Supporting Information

Synthesis of 3,3-Disubstituted Oxindoles by Palladium-Catalyzed Tandem Reaction of 2-(Alkynyl)aryl Isocyanates with Benzylic Alcohols

Takeharu Toyoshima, Yusuke Mikano, Tomoya Miura, and Masahiro Murakami*
Department of Synthetic Chemistry and Biological Chemistry, Kyoto University Katsura, Kyoto 615-8510, Japan

Table of Contents:

S2 General Methods and Materials
Typical Procedure for $\operatorname{Pd}(0)$-Catalyzed Cyclization/[1,3] Rearrangement Reaction of 1a with Benzyl Alcohol (2a) (Table 1, entry 6)
Spectroscopic Data (4aa, 4ab)
S3
Spectroscopic Data (4ac, 4ad, 4ae, 4af, 4ag, 4ah, 4bd) Optical rotation/HPLC (4bd)
S4 Typical procedure for $\operatorname{Pd}(0)$-Catalyzed Cyclization/[1,3] Rearrangement Reaction of 1a with Allyl Alcohol (5a) (Table 3, entry 1) Spectroscopic Data (4bf, 4ca, Gaa, 6ab, 6ac, 6ad)
S5 Typical procedure for $\operatorname{Pd}(0)$-Catalyzed Cyclization/[1,3] Rearrangement/Allylation Reaction of 1a with Allyl Alcohol (5a) (Table 4)
Spectroscopic Data (6bd, 6ae, 6af, 7aa, 7ab)
S6 Spectroscopic Data (7ac) Cross-over Experiment on the Reaction with 3aa and 3dc
S7-8 $\quad{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 4aa
S9-10 $\quad{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{4 a b}$
S11-12 $\quad{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 4ac
S13-14 ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 4ad
S15-16 ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 4ae
S17-18 $\quad{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 4af
S19-20 $\quad{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 4ag
S21-22 ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{4} \mathbf{a h}$
S23-24 ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 4bd
S25-26 $\quad{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 4bf
S27-28 $\quad{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 4ca
S29-30 ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{6 a a}$
S31-32 ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{6 a b}$
S33-34 ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{6 a c}$
S35-36 ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{6 a d}$
S37-38 ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{6 b d}$
S39-40 $\quad{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 6 ae
S41-42 ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{6 a f}$
S43-44 ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 7aa
S45-46 ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 7ab
S47-48 ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 7ac

General Methods. All reactions were carried out with standard Schlenk techniques under an argon atmosphere. Infrared spectra were recorded on a Shimadzu FTIR-8100 spectrometer or a Shimadzu FTIR-8400 spectrophotometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Varian Gemini $2000\left({ }^{1} \mathrm{H}\right.$ at 300.07 MHz and ${ }^{13} \mathrm{C}$ at 75.46 MHz$)$ spectrometer or a Varian Mercury-vx $400\left({ }^{1} \mathrm{H}\right.$ at 400.44 MHz and ${ }^{13} \mathrm{C}$ at 100.69 MHz) spectrometer. NMR data were obtained in CDCl_{3}. Proton chemical shifts were referenced to the residual proton signal of the solvent at $7.26 \mathrm{ppm}\left(\mathrm{CHCl}_{3}\right)$. Carbon chemical shifts were referenced to the carbon signal of the solvent at $77.0 \mathrm{ppm}\left(\mathrm{CDCl}_{3}\right)$. High-resolution mass spectra were recorded on a JEOL JMS-SX102A spectrometer. Optical rotations were measured on a JASCO P-1020 polarimeter with a sodium lamp. HPLC analysis was performed by a Waters alliance 2695 system. GC analysis was carried out using a Shimadzu GC-2010 gas chromatograph. Gel permeation chromatography (GPC) was carried out with a Japan Analytical Industry LC-908. Flash column chromatography was performed with silica gel 60N (Kanto). Preparative thin-layer chromatography (PTLC) was performed on silica gel plates with PF254 indicator (Merck).

