Self-Assembled E₂L₃ Cryptands (E = P, As, Sb, Bi): Transmetallation, Homo- and Heterometallic Assemblies, and Conformational Isomerism

Virginia M. Cangelosi, Timothy G. Carter, Justin L. Crossland, Lev N. Zakharov, Darren W. Johnson*

Department of Chemistry, Materials Science Institute, and the Oregon Nanoscience and Microtechnologies Institute (ONAMI), University of Oregon, Eugene, OR 97403-1253 (USA)

Email: dwj@uoregon.edu

Supporting Information

Contents:

CSD Search Details	S2
Table S1 – CSD refcodes for E-S distances and S-E-S angles	S2
Table S2 – DFT and ¹ H NMR-calculated energies for homometallic cryptands	S2
Figure S1 – ¹ H NMR spectra for homometallic cryptands	S3
Figure S2 – g COSY NMR spectra for Sb ₂ L ₃	
Figure S3 – NOESY NMR spectra for Sb ₂ L ₃	S5
Figure S4 – NOESY NMR spectra for Sb ₂ L ₃	S6
Figure S5 – NOESY NMR spectra for Sb ₂ L ₃	S7
Figure S6 – NOESY NMR spectra for Sb ₂ L ₃	S8
Figure S7 – g COSY NMR spectra for Bi ₂ L ₃	S9
Figure S8 – NOESY NMR spectra for Bi ₂ L ₃	S10
Figure S9 – NOESY NMR spectra for Bi ₂ L ₃	S11
Figure S10 – Overlayed X-ray and DFT-calculated crystal structures	S12
Figure S11 – DFT-calculated structures of E_2L_3 -asym	S12
Figure S12 – LCMS data for Sb_2L_3	S13
Figure S13 - ORTEP reps. of X-ray crystal structures of AsSbL ₃ , AsBiL ₃ , PSbL ₃	S14
Figure S14 $-$ ³¹ P NMR of PSbL ₃	S14
Figure S15 – Overlayed DFT-calculated structures of Sb ₂ L ₃ -asym and Bi ₂ L ₃ -asym	S15
Figure S16 – LCMS spectrometry data for AsSbL ₃	S15
Figure S17 – LCMS spectrometry data for AsBiL ₃	S16
Figure S18 – LCMS spectrometry data for PSbL ₃	S16
CSD Search Details for P••• π contacts	S2
Table S3 – CSD refcodes for P $\cdots\pi$ contacts	S17

Cambridge Structural Database Search for E-S Complexes

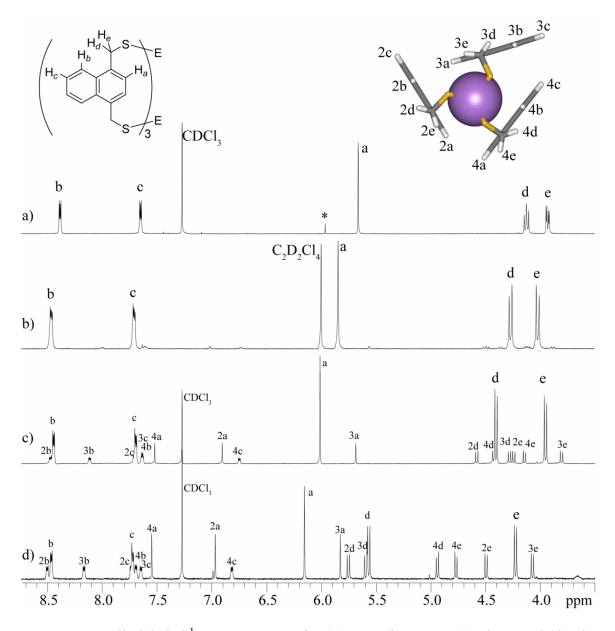

Searches were performed using ConQuest version 1.10 with CSD database version 5.29 updates (Jan 2008). The following filters were applied to each search: not disordered, no errors, and no powder structures. The substructures $E(SC)_3$ were searched for each pnictogen (E = P, As, Sb, Bi) (see structures below). The E atoms were constrained to only 3 bonds. Only structures with three separate ligands were analyzed; macrocyclic structures were discarded due to ring strain. Each E-S bond distance and S-E-S bond angle was measured and the results were averaged.

