Synthesis of Ruthenium Polyhydride Clusters with 1,4,7-Triazacyclononane-type Ligands: Stereo and Electronic Effects of Ancillary Ligands

Kyo Namura, Satoshi Kakuta, and Hiroharu Suzuki*

Department of Applied Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8552, Japan

Contents

- 1. Infrared spectra of [Cn*RuH(H₂)₂](PF₆) (**2b-PF₆**) and its isotopomers.
- 2. T₁ measurements of complexes 2a-BPh₄, 2b-PF₆, and 2b-BPh₄.
- 3. ¹H NMR spectrum of complex 4-PF₆.
- 4. ESI-MS spectra of **3-BF**₄ and **4-PF**₆.
- 5. Density Functional Theory (DFT) calculations for the structures and natural charges of $[CnRuH(H_2)_2]^+$ (**2a**⁺) and $[Cn*RuH(H_2)_2]^+$ (**2b**⁺).
- 6. DFT calculations for the structure of $[(CnRu)_4(\mu-H)_6(\mu_3-H)_2]^{4+}$ (3⁴⁺).
- 7. DFT calculations for the structure of $[(Cn^*Ru)_2(\mu-H)_3]^{2+}(4^{2+})$.
- 8. X-ray diffraction studies.

1. Infrared spectra of [Cn*RuH(H₂)₂](PF₆) (2b-PF₆) and its isotopomers.

To identify absorption bands, infrared spectra of complex $2\mathbf{b}$ - \mathbf{PF}_6 and partly deuterated $2\mathbf{b}$ - \mathbf{PF}_6 were recorded. (SFigure 1) The deuteration of $2\mathbf{b}$ - \mathbf{PF}_6 was carried out by methanol- d_4 and deuteration levels were confirmed by ¹H NMR spectroscopy.

SFigure 1. Infrared spectra (KBr) of 2b-PF₆ at various deuteration levels:

(a) not deuterated; (b) 60% deuterated; (c) 80% deuterated.

2. T₁ measurements of complexes 2a-BPh₄, 2b-PF₆ and 2b-BPh₄.

 T_1 measurements of **2a-BPh₄**, **2b-PF₆** and **2b-BPh₄** were performed by the inversion recovery method. Measurements of **2a-BPh₄** and **2b-PF₆** were performed in THF- d_8 / toluene- $d_8 = 5$ / 1 mixed solvent and T_1 minima were 42 and 18 ms at -115 °C. Because of low solubility to the mixed solvent, measurement of **2b-BPh₄** were performed in THF- d_8 and T_1 minimum was 34 ms at -100 °C (SFigure 2).

SFigure 2. T₁ measurements of complex 2a-BPh₄, 2b-PF₆, and 2b-BPh₄.

3. ¹H NMR spectrum of complex 4-PF₆.

SFigure 3. ¹H NMR spectrum of 4-**PF**₆ in acetone- d_6 at ambient temperature:

* TMS peak; ** solvent peak.

4. ESI-MS spectra of 3-BF₄ and 4-PF₆.

(a) observed spectrum; (b) simulation of $[C_{24}H_{68}N_{12}Ru_4 + (BF_4)_3]^+$.

(a) observed spectrum; (b) simulation of $[C_{18}H_{45}N_6Ru_2 + PF_6]^+$.

5. Density Functional Theory (DFT) calculations for the structures and natural charges of $[CnRuH(H_2)_2]^+ (2a^+)$ and $[Cn*RuH(H_2)_2]^+ (2b^+)$.

Density functional theory (DFT) calculations were carried out at the B3PW91 levelⁱ in conjunction with the Stuttgart/Dresden ECPⁱⁱ and associated with triple- ζ SDD basis sets for Ru. For N and H, 6-311G(d,p) basis sets were employed, and for C, 6-31G(d) was done. All calculations were performed by utilizing the Gaussian03 program.ⁱⁱⁱ Molecular structures were drawn by using the *GaussView version* 4.1.2 program.^{iv} Frequency calculations at the same level of theory as geometry optimizations were performed on optimized structures to ensure that minima exhibit only positive frequency.

The optimized structures were reproduced the geometry, which was characterized by X-ray diffraction studies^v. Selected bond lengths (Å) and angles (deg) shown in STable 1 and STable 2 correspond well with those of crystal structures. Natural population analyses^{vi} at the same level of theory were performed on optimized structures. The optimized structures and natural charges displayed in SFigure 6.

ⁱ (a) Becke, A. D. *Phys. Rev.* **1988**, *A38*, 3098. (b) Becke, A. D. *J. Chem. Phys.* **1993**, *98*, 5648. (c) Perdew, J. P.; Wang, Y. *Phys. Rev.* **1992**, *B45*, 13244.

ⁱⁱ Andrae, D.; Haussermann, U.; Dolg, M.; Stoll, H.; Preuss, H. Theor. Chim. Acta 1990, 77, 123.

ⁱⁱⁱ Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.;Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.;Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.;Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. *Gaussian 03, Revision D.02*; Gaussian, Inc.: Wallingford, CT, 2004.

^{iv} Dennington, R. II.; Keith, T.; Millam, J. Gauss View, Version 4.1, Semichem, Inc., Shawnee Mission, KS, 2007.

^v We reported X-ray diffraction study and DFT calculation for **2b** previously. For detail see: Shima, T.; Namura, K.; Kameo, H.; Suzuki, H. *Organometallics* **2010**, *29*, 337..

^{vi} Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. **1985**, 83, 735-746.

SFigure 6. Optimized structures of **2a**⁺ (left) and **2b**⁺ (right).

Hydrogens on carbons are omitted for clarity.

Natural charges are underlined (Values of methyl groups are total charges of carbon and bonding hydrogens).

