Supporting Information

Targeting the c-Kit Promoter G-quadruplexes with 6Substituted Indenoisoquinolines

Mallesham Bejugam, ${ }^{\text {a }}$ Mekala Gunaratnam, ${ }^{\mathrm{d}}$ Sebastian Müller, ${ }^{\text {a }}$ Deborah A. Sanders ${ }^{\text {a }}$, Sven Sewitz ${ }^{\text {a }}$, Jonathan A. Fletcher ${ }^{\mathrm{e}}$, Stephen Neidle ${ }^{\text {d }}$ and Shankar Balasubramanian ${ }^{\text {a,b,c* }}$
${ }^{a}$ The University Chemical Laboratory, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom, ${ }^{b}$ School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, United Kingdom, ${ }^{c}$ Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Cambridge CB2 ORE, United Kingdom, ${ }^{d}$ Cancer Research UK Biomolecular Structure Group, School of Pharmacy, University of London, 29-39 Brunswick Square, London WC19 1AX, ${ }^{e}$ Brigham and Women’s Hospital, 75 Francis Street, Boston, MA, USA

General Methods:

All chemicals and anhydrous solvents were purchased from Aldrich or Fisher Scientific, unless otherwise indicated. Anhydrous reactions were carried out under a nitrogen atmosphere. Thin layer chromatography (TLC) was performed using silica gel $60 \mathrm{~F}_{254}$ coated on glass plates which were purchased from Merck. The synthesised compounds were purified by flash column chromatography using silica-gel 60 (0.040.063 mm). Developed TLC plates were visualized under a UV lamp and stained with iodine. Unless otherwise stated, all the ligand (1a-e) solutions were prepared in water for biophysical and biological experiments. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker DRX 500 instrument. Chemical shifts were relative to the deuterated solvent peak
and are reported in parts per million (ppm). The high resolution mass spectra were recorded on Micromass Q-TOF spectrometer using electrospray ionisation technique.

General synthetic route for 6-substituted indenoisoquinolines (1a-e)

1. General procedure for the synthesis of indenoisoquinolines 1a-e.

To a solution of 6-oxa-benzo[a]fluorene-5,11-dione (2) (1.0 eq) in $\mathrm{CHCl}_{3}[5 \mathrm{~mL}]$ was added the appropriate primary amine (1.5 eq). The reaction mixture was stirred at room temperature for 48 hrs . The solvent was removed in vacuo and the crude product was purified using 5-15 \% methanol in chloroform to afford the free base as an orange solid. Subsequently the free base was treated with ethanolic HCl solution to afford the desired compounds 1a-e as orange solids in excellent yields (generally $>90 \%$).
2. Synthesis of 6-(3-pyrrolidin-1-yl-propyl)-6H-indeno[1,2-c]isoquinoline-5,11-dione, hydrochloride salt (1a).

1a
The title compound 1a was synthesized from $\mathbf{2}$ and pyrrolidin-1-ylpropylamine using the general procedure. The crude compound was purified by column chromatography using 10% methanol in chloroform to afford the free base. The free base was treated with ethanolic HCl to afford the title compound 1a as an orange solid (94 \%).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{D}_{2} \mathrm{O}, 500 \mathrm{MHz}\right) \delta_{\mathrm{H}} 7.14(\mathrm{t}, 2 \mathrm{x} \mathrm{ArH}, J=7.14 \mathrm{~Hz}), 7.00(\mathrm{t}, \mathrm{ArH}, J=7.21 \mathrm{~Hz})$, $6.84(\mathrm{~m}, 2 \mathrm{x} \mathrm{ArH})$ (NOTE: generally multiplets in 1 H NMR are quoted as a range. Applies to all examples quoted), $6.77(\mathrm{~d}, \mathrm{ArH}, J=7.4 \mathrm{~Hz}), 6.68(\mathrm{t}, \mathrm{ArH}, J=7.41 \mathrm{~Hz})$, $6.46(\mathrm{~d}, \mathrm{ArH}, J=6.78 \mathrm{~Hz}), 3.65(\mathrm{t}, 2 \mathrm{H}, J=7.85 \mathrm{~Hz}), 3.21(\mathrm{bs}, 4 \mathrm{H}), 3.12(\mathrm{t}, 2 \mathrm{H}, J=7.37$ $\mathrm{Hz}), 1.93(\mathrm{~m}, 4 \mathrm{H}), 1.82(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{D}_{2} \mathrm{O}, 125 \mathrm{MHz}\right) \delta_{\mathrm{C}} 190.74,163.28,154.3$, $137.41,134.0,133.89,132.58,132.12,131.36,130.2,127.16,127.11,122.69,121.25$, $121.01,107.59,54.02,51.66,41.59,25.03,22.53$; HRMS (ESI): Calculated mass for free base $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 359.1681$ and found at $359.1760[\mathrm{M}+\mathrm{H}]^{+}$.

