Highly Selective Suppression of Melanoma Cells by Inducible DNA Cross-Linking Agents: Bis(catechol) Derivatives

Minghui Bai, ${ }^{\dagger}$ Jing Huang, ${ }^{\dagger}$ Xiaolong Zheng, ${ }^{\dagger}$ Zhibin Song, ${ }^{\dagger}$ Miru Tang, ${ }^{\dagger}$ WuXiang Mao, ${ }^{\dagger}$ Libo Yuan, ${ }^{\dagger}$ Jun Wu, ${ }^{\dagger}$ Xiaocheng Weng, ${ }^{\dagger}$ and Xiang Zhou ${ }^{\dagger, \hbar, *}$
${ }^{\dagger}$ College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, Wuhan University, Hubei, Wuhan 430072, P. R. China
* State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100083, P. R. China

E-mail: xzhou@whu.edu.cn

Scheme S1

Figure S1 UV/Vis absorbance changes of compound $\mathbf{9 f}(25 \mu \mathrm{M})$ and MBTH (50 $\mu \mathrm{M}$) with varied concentration of tyrosinase ($0 \mathrm{U}, 0.2 \mathrm{U}, 0.4 \mathrm{U}, 0.6 \mathrm{U}, 0.8$ $\mathrm{U}, 1.0 \mathrm{U} / \mathrm{mL}$) over an incubation time of 1 h in phosphate buffer $(20 \mathrm{mM}$, pH 6.4). Arrows indicate trends in absorbance with the addition of tyrosinase.

Figure S2 (A) Emission spectra of BODIPY-modified catechol (13) $(1 \mu \mathrm{M})$ over an incubation time of 1 h with varied concentrations of tyrosinase (from bottom to top): 0 (control), $0.05,0.08,0.12,0.2,1,10,20$ and $40 \mathrm{U} / \mathrm{mL}$. (B) Changes in the emission intensity of BODIPY-modified catechol (13) $(1 \mu \mathrm{~m})$ upon addition of tyrosinase $(40 \mathrm{U} / \mathrm{ml})$ at a fixed time interval of 2 min over a period of 50 min . The measurements were performed in
phosphate buffer solution ($20 \mathrm{mM}, \mathrm{pH} 6.4$) with $\lambda_{\mathrm{ex}}=480 \mathrm{~nm}$.

Figure S3 Changes in the emission intensity of BODIPY-modified catechol (13) $(1 \mu \mathrm{M})$ and tyrosinase ($40 \mathrm{U} / \mathrm{mL}$) upon addition of varied weight of genomic DNA extraction from B16F1 cells. (from top to bottom): 0 (control), $0.5,1,2,10,20 \mu \mathrm{~g}$.

Genomic DNA extraction from B16F1 cells. The cell lines were grown in1640 culture media with 10% fetal bovin serum. Cells were collected and washed with PBS twice. Then they were lysed in TES buffer (10 mM Tris pH 8.0, 100 mM EDTA, 0.5% SDS) and incubated at $55^{\circ} \mathrm{C}$ overnight with the addition of protease $\mathrm{K}(100 \mu \mathrm{~g} / \mathrm{mL})$ and RNAse ($20 \mu \mathrm{~g} / \mathrm{mL}$). Digested lysates were extracted twice with phenol/ chloroform/isoamyl alcohol (25:24:1) centrifuged at $10000 \times \mathrm{g}$ for 15 min and the organic layer was removed. Then the resulting aqueous layer was incubated with 0.1 volume sodium acetate and 0.8 volume of ice ethanol at $-20^{\circ} \mathrm{C}$ overnight. DNA was precipitated after centrifugation at $12000 \times \mathrm{g}$ for 15 min and was left to air dry. Then it was resuspended in TE buffer (10 mM Tris $\mathrm{pH} 7.2,2 \mathrm{mM}$ EDTA pH 8.0).

Figure S4 Changes in the emission intensity of BODIPY-modified catechol (13) (1 $\mu \mathrm{M})$ and tyrosinase ($40 \mathrm{U} / \mathrm{mL}$) upon addition of varied concentrations of reduced glutathione (from bottom to top): 0 (control), $0.1,0.5,1,2,5,10$ $\mu \mathrm{M}$.

