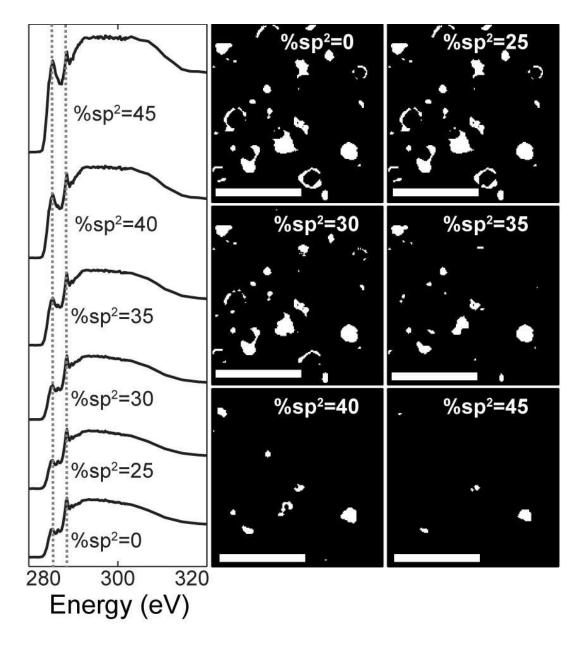
Supporting Information for:


Automated Chemical Analysis of Internally Mixed Aerosol Particles Using X-ray Spectromicroscopy at the Carbon K-Edge

Ryan C. Moffet,¹ Tobias Henn,² Alexander Laskin,³ Mary K. Gilles¹

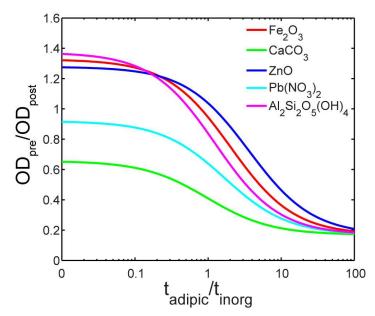

 ¹Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720-8226
²Department of Physics, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
³W. R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, 99352

Table of Contents

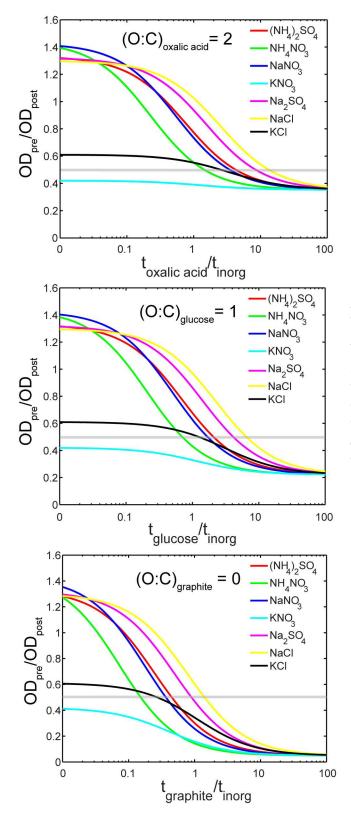

Figure S-1: Threshold spectra and images for sp ² hybridization	S-2
Figure S-2: OD _{pre} /OD _{post} vs. t _{adipic} /t _{Inorg} for metals and minerals	.S-3
Figure S-3: OD _{pre} /OD _{post} vs. t _{adipic} /t _{Inorg} for carbonaceous compounds having different O:C	.S-4

Figure S-1. Spectra (Left) taken from regions of the sample by setting a threshold for the $\% \text{sp}^2$ hybridization indicated (Right). White scale bar on images is 3.2 µm. Vertical gray dotted lines on spectra are at 285.4 and 288.6 eV indicating the C=C and COOH peaks, respectively.

Figure S-2. Calculated pre-edge to post-edge ratios (OD_{pre}/OD_{post}) as a function of the thickness ratio between adipic acid and a variety of metals and minerals commonly found in atmospheric aerosol. Adipic acid has an oxygen and carbon content similar to that often observed in atmospheric aerosols.

Figure S-3. Calculated pre-edge to post-edge ratios (OD_{pre}/OD_{post}) as a function of the thickness ratio between adipic acid and inorganic salts common in atmospheric aerosols. Each panel was calculated using a carbonaceous species having a different O:C atomic ratio. This figure shows that threshold value of 0.5 is valid over a wide range of organic compositions from graphite (assuming no oxygen) to oxalic acid with 2 oxygens for every carbon atom.