Table S1. Refcodes from the Cambridge Structural Database included in the structural survey used to determine average E-S distances and S-E-S angles.

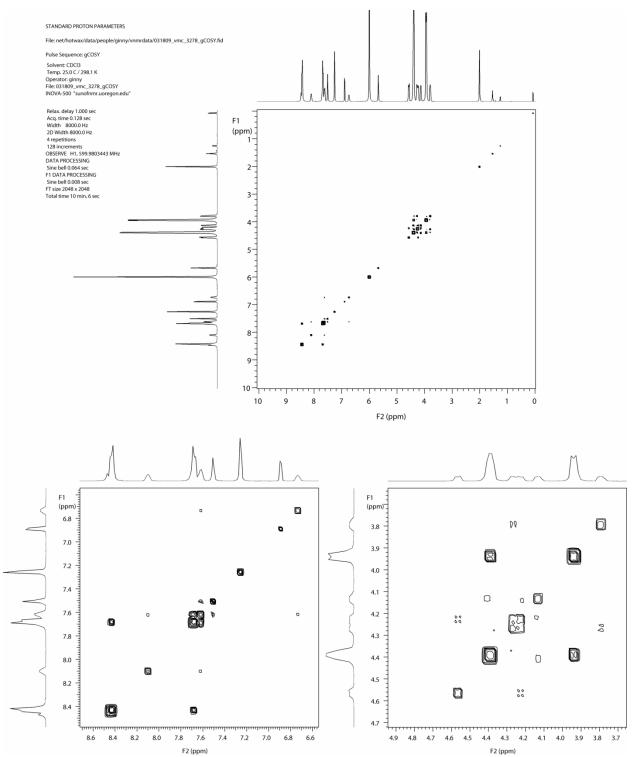
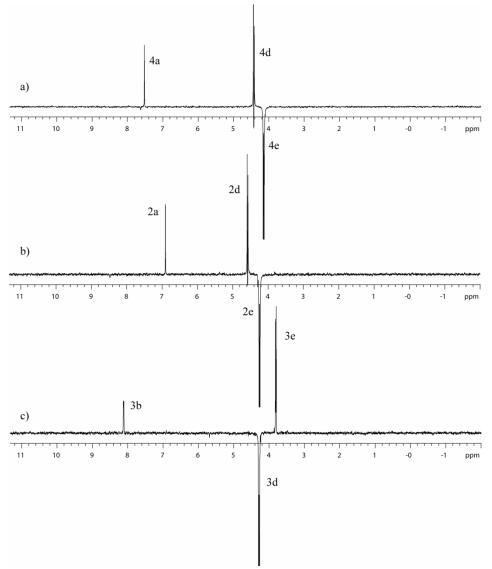

Р	As		Sb		Bi	
CUMLIF	ASMTBZ02	DEDLUT	CIBKAZ	XIHNIL	OKOSAI	
DOYXAQ	ASXANT	IBAYAM	CIBKAZ01	XIHNIL	YUKRUR	
ETCBPS	ASXANT01	JACMUW	CIDWIV	YUSFUN	ZAHDUH	
JUFROR	BOZFIF	JACNAD	CUYKIQ	ZAZYII	ZUMSAB	
SEJRUU	BOZFIF01	NEJRAW	SQNLSB10	ZAZYOO	ZUMSAB	
SEJRUU01	BOZFIF02	QIFKIZ	TIDGOC		ZUMSAB	
SEJRUU02	BOZFIF02	QIFLAS	TIDHAP		ZUMSAB	
TCBMPH	CATJOW	ULICAT	TIDHAP		ZUMSEF	
TCBMPH	CUBVIE	ZAHDIV	XAVYEY		ZUMSEF	

Table S2. Energies derived from DFT-calculations and ¹H NMR experiments for symmetric and asymmetric E_2L_3 cryptands.