Materials. THF, 1,4-dioxane, toluene, and DME were distilled from sodium/benzophenone ketyl. All benzylic or allylic alcohols 2 and $\mathbf{5}$ were purchased, and purified by distillation, recrystallization or flash column chromatography prior to use. $\mathrm{CpPd}(\pi-$ allyl $)$ was prepared according to the literature method. ${ }^{1}$ 2-(Alkynyl)anilines were prepared by Sonogashira reaction of the corresponding 2-iodoaniline derivatives with alkyne. ${ }^{2}$ 2-(Alkynyl)aryl isocyanates were synthesized from the corresponding 2-(alkynyl)aniline according to the reported procedure. ${ }^{3}$ The analytical data of compounds $\mathbf{1 a},{ }^{4} \mathbf{1 b},{ }^{4} \mathbf{1 c},{ }^{5}$ and $\mathbf{1 d}{ }^{4}$ have been already reported. 3aa and 3dc were synthesized according to the reported procedure. ${ }^{6}$

Typical procedure for $\operatorname{Pd}(0)$-Catalyzed Cyclization/[1,3] Rearrangement Reaction of 1a with Benzyl

Alcohol (2a) (Table 1, entry 6). To an oven-dried flask equipped with a stirrer bar was added $\mathrm{CpPd}(\pi-a l l y l)$ $(2.1 \mathrm{mg}, 10 \mu \mathrm{~mol}, 5 \mathrm{~mol} \% \mathrm{Pd})$ and dppf ($5.5 \mathrm{mg}, 10 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%$). The flask was sealed with a rubber septum, evacuated and refilled with argon three times. Then, a solution of benzyl alcohol $\mathbf{2 a}(61.8 \mu \mathrm{~L}, 0.6$ mmol, 3.0 equiv) and substrate $1 \mathbf{1 a}(39.8 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) in dry toluene (2.0 mL) was added via syringe. After being heated at $80^{\circ} \mathrm{C}$ for 12 h , the reaction mixture was cooled to room temperature. The resulting mixture was passed through a pad of Florisil ${ }^{\circledR}$ and eluted with ethyl acetate. The filtrate was concentrated under reduced pressure. The residue was purified by gel permeation chromatography (GPC, CHCl_{3}) to give product 4aa ($42.4 \mathrm{mg}, 0.138 \mathrm{mmol}, 69 \%$).

4aa: Purified by GPC $\left(\mathrm{CHCl}_{3}\right)$: IR (KBr): $3250,1717,1678,1474,1339 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz): $\delta=0.78$ ($\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$), 1.06-1.23 (m, 2H), 1.38-1.55 (m, 2H), $2.18(\mathrm{ddd}, J=17.7,8.1,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.50$ (ddd, J $=17.7,7.8,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, 6.83-6.88 (m, 2H), 6.98-7.11 (m, 4H), 7.17-7.25 (m, 2H), $7.46(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz): $\delta=13.7$, $21.9,25.4,38.8,38.9,68.4,110.0,122.8,124.5,126.5,127.5,127.6,129.1,129.8,135.0,141.4,176.9$, 202.7; HRMS (EI ${ }^{+}$): Calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}_{2}, \mathrm{M}^{+} 307.1572$. Found m/z 307.1569.

4ab: Purified by GPC $\left(\mathrm{CHCl}_{3}\right)$: IR (KBr): 3200, $1717,1698,1472,1339 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}): \delta=0.78$ $(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.06-1.24(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.59(\mathrm{~m}, 2 \mathrm{H}), 2.11-2.21(\mathrm{~m}, 1 \mathrm{H}), 2.43-2.54(\mathrm{~m}, 1 \mathrm{H}), 4.00(\mathrm{~d}, J$ $=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{td}, J=7.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{dd}, J$ $=7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.08-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.57(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.65-7.70(\mathrm{~m}, 1 \mathrm{H}), 7.76(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.06(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}): \delta=13.6,21.8,25.4,33.7$, $38.7,68.2,110.2,122.5,124.3,124.6,124.8,125.06,125.09,127.3,127.5,127.8,128.1,129.0,131.7,132.3$, 133.4, 141.5, 177.4, 202.9; HRMS (EI $)$: Calcd for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{NO}_{2}, \mathrm{M}^{+} 357.1729$. Found m/z 357.1726.

[^0]4ac: Purified by GPC $\left(\mathrm{CHCl}_{3}\right)$: IR (KBr): 3310, 1717, 1684, $1472,1389 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz): $\delta=0.78$ ($\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$), 1.07-1.22 (m, 2H), 1.39-1.57 (m, 2H), $2.18(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{ddd}, J=17.6,8.0,6.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.51(\mathrm{ddd}, J=18.0,8.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.69-6.76(\mathrm{~m}, 3 \mathrm{H})$, $6.82(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{td}, J=7.6,0.8,1 \mathrm{H}), 7.18-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.36(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}): \delta=13.7,20.9,21.9,25.4,38.4,38.9,68.4,110.1,122.8,124.5,127.7,128.4,129.1,129.7,131.9$, 136.0, 141.5, 177.0, 202.9; HRMS (EI'): Calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{2}, \mathrm{M}^{+}$321.1729. Found m/z 321.1727.