STable 1. Science i	John lengths (A) and angles (deg) of	2a		
Ru(1)-N(1)	2.1576	N(1)-H(6)	1.0147	N(3)-H(8)	1.0135
Ru(1)-N(2)	2.1514	N(1)-C(6)	1.4945	N(3)-C(4)	1.4886
Ru(1)-N(3)	2.2452	N(1)-C(1)	1.4876	N(3)-C(5)	1.4810
Ru(1)-H(1)	1.5933	Ru(1)-H(5)	1.6635	H(2)-H(3)	0.9470
Ru(1)-H(2)	1.6415	H(1)-H(2)	1.8270	H(3)-H(5)	2.1957
Ru(1)-H(3)	1.6625	H(1)-H(4)	1.8293	H(4)-H(5)	0.9455
Ru(1)-H(4)	1.6418				
N(1)-Ru(1)-N(2)	80.27	H(6)-N(1)-Ru(1)	108.55	H(8)-N(3)-Ru(1)	109.42
N(1)-Ru(1)-N(3)	78.80	C(6)-N(1)-Ru(1)	113.08	C(4)-N(3)-Ru(1)	110.71
N(2)-Ru(1)-N(3)	78.67	C(1)-N(1)-Ru(1)	104.96	C(5)-N(3)-Ru(1)	104.97
H(1)-Ru(1)-N(3)	165.58	H(3)-Ru(1)-N(1)	167.94	H(5)-Ru(1)-N(2)	167.01
H(2)-Ru(1)-N(1)	158.02	H(4)-Ru(1)-N(2)	159.25		

STable 1. Selected bond lengths (Å) and angles (deg) of $2a^+$

STable 2. Selected bond lengths (Å) and angles (deg) of $2b^+$

$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(= 10			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ru(1)-N(1)	2.1688	N(1)-C(7)	1.4824	N(3)-C(9)	1.4790	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ru(1)-N(2)	2.1670	N(1)-C(6)	1.4999	N(3)-C(4)	1.4934	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ru(1)-N(3)	2.2626	N(1)-C(1)	1.4906	N(3)-C(5)	1.4841	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ru(1)-H(1)	1.5943	Ru(1)-H(5)	1.6673	H(2)-H(3)	0.9360	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ru(1)-H(2)	1.6443	H(1)-H(2)	1.8348	H(3)-H(5)	2.2111	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Ru(1)-H(3)	1.6678	H(1)-H(4)	1.8300	H(4)-H(5)	0.9375	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ru(1)-H(4)	1.6433					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N(1)-Ru(1)-N(2)	82.44	C(7)-N(1)-Ru(1)	113.53	C(9)-N(3)-Ru(1)	114.77	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N(1)-Ru(1)-N(3)	80.95	C(6)-N(1)-Ru(1)	110.58	C(4)-N(3)-Ru(1)	108.33	
H(1)-Ru(1)-N(3)167.59H(3)-Ru(1)-N(1)168.95H(5)-Ru(1)-N(2)167.68H(2)-Ru(1)-N(1)157.83H(4)-Ru(1)-N(2)159.24167.68	N(2)-Ru(1)-N(3)	80.72	C(1)-N(1)-Ru(1)	102.84	C(5)-N(3)-Ru(1)	102.66	
H(2)-Ru(1)-N(1) 157.83 H(4)-Ru(1)-N(2) 159.24	H(1)-Ru(1)-N(3)	167.59	H(3)-Ru(1)-N(1)	168.95	H(5)-Ru(1)-N(2)	167.68	
	H(2)-Ru(1)-N(1)	157.83	H(4)-Ru(1)-N(2)	159.24			

		0		0 00 1 - 1 0	
1	44	0	0.047226	0.004548	5.022887
2	7	0	-1.463014	0.055968	3.362301
3	1	0	-0.990568	-0.061528	2.473438
4	6	0	-2.467229	-1.029936	3.530269
5	6	0	-2.033684	1.421933	3.406476
6	1	0	-2.670915	-1.520132	2.573648
7	1	0	-3.412228	-0.582618	3.851007
8	1	0	-1.256945	2.103638	3.052119
9	1	0	-2.900545	1.523970	2.739501
10	7	0	-1.417783	1.367012	5.830849
11	1	0	-0.937093	2.193362	6.171057
12	6	0	-2.446328	1.782745	4.829425
13	6	0	-1.991319	0.660418	7.007596
14	1	0	-2.629879	2.858815	4.897287
15	1	0	-3.389884	1.293905	5.086995
16	1	0	-1.206721	0.619328	7.764784
17	1	0	-2.845836	1.208604	7.425230
18	7	0	-1.410851	-1.408882	5.733460
19	1	0	-0.919302	-2.111724	6.275810
20	6	0	-2.423361	-0.748064	6.614557
21	6	0	-2.002053	-2.072409	4.543639
22	1	0	-2.589849	-1.345400	7.515329
23	1	0	-3.377351	-0.722981	6.081454
24	1	0	-1.222639	-2.702652	4.109489
25	1	0	-2.841894	-2.721598	4.824127
26	1	0	0.791885	-0.021292	6.431166
27	1	0	1.287404	-1.070778	5.020130
28	1	0	0.950456	-1.072489	4.135085
29	1	0	1.284248	1.083404	5.058778
30	1	0	0.943248	1.122753	4.177826

STable 4. Coordination of **2b**⁺

1	44	0	4.868127	-0.001076	5.063230
2	7	0	6.326611	0.066666	3.334711
3	6	0	5.712911	-0.098416	1.999230
4	6	0	7.362448	-0.986884	3.552514
5	6	0	6.901485	1.430297	3.447376
6	1	0	7.619706	-1.464386	2.601066
7	1	0	8.283117	-0.517799	3.907416
8	1	0	6.119996	2.129398	3.139096
9	1	0	7.750527	1.559191	2.758806
10	7	0	6.309239	1.394532	5.887338
11	6	0	5.695727	2.637510	6.412940
12	6	0	7.351463	1.740871	4.865882
13	6	0	6.904002	0.627321	7.018513
14	1	0	7.601428	2.804093	4.938997
15	1	0	8.270084	1.201045	5.105040
16	1	0	6.129095	0.544308	7.782615
17	1	0	7.752791	1.174815	7.453783
18	7	0	6.308885	-1.459909	5.764444
19	6	0	5.699846	-2.541479	6.576724
20	6	0	7.357494	-0.754643	6.575383
21	6	0	6.893645	-2.053671	4.529895
22	1	0	7.609498	-1.351195	7.457656
23	1	0	8.273657	-0.688436	5.984645
24	1	0	6.112352	-2.666312	4.073611
25	1	0	7.730158	-2.721174	4.783483
26	1	0	4.906856	0.625302	1.874471
27	1	0	6.457451	0.045698	1.204222
28	1	0	5.290791	-1.100529	1.913674
29	1	0	4.897447	2.381336	7.108932
30	1	0	6.447816	3.252584	6.923547
31	1	0	5.270939	3.208516	5.586489
32	1	0	4.900982	-3.018688	6.008877
33	1	0	6.454304	-3.292999	6.842526
34	1	0	5.272238	-2.116182	7.484040
35	1	0	3.965618	1.127155	4.231180
36	1	0	3.627066	1.075284	5.103900
37	1	0	4.125669	-0.031016	6.473743
38	1	0	3.625456	-1.077843	5.052265
39	1	0	3.959055	-1.083284	4.177741

