] or a metal working factory [24] for most datasets (for detailed information see supporting information).

Material	Glider	ICEV	Total	Glider	BEV	Battery	Total
composition		drive train	ICE-V	(drive train	n	EV
Steel and iron	519.0	114.6	633.6	519.0	39.0	0.0	558.0
Synthetics	127.0	41.0	168.0	127.0	2.0	0.0	129.0
Fuel/oil/lubricants	6.0	58.0	64.0	6.0	0.0	0.0	6.0
Light metals	3.0	48.7	51.7	3.0	32.7	0.0	35.7
Tyres and rubber	41.0	3.0	44.0	41.0	0.0	0.0	41.0
Glass	30.0	0.0	30.0	30.0	0.0	0.0	30.0
Electric motors, cables	24.0	1.0	25.0	24.0	6.0	0.0	30.0
Base metals	2.0	17.0	19.0	2.0	19.0	0.0	21.0
Insulation	16.0	0.0	16.0	16.0	0.0	0.0	16.0
Paints	4.2	0.0	4.2	4.2	0.0	0.0	4.2
Others	2.0	0.0	2.0	2.0	0.0	300.0	302.0
Total	774.2	283.3	1057.5	774.2	98.7	300.0	1172.9

Table S18. Material composition and weight of the components in kg of the internal combustion engine car (ICEV) and the battery powered electric car (BEV).

Table S19. Environmental burden assessed with 4 different impact assessment methods for E-mobility and mobility with an ICEV.

	EI 99	9 H/A	C	ED	G	WP	A	DP
	ро	ints	10^3 N	AJ eq.	10^3 kg	CO ₂ eq.	kg S	b eq.
	BEV	ICEV	BEV	ICEV	BEV	ICEV	BEV	ICEV
Total	1570	2350	480	547	24.3	34.7	190	241
Road	134	134	31.7	31.7	1.08	1.08	13.7	13.7
Glider	270	270	66.5	66.5	3.74	3.74	30.4	30.4
Drive-train	120	127	21.9	27.8	1.35	1.46	9.68	12.2
Maintenance, disposal car	81.5	84.4	23.7	24.0	1.14	1.17	9.80	10.1
Li-ion battery	240	0	31.2	0	1.80	0	14.6	0
Operation	720	1740	305	397	15.2	27.2	112	174

Table S19. Environmental burden assessed with Ecoindicator 99 H/A (EI 99 H/A, unit: points), non renewable cumulated energy demand (CED, unit: MJ equivalents (MJ-eq.)), global warming potential (GWP, unit: kg carbon dioxide equivalents (kg CO₂ eq.)) and abiotic depletion potential (ADP, unit: kg antimony equivalents (kg Sb eq.)).

■ Road I Glider Drive-train Car: Maintenance & EOL ■ Li-ion battery: Maintenance & EOL I Operation

Figure S1. Shares of life cycle inventory results for sulfur dioxide (SO2), nitrogen oxides (NOx) and cumulative particulates (PM10) caused by battery powered electric car (BEV; the BEV is set as 100%) and an internal combustion engine car (ICEV, value in % of the BEV). Road includes construction, maintenance and end of life treatment (EOL). All absolute values of the components are provided in the supporting information.

Table S20. Sulphur dioxide (SO₂), nitrogen oxides (NO_x) and cumulative particulates (PM_{10}) for E-mobility and mobility with an ICEV.

		Mo	bility v	with a	BEV			Mol	oility w	ith an]	ICEV	
	SO ₂		NO _x		PM_{10}		SO ₂		NO _x		PM_{10}	
	kg	%	kg	%	kg	%	kg	%	kg	%	kg	%
Total E-mobility	83.7	100	49.5	100	16.2	100	59.0	70.4	41.5	83.9	12.5	77.6
Road	1.55	1.85	6.63	13.4	1.15	7.13	1.55	1.85	6.63	13.4	1.15	7.13
Glider	10.5	12.5	7.36	14.9	4.12	25.5	10.5	12.5	7.36	14.9	4.12	25.5
Drive-train	6.21	7.42	3.20	6.47	1.31	8.10	10.8	13.0	2.76	5.59	1.58	9.80
Maintenance, disposal car	2.41	2.88	1.69	3.41	0.364	2.25	2.92	3.48	1.80	3.64	0.384	2.38
Li-ion battery	13.1	15.7	5.33	10.8	2.51	15.5	0	0	0	0	0	0
Operation	49.9	59.7	25.3	51.1	6.75	41.8	33.2	39.6	22.9	46.4	5.30	32.8