4ad: Purified by GPC $\left(\mathrm{CHCl}_{3}\right)$: IR (KBr): $3240,1717,1678,1472,1340 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}): \delta=0.77$ $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.06-1.20(\mathrm{~m}, 2 \mathrm{H}), 1.36-1.57(\mathrm{~m}, 2 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{ddd}, J=17.7,7.8,6.6 \mathrm{~Hz}, 1 \mathrm{H})$, 2.48 (ddd, $J=17.4,7.8,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.60-6.68(\mathrm{~m}, 2 \mathrm{H})$, $6.74(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.82-6.90(\mathrm{~m}, 2 \mathrm{H}), 7.04-7.11(\mathrm{~m}, 1 \mathrm{H}), 7.18-7.25(\mathrm{~m}, 2 \mathrm{H}), 8.06(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz): $\delta=13.7,21.1,21.8,25.4,38.7,38.8,68.4,110.1,122.7,124.5,126.8,127.3,127.5,127.6$, $129.1,130.7,134.9,137.1,141.5,177.1,202.9$; HRMS (EI^{+}): Calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{2}, \mathrm{M}^{+} 321.1729$. Found m/z 321.1730 .

4ae: Purified by GPC $\left(\mathrm{CHCl}_{3}\right)$: IR (KBr): $3250,1717,1678,1472,1339 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}): \delta=0.76$ $(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.06-1.10(\mathrm{~m}, 2 \mathrm{H}), 1.39-1.57(\mathrm{~m}, 2 \mathrm{H}), 2.08-2.22(\mathrm{~m}, 1 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 2.38-2.49(\mathrm{~m}$, $1 \mathrm{H}), 3.51(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.77-6.85(\mathrm{~m}, 3 \mathrm{H}), 6.92-6.97(\mathrm{~m}, 2 \mathrm{H}), 6.99-7.10$ $(\mathrm{m}, 2 \mathrm{H}), 7.24(\mathrm{td}, J=7.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.73(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz): $\delta=13.7,20.0,21.9,25.5,34.5$, $38.8,68.0,110.0,122.7,124.8,125.2,126.6,127.8,129.2,129.8,130.2,133.8,137.2,141.5,177.1,202.9$; HRMS (EI'): Calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{2}, \mathrm{M}^{+} 321.1729$. Found m/z 321.1729.

4af: Purified by GPC $\left(\mathrm{CHCl}_{3}\right)$: IR (KBr): $3247,1711,1676,1514,1472,1250 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz): δ $=0.78(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.08-1.22(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.56(\mathrm{~m}, 2 \mathrm{H}), 2.18(\mathrm{ddd}, J=17.7,8.1,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.51$ (ddd, $J=17.7,7.8,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 6.52-6.58$ $(\mathrm{m}, 2 \mathrm{H}), 6.70(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.73-6.79(\mathrm{~m}, 2 \mathrm{H}), 7.07(\mathrm{td}, J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.35$ (br s, 1 H) ; ${ }^{13} \mathrm{C}$ NMR (100 MHz): $\delta=13.7,21.8,25.3,38.0,38.9,54.9,68.5,110.1,113.0,122.8,124.5$, $126.9,127.7,129.1,130.8,141.5,158.2,177.1,203.0 ;$ HRMS (EI^{+}): Calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{3}, \mathrm{M}^{+} 337.1678$. Found m/z 337.1682.

4ag: Purified by GPC $\left(\mathrm{CHCl}_{3}\right)$: IR (KBr): 3380, 3200, 1719, 1682, 1522, $1347 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz): δ $=0.77(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.04-1.23(\mathrm{~m}, 2 \mathrm{H}), 1.39-1.57(\mathrm{~m}, 2 \mathrm{H}), 2.09-2.22(\mathrm{~m}, 1 \mathrm{H}), 2.46(\mathrm{ddd}, J=17.7,7.5$, $6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.00-7.06(\mathrm{~m}$, $2 \mathrm{H}), 7.11(\mathrm{td}, \mathrm{J}=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.73(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.85-7.91(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}): \delta=13.7,21.9,25.4,38.4,38.8,67.8,110.2,122.9,123.3,124.4,126.6,129.7,130.8,141.0,143.1$, 146.9, 175.4, 201.9; HRMS (EI ${ }^{+}$: Calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4}, \mathrm{M}^{+} 352.1423$. Found m/z 352.1426.