	DFT Calculations			¹ H NMR Experiments			
Cryptand	Energy	Energy	Energy	Equivalents	Equivalents	Ratio	Calculated
	symmetric	asymmetric	dif. (ΔG)	symmetric	asymmetric		ΔG
	(kcal/mol)	(kcal/mol)	(kcal/mol)				(kcal/mol)
P_2L_3	-2799891.361	-2799884.752	-6.6083	1	0	NA	NA
As_2L_3	-2379204.541	-2379199.236	-5.30559	60	3	0.5	0.148588
Sb_2L_3	-2378314.07	-2378310.028	-4.04242	0.53	0.47	0.886792	0.005959
Bi ₂ L ₃	-2378372.83	-2378368.762	-4.06814	2	3	1.5	-0.02011

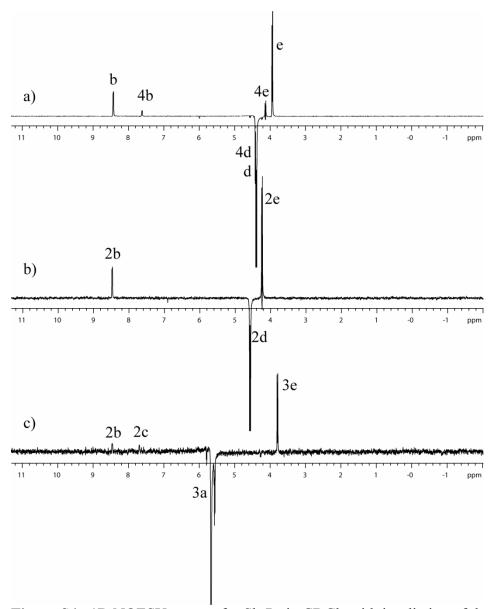
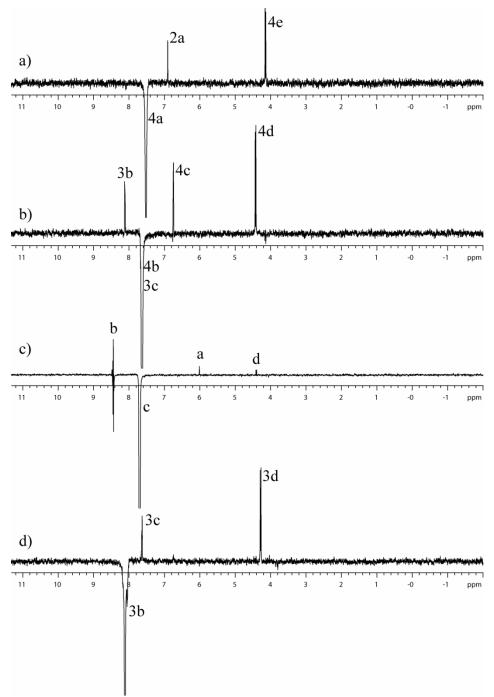
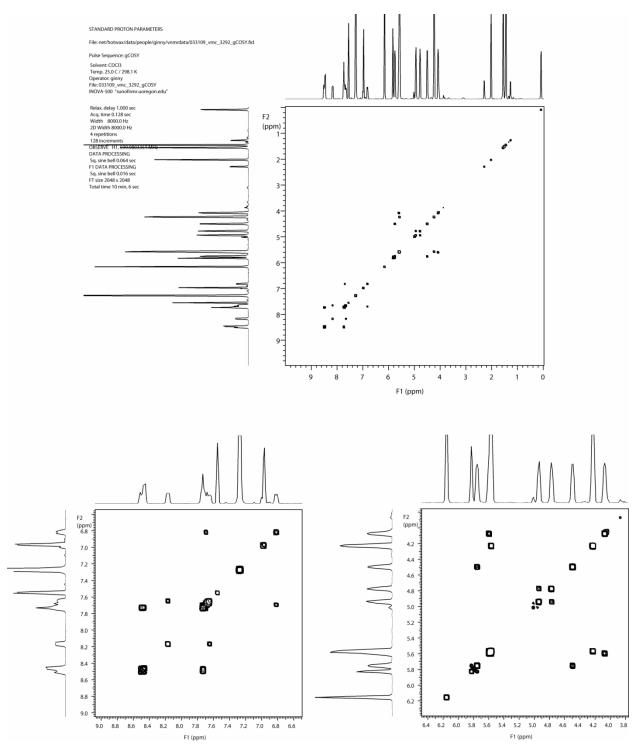
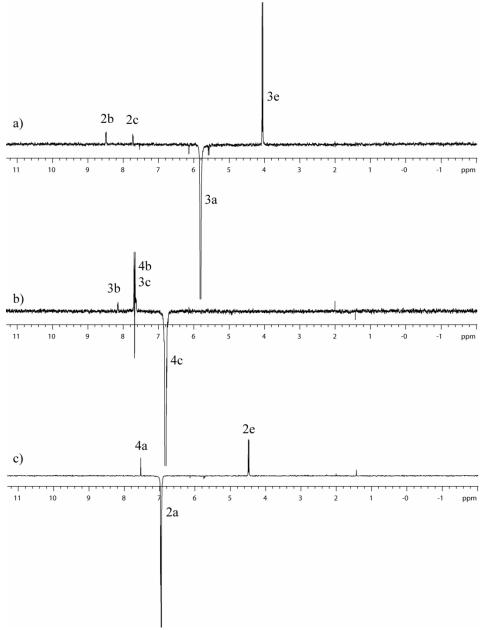