Figure S5 Alkaline comet assay for Hela cells (A) and CHO (B) cells treated with compound 9f. Cells were incubated with increasing concentrations of compound $9 f(0,5,10,20$ and $40 \mu \mathrm{M})$ for 48 h . The DNA was stained with propidium iodide (PI).
(A) Hela cell line

(B) CHO cell line

Figure S6 γ-H2AX immunofluorescence in CHO and Hela cells after incubation with treatment of $20 \mu \mathrm{M}$ compound 9 f for 48 h .

Figure S7 Microphotographs of three different cells after treatment with the compound $\mathbf{9 f}(5 \mu \mathrm{M})$. All the cells were incubated for 48 h with the compound $\mathbf{9 f}$, and stained with $5 \mu \mathrm{~g} / \mathrm{L}$ Hoechst- 33258 .

Procedures of Synthesis

8-[benzeneboromic acid]-1, 3, 5, 7-tetramethyl-4, 4-difluoro-4-bora-3a, 4a-diaza-s-indacene (10) ${ }^{1}$ TFA (8 drops) was added dropwise to a stirred solution of 2, 4-dimethyl-1H-pyrrole ($633 \mathrm{mg}, 7 \mathrm{mmol}$) and 4-Formylbenzeneboromic acid ($500 \mathrm{mg}, 3.33 \mathrm{mmol}$) in dry THF (30 mL). The reaction was stirred at room temperature until TLC showed complete consumption of the aldehyde. DDQ (756 mg , 3.33 mmol) was added in a single portion, and the reaction was stirred at room temperature overnight. N , N -Diisopropylethylamine ($4 \mathrm{~mL}, 23 \mathrm{mmol}$) and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ ($6 \mathrm{~mL}, 47 \mathrm{mmol}$) were added, and the reaction was stirred at room temperature for 6 h . The reaction mixture was washed with water $(3 \times 100 \mathrm{~mL})$ and brine $(3 \times 100 \mathrm{~mL})$. The separated organic fractions were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solids were removed by gravity filtration. The crude product was preadsorbed onto 5 mL of silica and dried under vacuum filtered. Flash chromatography (1:3 hexanes/EtOAc) provided $\mathbf{1 0}$ as a bright orange powder ($250 \mathrm{mg}, 20 \%$) after solvent removal.

4-bromo-3, 4-Bis(benzyloxy) phenyl (11) ${ }^{2}$ Benzyl bromide ($720 \mu \mathrm{~L}, 6 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(560 \mathrm{mg}, 4 \mathrm{mmol})$ and were added to the solution of 4-Bromocatechol (500 $\mathrm{mg}, 2.67 \mathrm{mmol}$) in acetone (30 mL). And the mixture was refluxed overnight. The reaction mixture was filtered, and the reaction solvent removed to yield the crude product. And then purified on a silica gel using petroleum ether /EtOAc (1:10) as eluant afford a white solid ($880 \mathrm{mg}, 90 \%$).

8-[3, 4-Bis(benzyloxy)biphenyl]-1, 3, 5, 7-tetramethyl-4, 4-difluoro-4-bora-3a, 4a-diaza-s-indacene (12) ${ }^{2}$ The compounds $\mathbf{1 0}$ ($100 \mathrm{mg}, 0.27 \mathrm{mmol}$) and $\mathbf{1 1}$ (110 mg , $0.3 \mathrm{mmol})$ were dissolved in dry THF $(10 \mathrm{~mL})$, and the resulting solution was purged with nitrogen for 1 h . To this solution was added a nitrogen-purged aqueous solution of $2 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}(2 \mathrm{~mL}, 4 \mathrm{mmol})$, followed by $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(10 \mathrm{mg}, 3 \mathrm{~mol} \%)$. The reaction mixture was refluxed overnight. The THF was removed under reduced pressure and the residue was taken up into DCM (100 mL), which was washed with brine $(2 \times 50 \mathrm{~mL})$, separated and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, the solvent was removed under reduced pressure, to yield a dark red residue. The residue was chromatographed on silica gel with a solvent gradient (first petroleum ether/ EtOAc (100:1), then petroleum ether/ EtOAc (10:1)) to afford an orange solid (145 mg, 90% yield).

8-[3,4-Dihydroxybiphenyl]-1,3,5,7-tetramethyl-4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (13). ${ }^{3}$ The compounds $12(10 \mathrm{mg}, 0.016 \mathrm{mmol})$ in 20 mL THF was mixed with $10 \% \mathrm{Pd}(\mathrm{OH})_{2}(1 \mathrm{mg})$ and stirred overnight under hydrogen from a balloon. The suspension was filtered and the solvent was removed under reduced pressure, to yield a dark red residue. The residue was chromatographed on silica gel with a solvent gradient (first $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, then $\mathrm{CH}_{3} \mathrm{OH}$) to afford an orange solid ($5 \mathrm{mg}, 72 \%$ yield).