4ah: Purified by flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone $\left.=1 / 1\right): \mathrm{IR}(\mathrm{KBr}): 1723,1707,1617,1472$, $1327 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz): $\delta=0.77(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.06-1.22(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.57(\mathrm{~m}, 2 \mathrm{H})$, $2.12-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.48(\mathrm{ddd}, J=17.6,7.6,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.72(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{dd}, J=7.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.25(\mathrm{~m}, 3 \mathrm{H}), 8.11(\mathrm{~s}$, $1 \mathrm{H}), 8.29(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.42(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz): $\delta=13.7,21.9,25.4,35.9,38.8,67.9$, $110.3,122.7,123.0,124.3,126.8,129.5,131.0,137.5,141.7,147.7,150.5,176.2,202.5 ; \mathrm{HRMS}^{\left(\mathrm{EI}^{+}\right): ~ C a l c d}$ for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}, \mathrm{M}^{+} 308.1525$. Found $\mathrm{m} / \mathrm{z} 308.1526$.

4bd: Purified by GPC $\left(\mathrm{CHCl}_{3}\right)$: IR (KBr): 3279 , 1724, 1689, 1670, 1617, $1469 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz): δ $=2.11(\mathrm{~s}, 3 \mathrm{H}), 3.55(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.58-6.62(\mathrm{~m}, 2 \mathrm{H}), 6.71(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.86-6.93(\mathrm{~m}, 2 \mathrm{H}), 7.06(\mathrm{td}, J=7.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.36-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.53(\mathrm{~m}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz): $\delta=21.1,41.5,66.3,110.3,123.0,124.4,127.1,127.38,127.40,128.0,128.4$, $129.2,129.3,130.9,132.7,134.3,136.5,137.0,140.9,177.0,194.7$; HRMS (EI ${ }^{+}$): Calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{NO}_{2}, \mathrm{M}^{+}$ 341.1416. Found m/z 341.1409.
$[\alpha]_{\mathrm{D}}{ }^{26.8}=+64.9\left(\mathrm{c}=1.01, \mathrm{CHCl}_{3}, 38 \% \mathrm{ee}\right)$; HPLC (Daicel Chiralcel OD-H, hexane $/ i-\mathrm{PrOH}=90: 10$, flow rate $=0.6 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$): $t_{1}=13.0 \mathrm{~min}$ (major), $t_{2}=15.9 \mathrm{~min}($ minor $)$.

4bf: Purified by GPC $\left(\mathrm{CHCl}_{3}\right)$: IR (KBr): $3150,1707,1678,1512,1472,1248 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz): δ $=3.54(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 6.52-6.57(\mathrm{~m}, 2 \mathrm{H}), 6.69-6.74(\mathrm{~m}, 3 \mathrm{H})$, $7.05(\mathrm{td}, J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.38-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.71(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz): $\delta=40.8,54.9,66.4,110.5,113.0,123.0,124.2,126.3,127.9,128.4,129.1,129.3,131.1$, 132.7, 136.4, 140.9, 158.3, 177.4, 194.8; HRMS (EI ${ }^{+}$: Calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{NO}_{3}, \mathrm{M}^{+} 357.1365$. Found m/z 357.1369 .

4ca: Purified by reprecipitation from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane: $\mathrm{IR}(\mathrm{KBr}): 3119,1706,1668,1614,1471,1237 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz): $\delta=3.59(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}$, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.04-7.11(\mathrm{~m}, 2 \mathrm{H}), 7.14(\mathrm{dd}, J=4.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.31(\mathrm{dd}, J=5.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.57(\mathrm{dd}, J=2.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz): $\delta=40.9,66.5,110.0,123.2,124.8,125.8,126.7,127.6,127.7,129.3,129.4,130.2,132.2,134.5,139.5$, $140.9,176.0,187.5$; HRMS (EI $)$: Calcd for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{NO}_{2} \mathrm{~S}, \mathrm{M}^{+} 333.0823$. Found m/z 333.0825.