6. Density Functional Theory (DFT) calculation for the structure of $[(CnRu)_4(\mu-H)_6(\mu_3-H)_2]^{4+}(3^{4+})$.

Density functional theory (DFT) calculations were carried out at the B3PW91 levelⁱ in conjunction with the Stuttgart/Dresden ECPⁱⁱ and associated with triple- ζ SDD basis sets for Ru. For N and H, 6-311G(d,p) basis sets were employed, and for C, 6-31G(d) was done. All calculations were performed by utilizing the Gaussian03 program.ⁱⁱⁱ The molecular structure was drawn by using the *GaussView version* 4.1.2 program.^{iv} Frequency calculations at the same level of theory as geometry optimizations were performed on optimized structure to ensure that minima exhibit only positive frequency. Calculations for three initial structures [(CnRu)₄(μ -H)₆(μ ₃-H)₂]⁴⁺ (**3A**), [(CnRu)₄(μ -H)₅(μ ₃-H)₃]⁴⁺ (**3B**) and [(CnRu)₄(μ -H)₄(μ ₃-H)₄]⁴⁺ (**3C**) (SFigure 7) converged to the same optimized structure displayed in SFigure 8. Selected bond lengths (Å) and angles (deg) are shown in STable 5.

SFigure 7. Initial structures of **3**⁴⁺; **3A** (left), **3B** (middle) and **3C** (right). Cn ligands are omitted for clarity. These structures afforded the same optimized structure shown in Sfigure 3.

SFigure 8. Optimized structures of 3^{4+} (left), hydrogens on carbons and hydrido ligands are omitted for clarity, and Ru₄ core of 3^{4+} (right).

STuble of Beleeted o	ond lengths	(11) and angles (deg) of e			
Ru(1)-Ru(2)	2.9915	Ru(1)-N(1)	2.1651	Ru(3)-N(7)	2.1874
Ru(1)- $Ru(3)$	3.0153	Ru(1)-N(2)	2.1663	Ru(3)-N(8)	2.1669
Ru(1)- $Ru(4)$	3.0204	Ru(1)-N(3)	2.1641	Ru(3)-N(9)	2.1717
Ru(2)- $Ru(3)$	3.0175	Ru(2)-N(4)	2.1678	Ru(4)-N(10)	2.1687
Ru(2)- $Ru(4)$	3.0176	Ru(2)-N(5)	2.1647	Ru(4)-N(11)	2.1723
Ru(3)- $Ru(4)$	3.0802	Ru(2)-N(6)	2.1663	Ru(4)-N(12)	2.1848
H(3)-H(7)	1.7742	H(2)-H(7)	1.7176	H(4)-H(8)	1.7210
H(3)-H(8)	1.7749	H(6)-H(7)	1.7272	H(5)-H(8)	1.7216
Ru(3)-Ru(1)-Ru(2)	60.31	Ru(1)-Ru(3)-Ru(2)	59.46	Ru(3)-Ru(4)-Ru(1)	59.23
Ru(3)-Ru(1)-Ru(4)	61.37	Ru(3)-Ru(2)-Ru(1)	60.24	Ru(2)-Ru(4)-Ru(1)	59.40
Ru(2)-Ru(1)-Ru(4)	60.25	Ru(3)-Ru(2)-Ru(4)	61.38	N(1)- $Ru(1)$ - $N(2)$	78.87
Ru(4)-Ru(3)-Ru(1)	59.40	Ru(1)-Ru(2)-Ru(4)	59.40	N(2)-Ru(1)-N(3)	79.09
Ru(4)-Ru(3)-Ru(2)	59.31	Ru(3)-Ru(4)-Ru(2)	59.31	N(3)-Ru(1)-N(1)	78.88

STable 5. Selected bond lengths (Å) and angles (deg) of 3^{4+}

STable 6. Coordination of **3**⁴⁺

1	44	0	2.424166	-0.006429	5.015628
2	7	0	3.893085	1.376267	4.229474
3	7	0	3.895391	-0.010599	6.605720
4	7	0	3.895021	-1.373833	4.209399
5	1	0	3.427030	2.074109	3.660291
6	1	0	3.442422	0.131802	7.501836
7	1	0	3.444048	-2.223447	3.888025
8	6	0	4.494990	2.083714	5.392409
9	6	0	4.925513	1.070208	6.439846
10	6	0	4.507087	-1.368428	6.628651
11	6	0	4.933942	-1.762312	5.222908
12	6	0	4.487732	-0.714343	3.013900
13	6	0	4.922103	0.696971	3.373228
14	1	0	3.729055	2.751003	5.792226
15	1	0	5.350539	2.697928	5.086757
16	1	0	5.111868	1.569084	7.394683
17	1	0	5.871492	0.603800	6.156148
18	1	0	3.748799	-2.056090	7.008802
19	1	0	5.367360	-1.408722	7.307643
20	1	0	5.131027	-2.836705	5.175134
21	1	0	5.874088	-1.273886	4.957730
22	1	0	3.712774	-0.695072	2.245039
23	1	0	5.339321	-1.284291	2.623279
24	1	0	5.106716	1.278809	2.466145
25	1	0	5.868692	0.682627	3.917645
26	44	0	-0.010215	-1.519418	5.872292
27	7	0	0.264226	-2.269829	7.884175
28	7	0	-1.990529	-2.282143	6.307311
29	7	0	0.260897	-3.635409	5.486799
30	1	0	0.960939	-1.719179	8.373997
31	1	0	-2.680950	-1.575786	6.078088
32	1	0	0.709837	-3.772854	4.587885
33	6	0	-1.029580	-2.072862	8.594288