References

(1) Sunahara, H.; Urano, Y.; Kojima, H.; Nagano, T.; J. Am. Chem. Soc. 2007, 129, 5597-5604.
(2) Andrew, C. B.; Graeme, C.; Kristopher, J. E.; Ross, W. H.; William, C.; Eur. J. Org. Chem. 2008, 2705-2713.
(3) Yue, Q. Y.; Hiroyuki, K.; Jun-ichi, O.; Kunie. Y.; Naoki, A.; Shunya, T.; Org. Lett. 2009, 11, 5074-5077.

Characterization Data

${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and HRMS data for individual compounds N, N '-(2,3-dimethoxybenzyl)- N, N, N ', N '-tetramethyl-1,5-pentanediamine dibromide (5a) ${ }^{1} \mathrm{H}$ NMR ($\mathrm{D}_{2} \mathrm{O}$): $\delta=7.13(\mathrm{~m}, 4 \mathrm{H}), 6.95(\mathrm{~m}, 2 \mathrm{H}), 4.35(\mathrm{~s}, 4 \mathrm{H}), 3.77$ (s, 6 H), 3.70 (s, 6 H), 3.14-3.19 (m, 4 H), 2.87 (s, 12 H), 1.79 (br s, 4 H), 1.28 (br s, 2 H) ; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}\right): \delta=24.67,25.40,52.62,58.64,63.94,65.13,66.59,118.59$, 123.77, 127.82, 128.44, 151.40, 155.35 ppm. ESI-MS for $\mathrm{C}_{27} \mathrm{H}_{44} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}$: calcd. $(\mathrm{M}-\mathrm{Br})^{+}: 539.2479$, found: 539.2488.
N, N '-(2,3-dimethoxybenzyl)- N, N, N ', N '-tetramethyl-1,6-hexanediamine
dibromide (5b) ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}\right): \delta=7.06-7.09(\mathrm{~m}, 4 \mathrm{H}), 6.90(\mathrm{~m}, 2 \mathrm{H}), 4.29(\mathrm{~s}, 4 \mathrm{H})$, 3.73 (s, 6 H), 3.66 (s, 6 H), 3.07-3.12 (m, 4 H), 2.81 (s, 12 H), 1.68 (br s, 4 H), 1.23 (br s, 4 H); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{D}_{2} \mathrm{O}$): $\delta=22.36,25.49,49.99,56.14,61.41,62.50,64.46$, 116.06, 121.28, 125.25, 125.92, 148.86, 152.81 ppm. ESI-MS for $\mathrm{C}_{28} \mathrm{H}_{46} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}$: calcd. $(\mathrm{M}-\mathrm{Br})^{+}$: 553.2635, found: 553.2636.
N, N '-(2,3-dimethoxybenzyl)- N, N, N ', N^{\prime}-tetramethyl-1,7-heptanediamine dibromide (5c) ${ }^{1} \mathrm{H}$ NMR ($\mathrm{D}_{2} \mathrm{O}$): $\delta=7.04(\mathrm{~m}, 4 \mathrm{H}), 6.85-6.87(\mathrm{~m}, 2 \mathrm{H}), 4.26(\mathrm{~s}, 4 \mathrm{H})$, 3.69 (s, 6 H), 3.62 (s, 6 H), 3.03-3.11 (m, 4 H), 2.77 (s, 12 H), 1.63 (br s, 4 H), 1.18 (m, 6H); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{D}_{2} \mathrm{O}$): $\delta=22.16,25.45,27.91,49.79,55.92,61.24,62.24,64.45$, $115.79,121.14,125.09,125.72,148.63,152.64 \mathrm{ppm}$. ESI-MS for $\mathrm{C}_{29} \mathrm{H}_{48} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}$: calcd. $(\mathrm{M}-\mathrm{Br})^{+}$: 567.2792, found: 567.2794.