Figure S1. Fully labeled ¹H NMR spectra for (a) P_2L_3 , (b) As_2L_3 , (c) Sb_2L_3 and (d) Bi_2L_3 . The resonances for the symmetric cryptand are labeled with just letters. The resonances that correspond to the asymmetric cryptand are labeled with numbers and letters. * denotes $C_2H_2Cl_4$ in the spectrum.

Figure S2. gCOSY spectra for Sb₂L₃ in CDCl₃: full spectrum (top), CH region (bottom left), CH₂ region (bottom right). See Figure S1c for labeling scheme.


Figure S3. 1D NOESY spectra for Sb_2L_3 in CDCl₃ with irradiation of the following protons: (a) 4e, (b) 2e, and (c) 3d. See Figure S1c for labeling scheme.


Figure S4. 1D NOESY spectra for Sb_2L_3 in CDCl₃ with irradiation of the following protons: (a) d and 4d, (b) 2d, and (c) 3a. See Figure S1c for labeling scheme.


Figure S5. 1D NOESY spectra for Sb_2L_3 in CDCl₃ with irradiation of the following protons: (a) a, (b) 4c, and (c) 2a. See Figure S1c for labeling scheme.

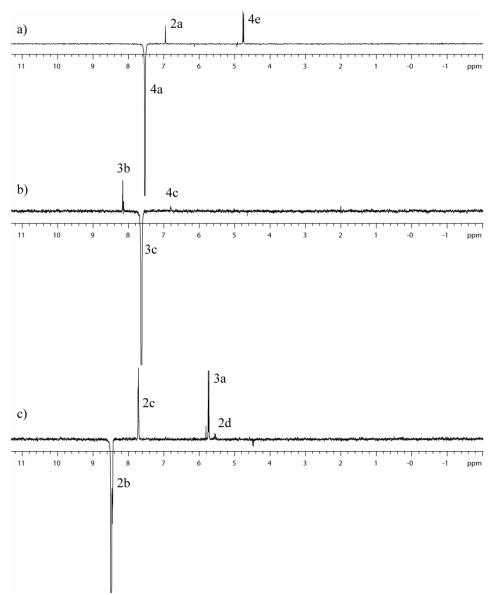

Figure S6. 1D NOESY spectra for Sb_2L_3 in CDCl₃ with irradiation of the following protons: (a) 4a, (b) 4b and 3c, (c) c, and (d) 3b. See Figure S1c for labeling scheme.

Figure S7. *g*COSY spectra for Bi_2L_3 in CDCl₃: full spectrum (top), CH region (bottom left), CH₂ region (bottom right). See Figure S1c for labeling scheme.

Figure S8. 1D NOESY spectra for Bi_2L_3 in CDCl₃ with irradiation of the following protons: (a) 3a, (b) 4c, and (c) 2a. See Figure S1d for labeling scheme.

Figure S9. 1D NOESY spectra for Bi_2L_3 in CDCl₃ with irradiation of the following protons: (a) 4a, (b) 3c, and (c) 2b. See Figure S1d for labeling scheme.