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	34	6	0	-2 162854	-2 639960	7 754669
366-1.038543-1.4380175.466406 37 601.190012-4.1507176.530635 38 600.715082-3.7031267.904337 39 10-1.155364-0.9970838.733240 40 10-1.019163-2.5451639.583996 41 10-3.125884-2.2779838.124732 42 10-2.198964-3.7282867.839447 43 10-2.332762-3.0325204.390406 44 10-3.147478-3.9673645.652768 45 10-1.063121-5.0834894.623200 46 10-1.092726-5.0059686.365300 47 102.177916-3.7402996.312106 48 101.264628-5.2442656.496462 49 10-0.119806-4.3215888.240381 51 440-0.0255821.4975415.926165 52 700.2184103.6236965.586317 54 70-2.0137832.2379266.389966 55 100.7172421.5262018.547710 56 100.9067643.7724184.857180 57 10-2.0115011.6806055.895218 58 601.1719383.3915937.880528 59 60.6761964.3559756	35	6	Õ	-2 221751	-3 437386	5 398060
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	36	6	Ő	-1 038543	-4 388017	5 466406
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	37	6	0	1 190012	-4 150717	6 530635
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	38	6	0	0.715082	-3 703126	7 904337
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30	1	0	1 155364	0.007083	8 733240
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	39 40	1	0	-1.155504	-0.997083	0.592006
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40	1 1	0	-1.019103	-2.343103	9.383990
4210 -2.193964 -3.728280 7.83944 43 10 -2.332762 -3.032520 4.390406 44 10 -3.147478 -3.967364 5.652768 45 10 -1.063121 -5.083489 4.623200 46 10 -1.092726 -5.005968 6.365300 47 10 2.177916 -3.740299 6.312106 48 10 1.264628 -5.244265 6.496462 49 10 1.508821 -3.843477 8.643102 50 10 -0.19806 -4.321588 8.240381 51 440 -0.025582 1.497541 5.926165 52 70 0.257307 2.221484 7.970844 53 70 0.218410 3.623696 5.86317 54 70 -2.013783 2.237926 6.389966 55 10 0.717242 1.526201 8.547710 56 10 0.906764 3.772418 4.857180 57 10 -2.701150 1.680605 5.895218 58 60 1.171938 3.391593 7.880528 59 60 0.676196 4.355975 6.813628 60 6 -1.082175 4.130706 5.070274 61 6 -2.230261 2.07979 7.846755 63 6 0 -1.28400 <t< td=""><td>41</td><td>1 1</td><td>0</td><td>-3.123884</td><td>-2.277985</td><td>0.124/32 7.920447</td></t<>	41	1 1	0	-3.123884	-2.277985	0.124/32 7.920447
4310 -2.32762 -3.05250 4.990406 4410 -3.147478 -3.967364 5.652768 4510 -1.063121 -5.083489 4.623200 4610 -1.092726 -5.005968 6.365300 4710 2.177916 -3.740299 6.312106 4810 1.264628 -5.244265 6.496462 4910 1.508821 -3.843477 8.643102 5010 -0.119806 4.321588 8.240381 51440 -0.025582 1.497541 5.926165 5270 0.257307 2.21484 7.970844 5370 0.218410 3.623696 5.86317 5470 -2.013783 2.237926 6.389966 5510 0.717242 1.526201 8.547710 5610 0.906764 3.772418 4.857180 5710 -2.701150 1.680605 5.895218 5860 1.171938 3.91593 7.880528 5960 0.676196 4.355975 6.813628 606 -1.082175 4.130706 5.070274 616 -2.230261 2.027979 7.846755 636 -1.044955 2.570545 8.630915 641 0 2.159953 3.005880 7.621866 65 <td>42</td> <td>1</td> <td>0</td> <td>-2.198904</td> <td>-3./28280</td> <td>/.83944/</td>	42	1	0	-2.198904	-3./28280	/.83944/
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	43	1	0	-2.332/62	-3.032520	4.390406
4510 -1.063121 -5.083489 4.623200 4610 -1.092726 -5.005968 6.365300 4710 2.177916 -3.740299 6.312106 4810 1.264628 -5.244265 6.496462 4910 1.508821 -3.843477 8.643102 5010 -0.119806 -4.321588 8.240381 51440 -0.025582 1.497541 5.926165 5270 0.257307 2.221484 7.970844 5370 0.218410 3.623696 5.86317 5470 -2.013783 2.237926 6.389966 5510 0.717242 1.526201 8.547710 5610 0.906764 3.772418 4.857180 5710 -2.701150 1.680605 5.895218 5860 1.171938 3.391593 7.880528 5960 0.676196 4.355975 6.813628 6060 -1.082175 4.130706 5.070274 6160 -2.205682 3.669213 5.983173 6260 -1.082175 4.130706 5.970545 6360 -1.082455 5.2277245 8.630915 6410 2.159953 3.005880 7.621866 6510 1.257074 3.912582 $8.$	44	1	0	-3.14/4/8	-3.96/364	5.652768
4610 $-1.092/26$ -5.005968 6.365300 4710 2.177916 -3.740299 6.312106 4810 1.264628 -5.244265 6.496462 4910 1.508821 -3.843477 8.643102 5010 -0.119806 -4.321588 8.240381 51440 -0.025582 1.497541 5.926165 5270 0.257307 2.221484 7.970844 5370 -2.013783 2.237926 6.389966 5510 0.717242 1.526201 8.547710 5610 0.906764 3.772418 4.857180 5710 -2.701150 1.680605 5.895218 5860 1.171938 3.391593 7.880528 5960 0.676196 4.355975 6.813628 606 -1.082175 4.130706 5.070274 6160 -2.205682 3.669213 5.983173 6260 -1.024955 2.570545 8.630915 6410 2.159953 3.005880 7.621866 6510 1.257074 3.912582 8.842312 6610 -1.08400 3.720606 4.066511 6910 -1.082405 5.224721 4.993062 7010 -3.172482 3.799547 5.489493 <td>45</td> <td>l</td> <td>0</td> <td>-1.063121</td> <td>-5.083489</td> <td>4.623200</td>	45	l	0	-1.063121	-5.083489	4.623200