3. Synthesis of 6-(3-dimethylamino-propyl)-6H-indeno[1,2-c]isoquinoline-5,11-dione, hydrochloride salt (1b).

1b
The title compound $\mathbf{1 b}$ was synthesized from $\mathbf{2}$ and 3-dimethylaminopropylamine using the general procedure. The crude compound was purified by column chromatography using 8% methanol in chloroform to afford the free base. The free base was treated with ethanolic HCl to afford the title compound $\mathbf{1 b}$ as an orange solid (96%).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}, 500 \mathrm{MHz}\right) \delta_{\mathrm{H}} 7.30(\mathrm{~m}, 2 \mathrm{x} \mathrm{ArH}), 7.05(\mathrm{t}, \mathrm{ArH}, J=7.46 \mathrm{~Hz}), 6.99(\mathrm{t}, \mathrm{ArH}$, $J=7.47 \mathrm{~Hz}), 6.89(\mathrm{~m}, 2 \mathrm{x} \mathrm{ArH}), 6.78(\mathrm{t}, \mathrm{ArH}, J=7.6 \mathrm{~Hz}), 6.58(\mathrm{~d}, \mathrm{ArH}, J=6.96 \mathrm{~Hz})$, $3.75(\mathrm{t}, 2 \mathrm{H}, J=6.7 \mathrm{~Hz}), 3.06(\mathrm{t}, 2 \mathrm{H}, J=7.55 \mathrm{~Hz}), 2.73(\mathrm{~s}, 6 \mathrm{H}), 1.88(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}, 125 \mathrm{MHz}\right) \delta_{\mathrm{C}} 191.0,163.56,154.49,134.56,134.03,132.72,132.01,131.39$, 130.39, 127.27, 127.23, 122.77, 122.55, 121.43, 121.2, 107.84, 54.47, 42.57, 41.38, 23.79; HRMS (ESI): Calculated mass for free base $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 333.1525$ and found at $333.1599[\mathrm{M}+\mathrm{H}]^{+}$.

4. Synthesis of 6-[3-(4-methyl-piperazine-1-yl)-propyl]-6H-indeno[1,2-c]isoquinoline-5,11-dione, hydrochloride salt (1c).

1c
The title compound 1c was synthesized from 2 and 3-(4-methylpiperazin-1yl)propylamine using the general procedure. The crude compound was purified by column chromatography using 12% methanol in chloroform to afford the free base. The free base was treated with ethanolic HCl to afford the title compound $\mathbf{1 c}$ as an orange solid (92 \%).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{D}_{2} \mathrm{O}, 500 \mathrm{MHz}\right) \delta_{\mathrm{H}} 7.44(\mathrm{~d}, \mathrm{ArH}, J=7.83 \mathrm{~Hz}), 7.30(\mathrm{~d}, \mathrm{ArH}, J=7.93 \mathrm{~Hz})$, $7.06(\mathrm{~m}, 2 \times \mathrm{ArH}), 6.92(\mathrm{t}, 2 \times \mathrm{ArH}, J=7.14 \mathrm{~Hz}), 6.80(\mathrm{t}, \mathrm{ArH}, J=7.14 \mathrm{~Hz}), 6.66(\mathrm{~d}$, $\mathrm{ArH}, J=6.96 \mathrm{~Hz}), 3.85(\mathrm{t}, 2 \mathrm{H}, J=6.7 \mathrm{~Hz}), 3.50(\mathrm{bs}, 8 \mathrm{H}), 3.22(\mathrm{t}, 2 \mathrm{H}, J=7.22 \mathrm{~Hz}), 2.83$ (s, 3H), $1.96(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{D}_{2} \mathrm{O}, 125 \mathrm{MHz}\right) \delta_{\mathrm{C}}$ 193.65, 166.08, 157.05, 137.06, $136.6,136.53,135.24,133.83,132.93,129.74,129.67,125.28,125.06,124.01,123.72$, $110.43,56.27,52.56,51.1,45.01,44.0,27.7$; HRMS (ESI): Calculated mass for free base $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 388.1947$ and found at $388.2025[\mathrm{M}+\mathrm{H}]^{+}$.