Typical procedure for $\operatorname{Pd}(0)$-Catalyzed Cyclization/[1,3] Rearrangement Reaction of 1a with Allyl

 Alcohol (5a) (Table 3, entry 1). To an oven-dried flask equipped with a stirrer bar was added $\mathrm{CpPd}(\pi-a l l y l)$ $(2.1 \mathrm{mg}, 10 \mu \mathrm{~mol}, 5 \mathrm{~mol} \% \mathrm{Pd})$ and $\mathrm{dppf}(5.5 \mathrm{mg}, 10 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%)$. The flask was sealed with a rubber septum, evacuated and refilled with argon three times. Then, a solution of allyl alcohol ($\mathbf{5 a}, 136 \mu \mathrm{~L}, 2.0$ $\mathrm{mmol}, 10$ equiv) and substrate $\mathbf{1 a}(39.8 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) in dry toluene (2.0 mL) was added via syringe. After being heated at $40^{\circ} \mathrm{C}$ for 10 min , the reaction mixture was cooled to room temperature. The resulting mixture was passed through a pad of Florisil ${ }^{\circledR}$ and eluted with ethyl acetate. The filtrate was concentrated under reduced pressure. The residue was purified by gel permeation chromatography (GPC, CHCl_{3}) to give product 6aa ($30.2 \mathrm{mg}, 0.117 \mathrm{mmol}, 59 \%$).6aa: Purified by GPC $\left(\mathrm{CHCl}_{3}\right)$: IR (KBr): 3280, 1717, 1698, 1663, 1472, $1399 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz): δ $=0.76(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.06-1.21(\mathrm{~m}, 2 \mathrm{H}), 1.36-1.54(\mathrm{~m}, 2 \mathrm{H}), 2.19(\mathrm{ddd}, J=17.6,8.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.47$ (ddd, $J=17.6,8.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{dd}, J=14.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{dd}, J=14.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.88-4.94$ $(\mathrm{m}, 1 \mathrm{H}), 5.00-5.07(\mathrm{~m}, 1 \mathrm{H}), 5.30-5.42(\mathrm{~m}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{td}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.14$ $(\mathrm{d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{td}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}(75 \mathrm{MHz}): \delta=13.7,21.9,25.4$, $37.5,38.7,66.9,110.2,119.4,123.1,124.2,127.7,129.1,131.4,141.5,177.2,202.6$; $\mathrm{HRMS}\left(\mathrm{EI}^{+}\right)$: Calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{2}, \mathrm{M}^{+}$257.1416. Found m/z 257.1416.

6ab: Purified by GPC $\left(\mathrm{CHCl}_{3}\right)$: IR (KBr): $3210,1717,1674,1619,1472 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}): \delta=0.75$ $(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.03-1.21(\mathrm{~m}, 2 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.35-1.53(\mathrm{~m}, 2 \mathrm{H}), 2.17(\mathrm{ddd}, J=17.6,8.0,6.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.46(\mathrm{ddd}, J=17.6,8.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.56-4.61(\mathrm{~m}, 2 \mathrm{H})$, $6.96(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{td}, J=7.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.28(\mathrm{td}, J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $8.88(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz): $\delta=13.7,21.9,23.7,25.4,38.3,40.2,67.2,110.3,115.0,122.9,124.5$, $128.0,129.1,140.1,141.6,177.8,202.5$; HRMS (EI ${ }^{+}$): Calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{2}, \mathrm{M}^{+}$271.1572. Found m/z 271.1577.

6ac: Purified by GPC $\left(\mathrm{CHCl}_{3}\right)$: IR (KBr): $3210,1717,1676,1472,1339 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}): \delta=0.76$ ($\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$), $1.05-1.20(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.56(\mathrm{~m}, 2 \mathrm{H}), 2.11-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{ddd}, J=17.7,8.1,6.3$ $\mathrm{Hz}, 1 \mathrm{H}), 2.92-3.03(\mathrm{~m}, 1 \mathrm{H}), 3.14(\mathrm{ddd}, J=13.5,6.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.70-5.82(\mathrm{~m}, 1 \mathrm{H}), 6.36(\mathrm{~d}, J=15.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.92(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.05-7.23(\mathrm{~m}, 7 \mathrm{H}), 7.28(\mathrm{td}, J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.32(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(75$ $\mathrm{MHz}): \delta=13.7,21.9,25.4,36.8,38.7,66.9,110.2,122.9,123.1,124.3,126.1,127.2,127.7,128.3,129.2$, 134.3, 136.9, 141.3, 176.9, 202.6; HRMS (EI'): Calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{2}, \mathrm{M}^{+} 333.1729$. Found m/z 333.1728.