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	46	l	0	-1.092726	-5.005968	6.365300
4810 1.264628 -5.244265 6.496462 4910 1.508821 -3.843477 8.643102 5010 -0.119806 -4.321588 8.240381 51440 -0.025582 1.497541 5.926165 5270 0.257307 2.221484 7.970844 5370 -2.013783 2.237926 6.389966 5510 0.717242 1.526201 8.547710 5610 0.906764 3.772418 4.857180 5710 -2.701150 1.680605 5.895218 5860 1.171938 3.391593 7.880528 5960 0.676196 4.355975 6.813628 6060 -1.082175 4.130706 5.070274 6160 -2.205682 3.669213 5.983173 6260 -1.04955 2.570545 8.630915 6410 2.159953 3.005880 7.621866 6510 1.257074 3.912582 8.842312 6610 -1.208400 3.720606 4.066511 6910 -1.208400 3.720606 4.066511 6910 -3.172482 3.799547 5.489493 7110 -2.24570 4.282077 6.886538 7410 -2.234647 4.282077 6.886	47	1	0	2.177916	-3.740299	6.312106
4910 1.508821 -3.843477 8.643102 5010 -0.119806 -4.321588 8.240381 51440 -0.025582 1.497541 5.926165 5270 0.257307 2.221484 7.970844 5370 0.218410 3.623696 5.586317 5470 -2.013783 2.237926 6.389966 5510 0.717242 1.526201 8.547710 5610 0.906764 3.772418 4.857180 5710 -2.701150 1.680605 5.895218 5860 1.171938 3.391593 7.880528 5960 0.676196 4.355975 6.813628 606 -1.082175 4.130706 5.070274 616 -2.205682 3.669213 5.983173 626 -2.230261 2.027979 7.846755 636 0 -1.04955 2.570545 8.630915 641 0 2.159953 3.005880 7.621866 651 0 1.257074 3.912582 8.842312 661 0 -1.208400 3.720606 4.066511 691 0 -3.172482 3.799547 5.489493 711 0 -2.334044 0.952468 8.003198 731 0 -3.156195 2.507658 8.186538 <t< td=""><td>48</td><td>1</td><td>0</td><td>1.264628</td><td>-5.244265</td><td>6.496462</td></t<>	48	1	0	1.264628	-5.244265	6.496462
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	49	1	0	1.508821	-3.843477	8.643102
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50	1	0	-0.119806	-4.321588	8.240381
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	51	44	0	-0.025582	1.497541	5.926165
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	52	7	0	0.257307	2.221484	7.970844
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	53	7	0	0.218410	3.623696	5.586317
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	54	7	0	-2.013783	2.237926	6.389966
56100.906764 3.772418 4.857180 57 10 -2.701150 1.680605 5.895218 58 60 1.171938 3.391593 7.880528 59 60 0.676196 4.355975 6.813628 60 60 -1.082175 4.130706 5.070274 61 60 -2.205682 3.669213 5.983173 62 60 -2.230261 2.027979 7.846755 63 60 -1.044955 2.570545 8.630915 64 10 2.159953 3.005880 7.621866 65 10 1.257074 3.912582 8.842312 66 10 1.461547 5.073113 6.559486 67 10 -0.158816 4.948969 7.192637 68 10 -1.208400 3.720606 4.066511 69 10 -1.082245 5.224721 4.9930622 70 10 -3.172482 3.799547 5.489493 71 10 -2.234044 0.952468 8.003198 73 10 -3.156195 2.507658 8.186538 74 10 -1.069203 2.190285 9.655860 75 10 -1.109022 3.657542 8.715715 76 440 -0.026057 -0.026930 3.249681 77 0 0.226439 <	55	1	0	0.717242	1.526201	8.547710
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	56	1	0	0.906764	3.772418	4.857180
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	57	1	0	-2 701150	1 680605	5 895218
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	58	6	Õ	1 171938	3 391 593	7 880528
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	59	6	Ő	0.676196	4 355975	6 813628
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	60	6	0	-1 082175	4 130706	5 070274
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	61	6	0	-2 205682	3 660213	5 083173
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	62	6	0	-2.203002	2 027070	7 8/6755
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	62	6	0	1 044055	2.027777	8 630015
64102.139933 5.003880 7.021800 65 10 1.257074 3.912582 8.842312 66 10 1.461547 5.073113 6.559486 67 10 -0.158816 4.948969 7.192637 68 10 -1.208400 3.720606 4.066511 69 10 -1.082245 5.224721 4.993062 70 10 -3.172482 3.799547 5.489493 71 10 -2.244570 4.282077 6.886539 72 10 -2.334044 0.952468 8.003198 73 10 -3.156195 2.507658 8.186538 74 10 -1.069203 2.190285 9.655860 75 10 -1.109022 3.657542 8.715715 76 440 -0.026057 -0.026930 3.249681 77 70 0.255841 -1.421092 1.591275 79 70 -2.011933 -0.044738 2.378359 80 10 0.669992 2.192261 1.910309 81 10 0.953960 -2.120964 1.816224 82 10 -2.700924 -0.193625 3.106876 83 60 1.156565 0.693262 0.618291 84 60 0.696808 -0.728664 0.334787 85 60 <td< td=""><td>64</td><td>1</td><td>0</td><td>-1.044955</td><td>2.370343</td><td>7 621966</td></td<>	64	1	0	-1.044955	2.370343	7 621966
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	65	1	0	2.139933	3.003880	7.021000 9.942212