N, N '-(2,3-dimethoxybenzyl)- N, N, N ', N '-tetramethyl-1,8-octanediamine
dibromide (5d) ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}\right): ~ \delta=7.06-7.08(\mathrm{~m}, 4 \mathrm{H}), 6.87-6.89(\mathrm{~m}, 2 \mathrm{H}), 4.28(\mathrm{~s}$, 4 H), $3.72(\mathrm{~s}, 6 \mathrm{H}), 3.65(\mathrm{~s}, 6 \mathrm{H}), 3.06-3.09(\mathrm{~m}, 4 \mathrm{H}), 2.80(\mathrm{~s}, 12 \mathrm{H}), 1.66(\mathrm{br} \mathrm{s}, 4 \mathrm{H})$, $1.19(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{D}_{2} \mathrm{O}$): $\delta=22.24,25.55,28.13,49.77,55.94,61.24,62.27$, $64.59,115.83,121.24,125.15,125.75,148.70,152.72 \mathrm{ppm}$. ESI-MS for $\mathrm{C}_{30} \mathrm{H}_{50} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}$: calcd. (M-Br) ${ }^{+}$: 581.2948, found: 581.2935.
$N, N ’-(2,3-d i m e t h o x y b e n z y l)-N, N, N ’, N$ '-tetramethyl-1,9-nonanediamine
dibromide (5e) ${ }^{1} \mathrm{H}$ NMR ($\mathrm{D}_{2} \mathrm{O}$): $\delta=7.05-7.07(\mathrm{~m}, 4 \mathrm{H}), 6.87-6.89(\mathrm{~m}, 2 \mathrm{H}), 4.28(\mathrm{~s}$, 4 H), $3.71(\mathrm{~s}, 6 \mathrm{H}), 3.64(\mathrm{~s}, 6 \mathrm{H}), 3.05-3.10(\mathrm{~m}, 4 \mathrm{H}), 2.79(\mathrm{~s}, 12 \mathrm{H}), 1.64(\mathrm{br} \mathrm{s}, 4 \mathrm{H})$, $1.15(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{D}_{2} \mathrm{O}$): $\delta=21.62,24.98,27.52,27.66,49.24,55.39,60.61$, 61.41, 63.77, 115.14, 120.39, 124.32, 125.08, 148.00, 151.89 ppm. ESI-MS for $\mathrm{C}_{31} \mathrm{H}_{52} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}$: calcd. $(\mathrm{M}-\mathrm{Br})^{+}: 595.3105$, found: 595.3101.
$N, N^{\prime}-(2,3-d i m e t h o x y b e n z y l)-N, N, N ’, N^{\prime}$-tetramethyl-4,4'-biphenyldiamine
dibromide (5f). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}\right): ~ \delta=7.67(\mathrm{~d}, J=8.4,4 \mathrm{H}), 7.47(\mathrm{~d}, J=8.4,4 \mathrm{H})$, 7.08-7.10 (m, 4 H), 6.91-6.93 (m, 2 H), 4.43 (s, 4 H), 4.41 (s, 4 H), 3.73 (s, 6 H), 3.62 (s, 6 H), $2.77(\mathrm{~s}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right): \delta=48.76,55.92,56.01,61.13,62.74,68.02$, $115.98,120.91,125.21,125.86,127.14,127.69,133.88,141.50,148.65,152.74 \mathrm{ppm}$. ESI-MS for $\mathrm{C}_{36} \mathrm{H}_{46} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}$: calcd. (M-Br) ${ }^{+}: 649.2635$, found: 649.2630 .
N, N '-(2,3-dihydroxylbenzyl)- N, N, N ', N '-tetramethyl-l,5-pentanediamine