6ad: Purified by GPC $\left(\mathrm{CHCl}_{3}\right)$: IR (KBr): $3263,1717,1692,1,474 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}(400 \mathrm{MHz}): \delta=0.76(\mathrm{t}, \mathrm{J}$ $=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.04-1.22(\mathrm{~m}, 2 \mathrm{H}), 1.36-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{ddd}, J=17.6,76,6.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.47(\mathrm{ddd}, J=18.0,8.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.84-2.90(\mathrm{~m}, 1 \mathrm{H}), 2.90-2.96(\mathrm{~m}, 1 \mathrm{H}), 4.67-4.74(\mathrm{~m}, 1 \mathrm{H})$, $6.94(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{td}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.27(\mathrm{td}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, 8.63 (br s, 1H); ${ }^{13} \mathrm{C}$ NMR (75 MHz): $\delta=13.7,18.0,21.9,25.4,25.8,32.0,38.7,67.0,110.1,116.6,122.9$, 124.1, 128.2, 128.9, 135.9, 141.5, 177.8, 203.1; HRMS (EI'): Calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{2}, \mathrm{M}^{+} 285.1729$. Found m/z 285.1732 .

6bd: Purified by GPC $\left(\mathrm{CHCl}_{3}\right)$: IR (KBr): 3276, 1723, 1686, 1667, $1468,1233 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}(400 \mathrm{MHz}): \delta$ $=1.46(\mathrm{~s}, 3 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}), 3.00(\mathrm{dd}, J=14.0,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{dd}, J=14.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.78-4.85(\mathrm{~m}$, $1 \mathrm{H}), 6.94(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.39(\mathrm{t}, J$ $=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.52(\mathrm{~m}, 2 \mathrm{H}), 8.99(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}): \delta=17.9,25.9,34.6,65.1,110.6$, $116.3,123.0,124.0,128.0,128.1,128.4,129.0,129.9,132.7,136.5,141.0,178.4,194.8 ;$ HRMS (EI ${ }^{+}$): Calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{2}, \mathrm{M}^{+} 305.1416$. Found $\mathrm{m} / \mathrm{z} 305.1415$.

6ae: Purified by GPC $\left(\mathrm{CHCl}_{3}\right)$: IR (KBr): $3290,1717,1655,1472 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}(300 \mathrm{MHz}): \delta=0.67(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.76(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.06-1.21(\mathrm{~m}, 4 \mathrm{H}), 1.24-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.80(\mathrm{~m}, 2 \mathrm{H}), 2.20$ (ddd, J $=18.0,7.8,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{ddd}, J=17.7,7.5,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{dd}, J=13.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{dd}, J=$ $13.8,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.80-5.02(\mathrm{~m}, 1 \mathrm{H}), 5.40(\mathrm{dt}, J=15.0,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.92-6.97(\mathrm{~m}, 1 \mathrm{H}), 7.06(\mathrm{td}, J=7.8,0.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.12-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.27(\mathrm{td}, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.67(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz): $\delta=13.3$, 13.7, 21.9, 22.3, 25.4, 34.4, 36.5, 38.7, 67.2, 110.1, 122.5, 122.9, 124.3, 128.1, 128.9, 135.7, 141.5, 177.6, 203.0; HRMS (EI^{+}): Calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{NO}_{2}, \mathrm{M}^{+}$299.1885. Found m/z 299.1883.

6af: Purified by GPC $\left(\mathrm{CHCl}_{3}\right)$: IR (KBr): $3300,1717,1698,1670,1472,1339 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}): ~ \delta$ $=0.73(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.76(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.04-1.23(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.68-1.74(\mathrm{~m}, 2 \mathrm{H})$, $2.20(\mathrm{ddd}, J=17.7,7.5,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{ddd}, J=17.7,7.8,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{dd}, J=13.5,7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.92(\mathrm{dd}, J=13.8,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.89-5.09(\mathrm{~m}, 1 \mathrm{H}), 5.38-5.50(\mathrm{~m}, 1 \mathrm{H}), 6.92-6.98(\mathrm{~m}, 1 \mathrm{H}), 7.02-7.09(\mathrm{~m}, 1 \mathrm{H})$, 7.10-7.17 (m, 1H), $7.27(\operatorname{td}, J=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.82(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta=13.7,21.9,25.3,25.4,36.5$, $38.8,67.2,110.0,121.3,122.9,124.3,128.1,128.9,137.5,141.5,177.4,203.0 ; \mathrm{HRMS}^{\left(E I^{+}\right)}$: Calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{2}, \mathrm{M}^{+}$285.1729. Found m/z 285.1728.