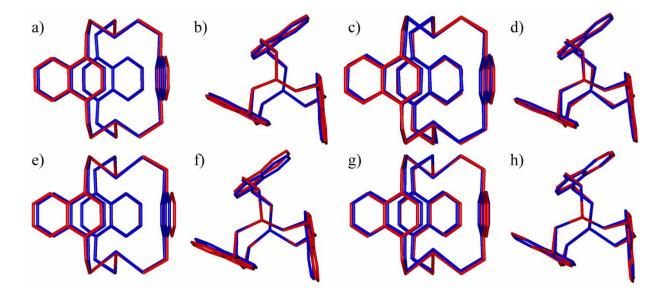
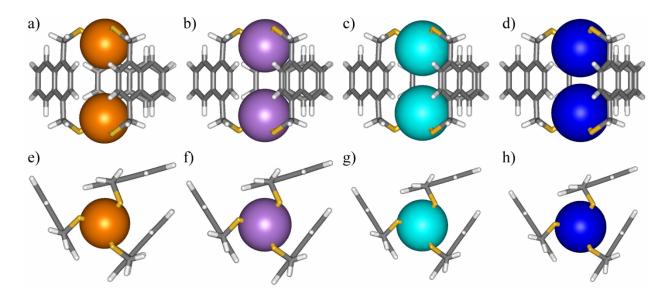
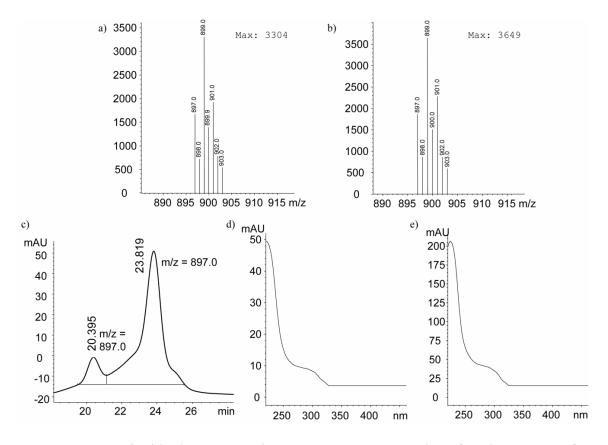




Figure S10. Overlayed stick-representations of the X-ray crystal structures (blue) and DFT-calculated structures (red) of (a-b) P_2L_3 , (c-d) As_2L_3 , (e-f) Sb_2L_3 and (g-h) Bi_2L_3 .

Figure S11. DFT-calculated structures of (a, e) P_2L_3 -*asym*, (b, f) As_2L_3 -*asym*, (c, g) Sb_2L_3 -*asym* and (d, h) Bi_2L_3 -*asym*.

Figure S12. Liquid chromatography mass spectrometry data for the two conformers of $[Sb_2L_3+H]^+$ (a, b). LCMS trace showing two peaks with the same m/z (c). The isotope distribution verifies that these are both +1 charge states of a Sb_2L_3 cryptand. UV/vis spectra for each conformer (d, e).

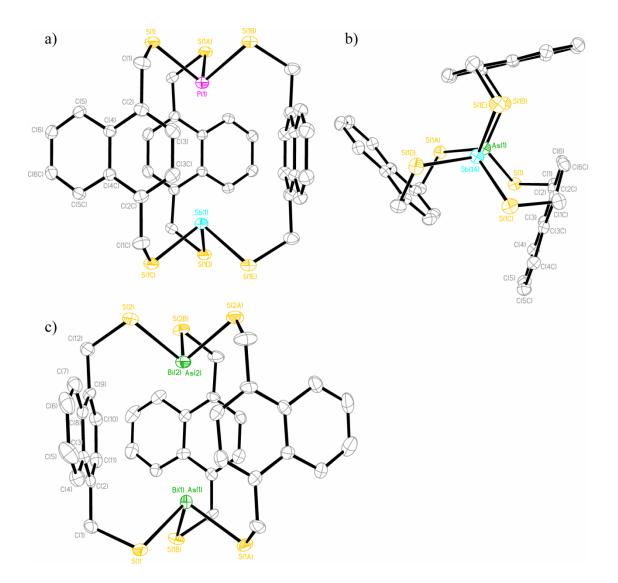


Figure S13. ORTEP representations (30% ellipsoids) of the X-ray crystal structures of (a) $PSbL_3$, (b) $AsSbL_3$, and (c) $AsBi_2L_3$.

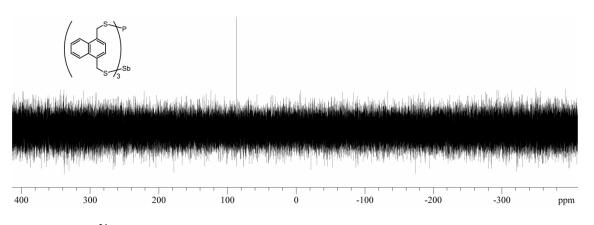


Figure S14. ³¹P NMR spectrum for PSbL₃, externally referenced to H₃PO₄ (0 ppm).