dibromide (6a) ${ }^{1} \mathrm{H}$ NMR ($\mathrm{D}_{2} \mathrm{O}$): $\delta=6.90-6.93(\mathrm{~m}, 2 \mathrm{H}), ~ 6.76-6.80(\mathrm{~m}, 4 \mathrm{H}), 4.34(\mathrm{~s}$, $4 \mathrm{H})$, 3.19-3.20 (m, 4 H), 2.88 (s, 12 H), 1.80 (br s, 4 H), 1.29 (br s, 2 H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}\right): \delta=22.00,22.83,49.92,62.57,63.96,115.31,118.24,120.57,125.71,144.84$, 145.67 ppm. ESI-MS for $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}$: calcd. (M-Br) ${ }^{+}$: 591.0958 , found: 591.0963.
$N, N ’$-(2,3-dihydroxylbenzyl)- N, N, N ’, N ’-tetramethyl-1,6-hexanediamine
dibromide (6b) ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}\right): \delta=6.95-6.97(\mathrm{~m}, 2 \mathrm{H}), 6.80-6.87(\mathrm{~m}, 4 \mathrm{H}), 4.38(\mathrm{~s}$, 4 H), 3.19-3.25 (m, 4 H), 2.91 ($\mathrm{s}, 12 \mathrm{H}$), 1.78 (br s, 4 H), 1.34 (br s, 4 H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}\right): \delta=22.30,25.48,49.93,62.57,64.52,115.49,118.34,120.65,125.84,144.92$, 145.74 ppm . ESI-MS for $\mathrm{C}_{24} \mathrm{H}_{38} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}$: calcd. $(\mathrm{M}-\mathrm{Br})^{+}: 497.2009$, found: 497.2018.
$N, N^{\prime}-(2,3-d i h y d r o x y l b e n z y l)-N, N, N ', N^{\prime}$-tetramethyl-1,7-heptanediamine dibromide (6c) ${ }^{1} \mathrm{H}$ NMR ($\mathrm{D}_{2} \mathrm{O}$): $\delta=6.72-6.75(\mathrm{~m}, 2 \mathrm{H}), 6.57-6.42(\mathrm{~m}, 4 \mathrm{H}), 4.16$ (s, 4 H), 3.00-3.01 (m, 4 H), 2.69 (s, 12 H), 1.55 (br s, 4 H), 1.10 (br s, 6 H); ${ }^{13} \mathrm{C}$ NMR (d_{6}-DMSO): $\delta=27.36,31.08,33.47,54.73,67.25,68.94,120.51,122.62,124.54$, 129.97, 151.17, 152.50 ppm. ESI-MS for $\mathrm{C}_{25} \mathrm{H}_{40} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}$: calcd. (M-Br) ${ }^{+}$: 511.2166, found: 511.2164 .
$N, N^{\prime}-(2,3-d i h y d r o x y l b e n z y l)-N, N, N$ ', N '-tetramethyl-1,8-octanediamine dibromide (6d) ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}\right): \delta=6.82(\mathrm{~m}, 2 \mathrm{H})$, 6.67-6.72 (m, 4 H$), 4.25(\mathrm{~s}, 4 \mathrm{H})$, $3.12(\mathrm{~m}, 4 \mathrm{H}), 2.78(\mathrm{~s}, 12 \mathrm{H}), 1.64(\mathrm{br} \mathrm{s}, 4 \mathrm{H}), 1.17(\mathrm{br} \mathrm{s}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}\right): \delta=$ 22.21, 25.56, 28.05, 49.70, 62.21, 64.59, 115.30, 118.08, 120.47, 125.64, 144.76, 145.58 ppm . ESI-MS for $\mathrm{C}_{26} \mathrm{H}_{42} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}$: calcd. (M-Br) ${ }^{+}: 525.2322$, found: 525.2328.