Table S20. Inventory data of emission values for sulphur dioxide (SO2), nitrogen oxides (NOx) and cumulative particulates (PM10). The values for the life cycle battery powered electric vehicle (BEV) and mobility with an internal combustion engine vehicle (ICEV) refer to a covered distance of 150`000 km. The total emissions of the BEV are set as baseline (100%).

Figure S2. Life cycle impact assessment results for the Li-ion battery evaluated with the Ecoindicator 99 H/A. The score is split into the 3 damage categories Human Health, Ecosystem Quality and Ressource Quality and their subcategories.

Table S21. Absolute and relative values of environmental burden assessed with 4 different impact assessment methods for the production of 1 kg Li-ion battery.

	EI 99 H/A		CED		GWP		ADP	
	points	%	MJ eq.	%	kg CO ₂ eq.	%	kg Sb eq.	%
Total Li-ion battery	0.801	100	104	100	6.00	100	0.0485	100
Battery pack	0.162	20.3	27.6	26.5	1.61	26.8	0.0126	25.9
Printed wiring board	0.0630	7.86	13.7	13.1	0.853	14.3	0.00617	12.7
Reinforcing steel	0.0150	1.88	3.31	3.18	0.212	3.53	0.00185	3.81
Three conductor cable	0.0312	3.89	2.06	1.97	0.083	1.39	0.000880	1.81
Single cell	0.638	79.7	76.5	73.5	4.39	73.2	0.0359	74.1
Anode	0.403	50.3	19.6	18.8	0.870	14.5	0.0113	23.4
Copper	0.346	43.2	5.24	5.03	0.339	5.65	0.00259	5.33
Graphite	0.0296	3.70	10.6	10.2	0.345	5.75	0.00709	14.6
Rest anode	0.0273	3.41	3.81	3.66	0.187	3.11	0.00165	3.41
Separator	0.0170	2.12	4.69	4.51	0.257	4.29	0.00208	4.28
Cathode	0.131	16.4	31.4	30.1	2.17	36.2	0.0135	27.8
Aluminium	0.082	10.3	16.8	16.1	1.28	21.3	0.00734	15.1
LiMn ₂ O ₄	0.0448	5.59	13.0	12.5	0.831	13.8	0.00552	11.4
Rest cathode	0.00425	0.531	1.59	1.52	0.0635	1.06	0.000633	1.31
Ethylene carbonate	0.0176	2.20	5.03	4.83	0.185	3.09	0.00220	4.54
LiPF ₆	0.0304	3.79	6.05	5.81	0.389	6.47	0.00248	5.11
LiF	0.00203	0.254	0.350	0.336	0.0257	0.428	0.000160	0.329
PCl ₅	0.00499	0.624	1.78	1.71	0.0851	1.42	0.000725	1.49
Mn_2O_3	0.0162	2.03	5.41	5.20	0.364	6.06	0.00212	4.37
Li ₂ CO ₃	0.0103	1.29	1.84	1.77	0.135	2.25	0.000904	1.86
Conc. Lithium brine	0.00072	0.0900	0.0987	0.0948	0.0653	0.109	0.0000438	0.0903

Table S21. Environmental burden assessed with Ecoindicator 99 H/A (EI 99 H/A, unit: points), non renewable cumulated energy demand (CED, unit: MJ equivalents (MJ-eq.)), global warming potential (GWP, unit: kg carbon dioxide equivalents (kg CO₂ eq.)) and abiotic depletion potential (ADP, unit: kg antimony equivalents (kg Sb eq.)).

References

1. Spielmann M., D. R. a. B. C. *Life Cycle Inventories of Transport Services*; Swiss Centre for Life Cycle Inventories: Dübendorf, 2007.

2. Schweimer, G. W.; Levin, M. *Life Cycle Inventory for the Golf A4*; Research, Environment and Transport Volkswagen AG, Wolfsburg and Center of Environmental Systems Research, University of Kassel: Wolfsburg, Kassel, 2000.