5. Synthesis of 6-[3-(morpholin-4-yl)propyl]-6H-indeno[1,2-c]isoquinoline-5,11dione, hydrochloride salt (1d).

1d
The title compound 1d was synthesized from 2 and 3-(morpholin-4-yl)propylamine using the general procedure. The crude compound was purified by column chromatography using 10% methanol in chloroform to afford the free base. The free base was treated with ethanolic HCl to afford the title compound $\mathbf{1 d}$ as an orange solid (95%).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{D}_{2} \mathrm{O}, 500 \mathrm{MHz}\right) \delta_{\mathrm{H}} 7.37(\mathrm{~d}, \mathrm{ArH}, J=7.89 \mathrm{~Hz}), 7.28(\mathrm{~d}, \mathrm{ArH}, J=7.86 \mathrm{~Hz})$, $7.05(\mathrm{~m}, 2 \times \mathrm{ArH}), 7.01(\mathrm{t}, \mathrm{ArH}, J=7.53 \mathrm{~Hz}), 6.89(\mathrm{t}, \mathrm{ArH}, J=6.77 \mathrm{~Hz}), 6.79(\mathrm{t}, \mathrm{ArH}, J$ $=7.68 \mathrm{~Hz}), 6.63(\mathrm{~d}, \mathrm{ArH}, J=6.98 \mathrm{~Hz}), 3.93(\mathrm{bs}, 2 \mathrm{H}), 3.81(\mathrm{t}, 2 \mathrm{H}, J=6.17 \mathrm{~Hz}), 3.64(\mathrm{bs}$, $2 \mathrm{H}), 3.34(\mathrm{bs}, 2 \mathrm{H}), 3.10(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.89 \mathrm{~Hz}), 3.02(\mathrm{bs}, 2 \mathrm{H}), 1.94(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}, 125 \mathrm{MHz}\right) \delta_{\mathrm{C}} 191.18,163.64,154.6,134.69,134.12,134.07,132.85,131.43$, $130.52,127.33,127.28,122.85,122.59,121.54,121.31,107.99,63.61,54.05,51.58$, 41.56, 22.94; HRMS (ESI): Calculated mass for free base $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 375.1630$ and found at $375.1703[\mathrm{M}+\mathrm{H}]^{+}$.

6. Synthesis of 6-[3-(imidazol-1-yl)propyl]-6H-indeno[1,2-c]isoquinoline-5,11-dione, hydrochloride salt (1e).

1e
The title compound $\mathbf{1 e}$ was synthesized from $\mathbf{2}$ and 3-(imidazol-1-yl)propylamine using the general procedure. The crude compound was purified by column chromatography using 15% methanol in chloroform to afford the free base. The free base was treated with ethanolic HCl to afford the title compound $\mathbf{1 e}$ as an orange solid (94 \%).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}, 500 \mathrm{MHz}\right) \delta_{\mathrm{H}} 8.51(\mathrm{~s}, \mathrm{ArH}), 7.28(\mathrm{~d}, 2 \mathrm{x} \mathrm{ArH}, J=17.48 \mathrm{~Hz}), 7.08(\mathrm{~d}, 2 \mathrm{x}$ $\mathrm{ArH}, J=6.66 \mathrm{~Hz}), 6.87(\mathrm{~m}, 2 \times \mathrm{ArH}), 6.76(\mathrm{t}, \mathrm{ArH}, J=6.78 \mathrm{~Hz}), 6.68(\mathrm{t}, \mathrm{ArH}, J=6.88$ $\mathrm{Hz}), 6.50(\mathrm{~d}, \mathrm{ArH}, J=7.17 \mathrm{~Hz}), 6.40(\mathrm{~d}, \mathrm{ArH}, J=5.88 \mathrm{~Hz}), 4.08(\mathrm{t}, 2 \mathrm{H}, J=5.95 \mathrm{~Hz})$, $3.42(\mathrm{t}, 2 \mathrm{H}, J=6.69 \mathrm{~Hz}), 1.86(\mathrm{t}, 2 \mathrm{H}, J=5.5 \mathrm{~Hz}){ }^{13} \mathrm{C}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}, 125 \mathrm{MHz}\right) \delta_{\mathrm{C}} 190.53$, $162.95,154.23,134.52,134.27,133.9,133.85,132.44,131.3,130.0,127.16,127.06$, $122.65,122.37,121.37,121.33,120.93,119.89,107.43,46.33,41.25,28.27$; HRMS (ESI): Calculated mass for free base $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 356.1321$ and found at $356.1399[\mathrm{M}+\mathrm{H}]^{+}$.

FRET-melting profiles

FRET-melting assay for c-Kit $1(\bullet)$, H-telo ($\mathbf{\Delta})$, c-Kit $2(\Delta)$ and ds DNA (■) in the presence of ligands 1a-e; buffer, 60 mM potassium cacodylate pH 7.4 .