00 1 0 1.401347 3.073113 0.339480 67 10 -0.158816 4.948969 7.192637 68 10 -1.208400 3.720606 4.066511 69 10 -1.082245 5.224721 4.993062 70 10 -3.172482 3.799547 5.489493 71 10 -2.244570 4.282077 6.886539 72 10 -2.334044 0.952468 8.003198 73 10 -3.156195 2.507658 8.186538 74 10 -1.069203 2.190285 9.655860 75 10 -1.109022 3.657542 8.715715 76 440 -0.026057 -0.026930 3.249681 77 70 0.226439 1.341847 1.581832 78 70 0.255841 -1.421092 1.591275 79 70 -2.011933 -0.044738 2.378359 80 10 0.953960 -2.120964 1.816224 82 10 -2.700924 -0.193625 3.106876 83 60 1.156565 0.693262 0.618291 84 60 0.696808 -0.728664 0.334787 85 60 -2.178929 -1.128236 1.352870	66	1 1	0	1.23/0/4	5.912362	0.042312
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	00	1	0	1.40134/	3.0/3113	0.339480
6810-1.2084003.7206064.066511 69 10-1.0822455.2247214.993062 70 10-3.1724823.7995475.489493 71 10-2.2445704.2820776.886539 72 10-2.3340440.9524688.003198 73 10-3.1561952.5076588.186538 74 10-1.0692032.1902859.655860 75 10-1.1090223.6575428.715715 76 440-0.026057-0.0269303.249681 77 700.2264391.3418471.581832 78 700.255841-1.4210921.591275 79 70-2.011933-0.0447382.378359 80 100.6699922.1922611.910309 81 100.953960-2.1209641.816224 82 10-2.700924-0.1936253.106876 83 601.1565650.6932620.618291 84 600.696808-0.7286640.334787 85 60-1.039091-2.1331961.419837 86 60-2.178929-1.1282361.352870	6/	1	0	-0.158810	4.948969	/.19263/
6910 -1.082245 5.224721 4.993062 70 10 -3.172482 3.799547 5.489493 71 10 -2.244570 4.282077 6.886539 72 10 -2.334044 0.952468 8.003198 73 10 -3.156195 2.507658 8.186538 74 10 -1.069203 2.190285 9.655860 75 10 -1.109022 3.657542 8.715715 76 440 -0.026057 -0.026930 3.249681 77 70 0.226439 1.341847 1.581832 78 70 0.255841 -1.421092 1.591275 79 70 -2.011933 -0.044738 2.378359 80 10 0.669992 2.192261 1.910309 81 10 0.953960 -2.120964 1.816224 82 10 -2.700924 -0.193625 3.106876 83 60 1.156565 0.693262 0.618291 84 60 0.696808 -0.728664 0.334787 85 60 -1.039091 -2.133196 1.419837 86 6 0 -2.178929 -1.128236 1.352870	68	1	0	-1.208400	3.720606	4.066511
7010 -3.172482 3.799547 5.489493 71 10 -2.344570 4.282077 6.886539 72 10 -2.334044 0.952468 8.003198 73 10 -3.156195 2.507658 8.186538 74 10 -1.069203 2.190285 9.655860 75 10 -1.109022 3.657542 8.715715 76 440 -0.026057 -0.026930 3.249681 77 70 0.226439 1.341847 1.581832 78 70 0.255841 -1.421092 1.591275 79 70 -2.011933 -0.044738 2.378359 80 10 0.669992 2.192261 1.910309 81 10 0.953960 -2.120964 1.816224 82 10 -2.700924 -0.193625 3.106876 83 60 1.156565 0.693262 0.618291 84 60 0.696808 -0.728664 0.334787 85 60 -1.039091 -2.133196 1.419837 86 6 0 -2.178929 -1.128236 1.352870	69 70	l	0	-1.082245	5.224/21	4.993062
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	70	l	0	-3.172482	3.799547	5.489493
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	71	l	0	-2.244570	4.282077	6.886539
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	72	1	0	-2.334044	0.952468	8.003198
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	73	1	0	-3.156195	2.507658	8.186538
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	74	1	0	-1.069203	2.190285	9.655860
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	75	1	0	-1.109022	3.657542	8.715715
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	76	44	0	-0.026057	-0.026930	3.249681
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	77	7	0	0.226439	1.341847	1.581832
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	78	7	0	0.255841	-1.421092	1.591275
80100.6699922.1922611.91030981100.953960-2.1209641.8162248210-2.700924-0.1936253.10687683601.1565650.6932620.61829184600.696808-0.7286640.3347878560-1.039091-2.1331961.4198378660-2.178929-1.1282361.352870	79	7	0	-2.011933	-0.044738	2.378359
81100.953960-2.1209641.8162248210-2.700924-0.1936253.10687683601.1565650.6932620.61829184600.696808-0.7286640.3347878560-1.039091-2.1331961.4198378660-2.178929-1.1282361.352870	80	1	0	0.669992	2.192261	1.910309
8210-2.700924-0.1936253.10687683601.1565650.6932620.61829184600.696808-0.7286640.3347878560-1.039091-2.1331961.4198378660-2.178929-1.1282361.352870	81	1	0	0.953960	-2.120964	1.816224
83 6 0 1.156565 0.693262 0.618291 84 6 0 0.696808 -0.728664 0.334787 85 6 0 -1.039091 -2.133196 1.419837 86 6 0 -2.178929 -1.128236 1.352870	82	1	0	-2.700924	-0.193625	3.106876
84 6 0 0.696808 -0.728664 0.334787 85 6 0 -1.039091 -2.133196 1.419837 86 6 0 -2.178929 -1.128236 1.352870	83	6	0	1.156565	0.693262	0.618291
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	84	6	0	0.696808	-0.728664	0.334787
86 6 0 -2.178929 -1.128236 1.352870	85	6	Õ	-1.039091	-2.133196	1.419837
	86	6	Õ	-2.178929	-1.128236	1.352870