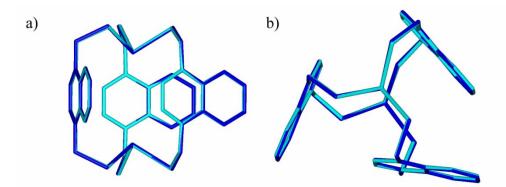


Figure S15. Overlayed stick-representations of the DFT-calculated structures of Sb_2L_3 (teal) and Bi_2L_3 (blue) from (a) side and (b) top.

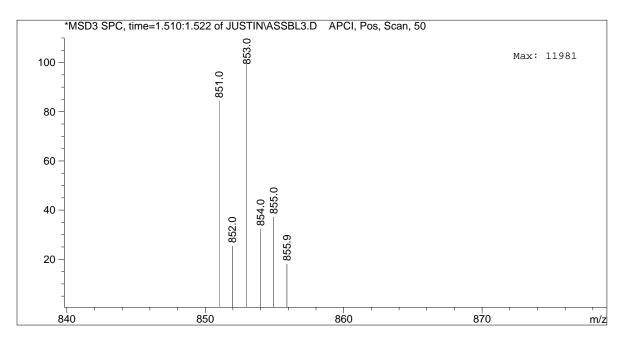


Figure S16. LCMS spectrometry data for $[AsSbL_3+H]^+$.

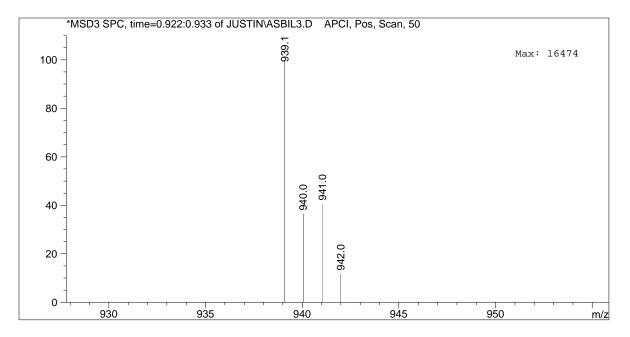


Figure S17. LCMS spectrometry data for $[AsBiL_3+H]^+$.

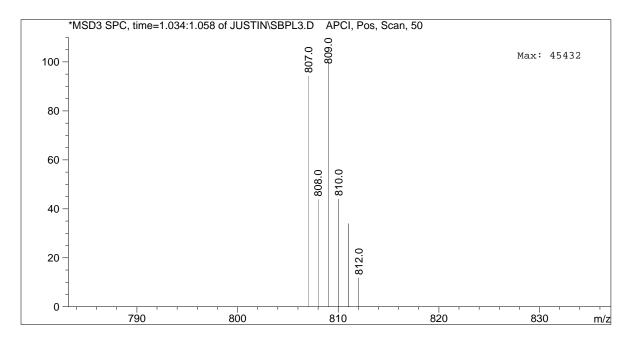


Figure S18. LCMS spectrometry data for $[PSbL_3+H]^+$.

Cambridge Structural Database Search for P…π Contacts

The search was performed using ConQuest version 1.10 with CSD database version 5.29 updates (Jan 2008). The following filters were applied to each search: not disordered, no errors, and no powder structures. The searches screened for C₆-arene rings and neutral, three-coordinate phosphorus with intermolecular contacts that were shorter than the sum of the van der Waals radii (1.70 Å for aryl C + 1.80 Å for P = 3.50 Å). Structures were excluded if the phosphorus atom was bonded to another phosphorus or metal, charged, or part of a cluster. After excluding one structure, there were 20 hits. No correlation was found between the bond angle and distance.

Table S3. Refcodes from the Cambridge Structural Database included in the structural survey.

Phosphorus					
BAVRIZ	CEWGIU	IQIMEA	WOPJOA		
BILVIB	CIGJOR	JOBFUB	YEQDEE		
BUFZIL	FAGLII	NETNEF	ZEWWAZ		
BUSLEG	HUMRAI	PAMWIJ	GIHTOH		
CAYLAP	ICULIC	WOJMOX	SIHVEL		