Typical procedure for $\operatorname{Pd}(0)$-Catalyzed Cyclization/ [1,3] Rearrangement/Allylation Reaction of 1a with Allyl Alcohol (5a) (Table 4). To an oven-dried flask equipped with a stirrer bar was added $\mathrm{CpPd}(\pi-\mathrm{allyl})(2.1 \mathrm{mg}, 10 \mu \mathrm{~mol}, 5 \mathrm{~mol} \% \mathrm{Pd})$ and $\operatorname{dppf}(5.5 \mathrm{mg}, 10 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%)$. The flask was sealed with a rubber septum, evacuated and refilled with argon three times. Then, a solution of allyl alcohol (5a, $272 \mu \mathrm{~L}, 4.0 \mathrm{mmol}, 20$ equiv) and substrate $1 \mathbf{1 a}(39.8 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) in dry toluene (2.0 mL) was added via syringe. After being heated at $40^{\circ} \mathrm{C}$ for 12 h , the reaction mixture was cooled to room temperature. The resulting mixture was passed through a pad of Florisil ${ }^{\circledR}$ and eluted with ethyl acetate. The filtrate was concentrated under reduced pressure. The residue was purified by gel permeation chromatography (GPC, CHCl_{3}) to give product 7aa ($42.2 \mathrm{mg}, 0.142 \mathrm{mmol}, 71 \%$).

7aa: Purified by GPC $\left(\mathrm{CHCl}_{3}\right)$: IR (neat): $1725,1609,1487,1466,1356 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}): \delta=0.75$ $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.02-1.22(\mathrm{~m}, 2 \mathrm{H}), 1.32-1.53(\mathrm{~m}, 2 \mathrm{H}), 2.09(\mathrm{ddd}, J=17.7,7.2,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{ddd}, J$ $=17.7,7.8,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.82-2.92(\mathrm{~m}, 1 \mathrm{H}), 2.94-3.03(\mathrm{~m}, 1 \mathrm{H}), 4.30-4.48(\mathrm{~m}, 2 \mathrm{H}), 4.84-4.92(\mathrm{~m}, 1 \mathrm{H})$, 4.96-5.04 (m, 1H), 5.20-5.37 (m, 3H), 5.75-5.89(m, 1H), 6.87 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{td}, J=7.5,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.14-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.30(\mathrm{td}, J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz): $\delta=13.6,21.9,25.3,37.5,38.6$, $42.5,66.1,109.3,117.9,119.4,123.0,123.9,127.0,128.9,131.0,131.5,143.4,174.3,202.8 ; \mathrm{HRMS}^{\left(\mathrm{EI}^{+}\right)}$: Calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}_{2}, \mathrm{M}^{+}$297.1729. Found m/z 297.1729.

7ab: Purified by GPC $\left(\mathrm{CHCl}_{3}\right)$: IR (neat): $1728,1609,1487,1466,1354 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}(400 \mathrm{MHz}): \delta=0.75$ (t, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.03-1.21(\mathrm{~m}, 2 \mathrm{H}), 1.30-1.33(\mathrm{~m}, 3 \mathrm{H}), 1.35-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.77(\mathrm{~m}, 3 \mathrm{H}), 2.08$ (ddd, J $=17.6,8.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{ddd}, J=17.6,8.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{~s}, 2 \mathrm{H}), 4.24(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{~d}$, $J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.53-4.57(\mathrm{~m}, 1 \mathrm{H}), 4.57-4.61(\mathrm{~m}, 1 \mathrm{H}), 4.88-4.93(\mathrm{~m}, 1 \mathrm{H}), 4.93-4.97(\mathrm{~m}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{td}, J=7.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.28(\mathrm{td}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}): \delta=13.6,20.0,21.8,24.0,25.3,38.4,40.2,46.2,66.4,109.5,112.8,115.3,122.7,124.2,127.3,129.0$, 138.9, 140.0, 143.9, 174.7, 202.8; HRMS (EI ${ }^{+}$: Calcd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{NO}_{2}, \mathrm{M}^{+} 325.2042$. Found m/z 325.2043.

7ac: Purified by PTLC (hexane/ethyl acetate $=10: 1$): IR (neat): 1715, 1609, 1485, 1466, $1354 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz): $\delta=0.77(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.07-1.22(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.56(\mathrm{~m}, 2 \mathrm{H}), 2.14$ (ddd, $J=17.7$, $8.1,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{ddd}, J=17.7,7.8,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{ddd}, J=13.8,8.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{ddd}, J=$ $13.8,6.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{ddd}, J=15.9,7.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{ddd}, J=16.2,5.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.69$ (ddd, $J=15.3,8.4,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{ddd}, J=12.0,6.9,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~d}, J=15.9$ $\mathrm{Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.00-7.32(\mathrm{~m}, 13 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz): $\delta=13.7,21.9,25.3,36.8,38.7$, $42.2,66.4,109.4,122.3,122.8,123.0,123.9,126.0,126.3,127.0,127.2,127.7,128.40,128.45,129.1,133.5$, $134.3,135.7,136.8,143.3,174.3,202.8$; HRMS (EI ${ }^{+}$): Calcd for $\mathrm{C}_{31} \mathrm{H}_{31} \mathrm{NO}_{2}, \mathrm{M}^{+} 449.2355$. Found m/z 449.2360 .