87	6	0	-2.252623	1.313361	1.820145
88	6	0	-1.078575	1.722132	0.946268
89	1	0	2.146436	0.693249	1.079328
90	1	0	1.222335	1.260827	-0.317888
91	1	0	1.498044	-1.291486	-0.152027
92	1	0	-0.136708	-0.727408	-0.371230
93	1	0	-1.157228	-2.789196	2.284808
94	1	0	-1.040363	-2.759352	0.518954
95	1	0	-3.137373	-1.637030	1.488005
96	1	0	-2.224172	-0.664116	0.365224
97	1	0	-2.357863	1.992881	2.667952
98	1	0	-3.183735	1.347672	1.241568
99	1	0	-1.108730	2.797452	0.750978
100	1	0	-1.140010	1.237989	-0.030736
101	1	0	1.748227	-1.427402	5.812371
102	1	0	1.654321	1.506788	5.508474
103	1	0	1.649145	0.334570	3.455274
104	1	0	-0.766464	0.000651	6.375642
105	1	0	-0.778421	-1.156353	4.319041
106	1	0	-0.490912	1.304077	4.265204
107	1	0	0.934502	-0.984588	4.298436
108	1	0	0.940449	0.100583	6.212982

7. Density Functional Theory (DFT) calculation for the structure of $[(Cn*Ru)_2(\mu-H)_3]^{2+}(4^{2+})$.

Density functional theory (DFT) calculations were carried out at the B3PW91 levelⁱ in conjunction with the Stuttgart/Dresden ECPⁱⁱ and associated with triple- ζ SDD basis sets for Ru. For N and H, 6-311G(d,p) basis sets were employed, and for C, 6-31G(d) was done. All calculations were performed by utilizing the Gaussian03 program.ⁱⁱⁱ The molecular structure was drawn by using the *GaussView version 4.1.2* program.^{iv} Frequency calculations at the same level of theory as geometry optimizations were performed on optimized structure to ensure that minima exhibit only positive frequency. Two initial structures [(Cn*Ru)₂(μ -H)₃]²⁺ (**4A**) and [(Cn*Ru)₂(μ -H)₅]²⁺ (**4B**) (SFigure 9) were optimized and only **4A** reproduced the molecular structure of **4-BPh**₄ as shown in Sfigure 10. Selected bond lengths (Å) and angles (°) are shown in STable 7.

SFigure 9. Initial structures of 4²⁺; 4A (left) and 4B (right). Hydrogen atoms on Cn ligands are omitted for clarity. Calculations for 4A afforded optimized structure shown in SFigure 5. Calculations for 4B did not converge and optimized structure was not obtained.

SFigure 10. Optimized structure of 4^{2+} . Hydrogen atoms on carbons are omitted for clarity.

STuble H Beleeteu e	ond rengens (r) and angles () of 1			
Ru(1)-Ru(2)	2.4001	Ru(1)-N(3)	2.1633	Ru(2)-N(5)	2.1633
Ru(1)-N(1)	2.1621	Ru(2)-N(4)	2.1659	Ru(2)-N(6)	2.1621
Ru(1)-N(2)	2.1659				
Ru(1)-H(1)	1.7965	Ru(1)-H(3)	1.7948	Ru(2)-H(2)	1.7948
Ru(1)-H(2)	1.7968	Ru(2)-H(1)	1.7965	Ru(2)-H(3)	1.7968
N(1)-Ru(1)-N(2)	81.26	N(2)-Ru(1)-N(3)	81.37	N(2)- $Ru(1)$ - $Ru(2)$	131.27
N(1)-Ru(1)-N(3)	81.22	N(3)- $Ru(1)$ - $Ru(2)$	131.24	N(1)- $Ru(1)$ - $Ru(2)$	131.19
N(1)-Ru(1)-H(2)	178.94	N(3)-Ru(1)-H(1)	179.06	Ru(1)-H(2)-Ru(2)	83.86
N(2)-Ru(1)-H(3)	178.89	Ru(1)-H(1)-Ru(2)	83.83	Ru(1)-H(3)-Ru(2)	83.86

STable 7. Selected bond lengths (Å) and angles (°) of 4^{2+}

STable 8. Coordination of 4²⁺

1	44	0	-0.010041	0.001460	4.999039
2	44	0	2.390042	-0.001460	4.999039
3	7	0	-1.435953	0.027943	3.372394
4	6	0	-0.778017	-0.178195	2.062850
5	6	0	-2.484468	-1.027997	3.579354
6	6	0	-2.024190	1.395820	3.418402
7	1	0	-0.361967	-1.185316	2.023388
8	1	0	0.028849	0.545174	1.949732
9	1	0	-1.499424	-0.053282	1.245782
10	1	0	-2.720192	-1.510854	2.626319
11	1	0	-3.408388	-0.550257	3.911046
12	1	0	-1.238757	2.084673	3.098409
13	1	0	-2.860100	1.487677	2.710982
14	7	0	-1.435592	-1.420677	5.786366
15	6	0	-0.774012	-2.443304	6.626565
16	6	0	-2.488491	-0.713494	6.591511
17	6	0	-2.021567	-2.070967	4.581367
18	1	0	-0.352030	-1.964534	7.510946
19	1	0	0.029937	-2.908198	6.056934
20	1	0	-1.493228	-3.210752	6.938491
21	1	0	-2.735406	-1.299706	7.481809
22	1	0	-3.406111	-0.657749	6.003031
23	1	0	-1.236646	-2.695081	4.147292
24	1	0	-2.857429	-2.728486	4.858243
25	7	0	-1.436909	1.396939	5.840438
26	6	0	-0.781667	2.635980	6.315041
27	6	0	-2.486647	1.740998	4.822541
28	6	0	-2.023369	0.671835	7.001820
29	1	0	-0.354621	3.166406	5.463413
30	1	0	0.016575	2.376889	7.010279
31	1	0	-1.507541	3.286226	6.819061
32	1	0	-2.725773	2.807234	4.879079
33	1	0	-3.408712	1.212837	5.072375
34	1	0	-1.237007	0.600626	7.757157
35	1	0	-2.857750	1.238805	7.437611
36	7	0	3.815954	-0.027943	3.372393
37	6	0	3.158016	0.178195	2.062850

