
Supplementary Information

Substrate affinity of photosensitizers derived from chlorophyll-a: The ABCG2 transporter affects the phototoxic response of side population stem cell-like cancer cells to photodynamic therapy.

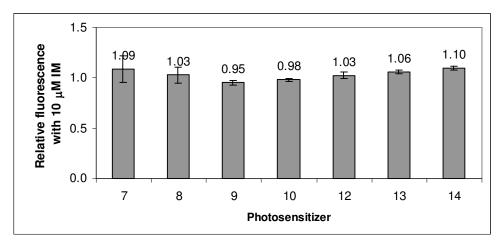

Janet Morgan, Jennifer D. Jackson, Xiang Zheng, Suresh K. Pandey and Ravindra K. Pandey.


Figure 1. Relative fluorescence of photosensitizers incubated for 30 minutes in HL60 VCR Pgp (ABCB1) expressing cells with 0.1 μ M rhodamine 123 (R-123) in the presence or absence of inhibitor verapamil at 100 μ M. The PgP substrate R-123 was retained at a higher level in the presence of the inhibitor. All the chlorin and purpurinimide conjugates which showed no differential fluorescence indicating that they were non-substrates of Pgp. Fluorescence was measured by Flow Cytometry.

Figure 2. The effect mediated by the TKI IM on fluorescence in RIF cells (■) produced by photosensitizers related to pyropheophorbide-a (PhA) with different groups attached to the macrocycle, as indicated in Chart 1. Bars are mean+/- SEM of 2-5 experiments with triplicate samples for each compound. *Significant change in fluorescence due to IM, P<0.05.

Figure 3. Carbohydrate substitutions on HPPH. The effect mediated by the TKI IM on fluorescence in RIF cells (■) produced by HPPH with different groups attached to the macrocycle, as indicated in Chart 2. Bars are mean+/- SEM of 1-3 experiments with triplicate samples for each compound.

Figure 4. The effect mediated by the TKI IM on fluorescence produced in RIF cells (■) by purpurinimides (15 and 22) with lactose attached at different positions of the macrocycle (16-21), and glucose (23) or galactose (24) attached at position 3 as indicated in Charts 3 and 4. Bars are mean+/- SEM of 2-3 experiments with triplicate samples for each compound. *Significant change in fluorescence due to IM, P<0.05