Cross-over Experiment on the Reaction with 3aa and 3dc.

To an oven-dried flask equipped with a stirrer bar was added $\operatorname{CpPd}(\pi-$ allyl $)(2.1 \mathrm{mg}, 10 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%$ Pd), dppf ($5.5 \mathrm{mg}, 10 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%$), 3aa ($30.7 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv), and $\mathbf{3 d c}(35.6 \mathrm{mg}, 0.10 \mathrm{mmol}$, 1.0 equiv). The flask was sealed with a rubber septum, evacuated and refilled with argon three times. Then, dry toluene (4.0 mL) was added via syringe. After being heated at $80^{\circ} \mathrm{C}$ for 3 h , the reaction mixture was cooled to room temperature. The resulting mixture was passed through a pad of Florisil ${ }^{\circledR}$ and eluted with ethyl acetate. The filtrate was concentrated under reduced pressure to give a crude mixture of 4aa, 4ac, 4da and 4dc.

Without further purification, the mixture was treated with sodium methoxide ($32.4 \mathrm{mg}, 0.60 \mathrm{mmol}, 6.0$ equiv) in dry toluene (4.0 mL). After being stirred at $60^{\circ} \mathrm{C}$ for 1 h , the reaction mixture was cooled to room temperature. The resulting mixture was quenched with addition of water. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were dried over MgSO_{4} and concentrated under reduced pressure to give hydrolytic products 8aa, 8ac, 8da and 8dc. The yield was determined by GC analysis using n-nonadecane as an internal standard (GC conditions: Agilent Technologies DB-1, $15 \mathrm{~m} \times 0.32 \mathrm{~mm}$, Injection $250^{\circ} \mathrm{C}$; detector temperature $290^{\circ} \mathrm{C}$; oven temperature: $80^{\circ} \mathrm{C}$ for 5 min , increase by $20^{\circ} \mathrm{C} / \mathrm{min}$ to $280^{\circ} \mathrm{C}$, and keep the temperature for $5 \mathrm{~min}, \mathrm{R}_{\mathrm{t}} \mathbf{8 a a} 12.5 \mathrm{~min}$, 8 ac 13.0 min , 8da 13.5 min , 8dc 14.0 min).

File: xp

z6でくと！
260＊ 2τ
$988^{*} \angle Z \tau$
$\angle z 9 \cdot \varepsilon\rceil$

L＊＊＇sz
ztc•白
$4 t \cdot \varepsilon \varepsilon$

$\varepsilon z \tau \cdot 89$
$0 \angle 5 \cdot 9$
sti： 6

L85． 8 ET
208． sex
$\$ 90 . \mathrm{szz}$
${ }^{*} 60$ ．ser
（ $\mathrm{sz} \mathrm{\tau}$ 256．82 とL9•тย

픈
Trs．rtr
$97 * * L L$
s88•z0z

$$
\left\{\begin{array}{l}
E= \\
E \\
E \quad \\
E
\end{array}\right.
$$

\longrightarrow

8E8. $2 z$ \qquad
0عE.5z
ह.sz -

C86.8E
LTO. 8ε

06s.ve \qquad

[^0]: 1 Tatsuno, Y.; Yoshida, T.; Otsuka, S. Inorg. Synth. 1979, 19, 220.
 2 Kamijo, S.; Yamamoto, Y. Angew. Chem. Int. Ed. 2002, 41, 3230.
 3 Li, H.; Yang, H.; Petersen, J. L.; Wang, K. K. J. Org. Chem. 2004, 69, 4500.
 4 Miura, T.; Takahashi, Y.; Murakami, M. Org. Lett. 2007, 9, 5075.
 5 Miura, T.; Takahashi, Y.; Murakami, M. Org. Lett. 2008, 10, 1743.
 6 Miura, T.; Toyoshima, T.; Ito, Y.; Murakami, M. Chem. Lett. 2009, 38, 1174.