38	6	0	4.864469	1.027998	3.579353
39	6	0	4.404190	-1.395820	3.418402
40	1	0	2.741966	1.185316	2.023389
41	1	0	2.351151	-0.545174	1.949733
42	1	0	3.879422	0.053282	1.245782
43	1	0	5.100192	1.510854	2.626318
44	1	0	5.788389	0.550258	3.911045
45	1	0	3.618757	-2.084672	3.098410
46	1	0	5.240100	-1.487678	2.710982
47	7	0	3.815593	1.420677	5.786366
48	6	0	3.154011	2.443304	6.626565
49	6	0	4.868491	0.713494	6.591511
50	6	0	4.401567	2.070968	4.581367
51	1	0	2.732030	1.964533	7.510946
52	1	0	2.350062	2.908197	6.056933
53	1	0	3.873227	3.210752	6.938491
54	1	0	5.115407	1.299706	7.481809
55	1	0	5.786111	0.657750	6.003032
56	1	0	3.616645	2.695080	4.147292
57	1	0	5.237428	2.728487	4.858242
58	7	0	3.816910	-1.396940	5.840438
59	6	0	3.161667	-2.635980	6.315040
60	6	0	4.866648	-1.740998	4.822541
61	6	0	4.403369	-0.671835	7.001820
62	1	0	2.734620	-3.166405	5.463412
63	1	0	2.363424	-2.376888	7.010278
64	1	0	3.887539	-3.286226	6.819061
65	1	0	5.105773	-2.807234	4.879078
66	1	0	5.788713	-1.212838	5.072375
67	1	0	3.617007	-0.600626	7.757156
68	1	0	5.237749	-1.238805	7.437612
69	1	0	1.190000	0.000000	6.335875
70	1	0	1.187133	-1.158103	4.333000
71	1	0	1.192867	1.158103	4.333000

8. X-ray diffraction studies.

Crystals suitable for X-ray analyses of **2a-BPh**₄, **3-BF**₄ and **4-BPh**₄ were obtained from the preparations described above and mounted on nylon Cryoloops with Paratone-N (Hampton Research Corp.). The X-ray diffraction experiments on **2a-BPh**₄, **3-BF**₄ and **4-BPh**₄ were carried out using a Rigaku R-AXIS RAPID imaging plate diffractometer with a graphite-monochromated Mo Kα radiation source ($\lambda = 0.71069$ Å). Cell refinement and data reduction were carried out using the PROCESS-AUTO program^{vii}. The intensity data were corrected for Lorentz-polarization effects and empirical absorption. The structures of **2a-BPh**₄, **3-BF**₄ and **4-BPh**₄ were determined by direct methods using the SHELX-97 program^{viii}. All non-hydrogen atoms were found by a difference Fourier synthesis. The refinement was carried out by the least-squares methods based on *F*² with all measured reflection data. Non-hydrogen atoms except one BF₄ anion and acetone included in **3-BF**₄ and **4-BPh**₄ were refined anisotropically. The hydrogen atoms except those bounded to metals were included in calculated positions and refined by using a riding model. The metal-bound hydrogen atoms of **3-BF**₄ and **4-BPh**₄ were located on difference Fourier maps and refined isotropically. Details of crystal data and results of analyses are listed in STable 9.

^{vii} *PROCESS-AUTO*, Automatic Data Acquisition and Processing Package for Imaging Plate Diffractometer; Rigaku Corporation: TokyoJapan, 1998.

^{viii} Sheldrick, G. M. SHELX-97, Program for Crystal Structure Determination; University of Göttingen: Göttingen, Germany, 1997.

	2a-BPh ₄	3-BF ₄	4-BPh ₄
empirical formula	$C_{30}H_{40}B_1N_3Ru_1$	$C_{24}H_{68}B_4F_{16}N_{12}Ru_4 \cdot (C_3H_6O_1)_{1.5}$	$C_{66}H_{85}B_2N_6Ru_2$
fw	554.53	1363.54	1186.16
cryst description	needle	platelet	platelet
cryst color	colorless	red	purple
cryst size (mm)	$0.71 \times 0.09 \times 0.07$	$0.46 \times 0.30 \times 0.06$	$0.41\times0.13\times0.03$
crystallizing solution	acetonitrile (- 30 °C)	acetone (25 °C)	DMSO/Et ₂ O (25 °C)
cryst syst	monoclinic	monoclinic	monoclinic
space group	<i>P</i> 2 ₁ (# 4)	$P2_1/n \ (\# 14)$	$P2_1/n$ (# 14)
<i>a</i> (Å)	9.7101(16)	11.9546(5)	12.6657(3)
<i>b</i> (Å)	10.2653(19)	21.0770(8)	35.4433(8)
<i>c</i> (Å)	13.582(2)	20.2021(8)	12.9853(3)
β (deg)	92.650(5)	93.9900(13)	90.1310(7)
volume (Å ³)	1352.3(4)	5077.9(4)	5829.3(2)
Z value	2	4	4
D_{calc} (g/cm ³)	1.362	1.784	1.352
measurement temp. (°C)	-120	-100	-100
μ (Mo K α) (mm ⁻¹)	0.603	1.266	0.564
diffractometer	Rigaku R-AXIS RAPID	Rigaku R-AXIS RAPID	Rigaku R-AXIS RAPID
radiation	Mo K α (λ = 0.71069 Å)	Mo K α (λ = 0.71069 Å)	Mo K α (λ = 0.71069 Å)
monochrometer	graphite	graphite	graphite
$2\theta_{\max}$ (deg)	55	55	60
reflns collected	10212	38215	68655
indep reflns	$3199 (R_{\text{int}} = 0.0478)$	11701 ($R_{\rm int} = 0.0523$)	17203 (<i>R</i> _{int} =0.0246)
reflns obsd (> 2σ)	5120	9638	14504
abs. correction type	empirical	empirical	empirical
abs. transmn	0.5334 (min.),	0.7250 (min.),	0.7164 (min.),
	1.0000 (max.)	1.0000 (max.)	1.0000 (max.)
$R_1 (I > 2\sigma(I))$	0.0467	0.0488	0.0343
$wR_2 (I > 2\sigma(I))$	0.1157	0.1303	0.0871
R_1 (all data)	0.0566	0.0578	0.0422
wR_2 (all data)	0.1290	0.1376	0.0927
data / restraints / params	5808 / 1 / 316	11360 / 6 / 588	16866 / 0 / 699
goodness of fit on F^2	1.119	1.038	1.037
largest diff peak and hole (e $Å^{-3}$)	1.396 and -1.049	1.591 and -1.463	3.102 and -0.768

STable 9. Crystallographic Data of 2a-BPh₄, 3-BF₄ and 4-BPh₄

SFigure 11. ORTEP drawing of 2a-BPh₄

SFigure 12. ORTEP drawing of 3-BF₄

C28

SFigure 13. ORTEP drawing of 4-BPh₄