3. BRUSA High-efficient power electronics for electrically driven vehicles - Converter. http://www.brusa.biz/products/g_dmc524379.htm (4. December 2009),

4. BRUSA High-efficient power electronics for electrically driven vehicles - Battery Charger. http://www.brusa.biz/products/g_nlg513_sx314.htm (4. December 2009),

5. BRUSA High-efficient power electronics for electrically driven vehicles - Hybrid Synchronous Motor. <u>http://www.brusa.biz/products/g_motor_hsm6.17.12411.htm</u> (4. December 2009),

6. SEIA-CONAMA *EIA* - *Cambios y Mejoras de la Operación Minera en el Salar de Atacama*; San Pedro de Atacama, 2006.

7. SEIA-CONAMA Ampliación Planta Carbonato de Litio a 48.000 ton/año; Antofagasta, 2007.

8. Kajiya, Y.; Tasaki, H. Manganese oxide producing methods. 2005.

9. Auer, W.; Schäfer, K., *Kalorische Zustandsgrössen*. Springer Verlag: Berlin, 1961; Vol. Eigenschaften der Materie in ihren Aggregatzuständen ; Teil 4, p 863.

10. Heil, G.; Kormann, C.; Adel, J. Lithium oxide containing lithium intercalation compounds. 2003.

11. HIROMASA, I.; REIKO, Y.; MASATAKA, W., Nonstoichiometry and Enthalpy of Formation for LiMyMn2-yO4. *Netsu Sokutei Toronkai Koen Yoshishu* **2000**, *36*, 54-55.

40

12. Munster, G.; Riess, G.; Russow, J. Process for the manufacture of phosphorus pentachloride. 1981.

13. Friedrich, H.; Pfeffinger, J.; Leutner, B. Verfahren zur Herstellung von hochreinen Lithiumsalzen. DE19809420A1, 1999.

14. Heck, T. Wärmepumpe. In: Sachbilanzen von Energiesystemen: Grundlagen für den ökologischen Vergleich von Energiesystemen und den Einbezug von Energiesystemen in Ökobilanzen für die Schweiz; Swiss Centre for Life Cycle Inventories: Dübendorf, 2007.

15. Belt, H.-J.; Rudolph, W.; Seffer, D. Process for preparing lithium hexafluorophosphate. 2000.

16. Birnbach, S.; Dockner, T.; Mohr, J.; Benfer, R.; Bieg, W.; Peters, J.; Ruge, B.; Weinle, W.; Zehner, P. Method for the continuous production of 1,3-Dioxolan-Ones. 2003.

17. Brodd, R. J.; Tagawa, K., Advances in Lithium-Ion Batteries. 1 ed.; Springer US: 2002.

18. Na, S.-h.; Kim, H.-s.; Moon, S.-i.; Doh, C.-h. Method for manufacturing high power electrode for lithium secondary battery. 2005.

19. LICO Technology Corporation Aqueous binder LHB-108P for lithium ion electrodes. http://www.predmaterials.com/en_batt/AqueousBinder.html (5. June 2009),

20. Naarmann, H.; Krueger, F. J.; Theuerkauf, S. Battery electrodes with enlarged surfaces and mehtod for production thereof. 2004.

21. Hyung-Gon Noh, S. Method of manufactering lithium secondary cell. 2002.

22. Frischknecht R., T. M., Faist Emmenegger M., Bauer C. and Dones R *Strommix und Stromnetz*. *In: Sachbilanzen von Energiesystemen: Grundlagen für den ökologischen Vergleich von Energiesystemen und den Einbezug von Energiesystemen in Ökobilanzen für die Schweiz*; Swiss Centre for Life Cycle Inventories: Dübendorf, 2007. 23. Althaus H.-J., C. M., Hischier R., Jungbluth N., Osses M. and Primas A *Life Cycle Inventories of Chemicals*; Swiss Centre for Life Cycle Inventories: Dübendorf, 2007.

24. Steiner, R. a. F., R. *Life Cycle Inventories of Metal Processing and Compressed Air Supply*; Swiss Centre for Life Cycle Inventories: Dübendorf, 2007.