N, N '-(2,3-dihydroxylbenzyl)- N, N, N ', N '-tetramethyl-1,9-nonanediamine

dibromide (6e) ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}\right)$: $\delta=6.53(\mathrm{~m}, 2 \mathrm{H}), 6.38-6.43(\mathrm{~m}, 4 \mathrm{H}), 3.96(\mathrm{~s}, 4 \mathrm{H})$, 2.82-2.83 (m, 4 H), $2.50(\mathrm{~s}, 12 \mathrm{H}), 1.37(\mathrm{br} \mathrm{s}, 4 \mathrm{H}), 0,86(\mathrm{br} \mathrm{s}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}\right): \delta=22.20,25.61,28.14,49.69,62.23,64.65,115.36,118.11,120.47,125.64$, 144.78, 145.59 ppm. ESI-MS for $\mathrm{C}_{27} \mathrm{H}_{44} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}$: calcd. (M-Br) ${ }^{+}$: 539.2478 , found: 539.2481 .
N, N '-(2,3-dihydroxylbenzyl)- N, N, N ', N '-tetramethyl-4,4'-biphenyldiamine
dibromide (6f) ${ }^{1} \mathrm{H}$ NMR ($\mathrm{D}_{2} \mathrm{O}$): $\delta=7.68(\mathrm{~m}, 4 \mathrm{H}), 7.52(\mathrm{~m}, 4 \mathrm{H}), 6.93(\mathrm{~m}, 2 \mathrm{H})$, 6.78-6.81 (m, 4 H$), 4.47(\mathrm{~s}, 4 \mathrm{H}), 4.44(\mathrm{~s}, 4 \mathrm{H}), 2.83(\mathrm{~s}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right): \delta=$ 48.77, 63.10, 68.06, 115.05, 118.29, 120.55, 125.87, 127.21, 127.68, 133.80, 141.54, $144.87,145.67$ ppm. ESI-MS for $\mathrm{C}_{32} \mathrm{H}_{38} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}$: calcd. (M-Br) ${ }^{+}: 593.2009$, found: 593.2006 .
N, N^{\prime}-(3,4-dimethoxybenzyl)- $N, N, N^{\prime}, N^{\prime}$-tetramethyl-1,5-pentanediamine
dibromide (8a) ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}\right): ~ \delta=6.97(\mathrm{~m}, 6 \mathrm{H}), 4.28(\mathrm{~s}, 4 \mathrm{H}), 3.72(\mathrm{~m}, 12 \mathrm{H})$, 3.11-3.19 (m, 4 H), 2.87 ($\mathrm{s}, 12 \mathrm{H}$), 1.78 ($\mathrm{br} \mathrm{s}, 4 \mathrm{H}$), 1.28 (br s, 2 H); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{D}_{2} \mathrm{O}$): $\delta=21.91,43.25,49.72,55.88,56.02,63.63,68.01,111.91,115.83,119.94,126.60$, 148.36, 150.20 ppm. ESI-MS for $\mathrm{C}_{26} \mathrm{H}_{42} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}$: calcd. (M-Br) ${ }^{+}: 539.2479$, found: 539.2487 .
N, N^{\prime}-(3,4-dimethoxybenzyl)- N, N, N ', N '-tetramethyl-1,6-hexanediamine
dibromide (8b) ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}\right): ~ \delta=6.93(\mathrm{~m}, 6 \mathrm{H}), 4.23(\mathrm{~s}, 4 \mathrm{H}), 3.68(\mathrm{~m}, 12 \mathrm{H})$, $3.07(\mathrm{~m}, 4 \mathrm{H}), 2.81(\mathrm{~s}, 12 \mathrm{H}), 1.66(\mathrm{br} \mathrm{s}, 4 \mathrm{H}), 1.22(\mathrm{br} \mathrm{s}, 4 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}\right): \delta=$ 22.20, 25.43, 49.72, 55.85, 56.00, 64.02, 67.65, 111.76, 115.60, 119.88, 126.53, 148.23, 150.02 ppm. ESI-MS for $\mathrm{C}_{28} \mathrm{H}_{46} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}$: calcd. (M-Br) ${ }^{+}: 553.2635$, found: 553.2637 .
N, N^{\prime}-(3,4-dimethoxybenzyl)- N, N, N ', N '-tetramethyl-1,7-heptanediamine
dibromide (8c) ${ }^{1} \mathrm{H}$ NMR ($\mathrm{D}_{2} \mathrm{O}$): $\delta=6.90(\mathrm{~m}, 6 \mathrm{H}), 4.20(\mathrm{~s}, 4 \mathrm{H}), 3.65(\mathrm{~m}, 12 \mathrm{H})$, 2.99-3.04 (m, 4 H), $2.78(\mathrm{~s}, 12 \mathrm{H}), 1.64(\mathrm{br} \mathrm{s}, 4 \mathrm{H}), 1.17(\mathrm{~m}, 6 \mathrm{H}),{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right): \delta$ $=221.98,25.39,27.80,49.56,55.66,63.88,67.43,111.58,115.42,119.80,126.35$, 148.06, 149.86 ppm. ESI-MS for $\mathrm{C}_{29} \mathrm{H}_{48} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}$: calcd. (M-Br) ${ }^{+}$: 567.2792 , found: 567.2795 .
N, N '-(3,4-dimethoxybenzyl)- N, N, N ', N '-tetramethyl-1,8-octanediamine
dibromide (8d) ${ }^{1} \mathrm{H}$ NMR ($\mathrm{D}_{2} \mathrm{O}$): $\delta=6.93(\mathrm{~m}, 6 \mathrm{H}), 4.22(\mathrm{~s}, 4 \mathrm{H}), 3.68(\mathrm{~m}, 12 \mathrm{H})$, 3.02-3.07 (m, 4 H), $2.81(\mathrm{~s}, 12 \mathrm{H}), 1.66(\mathrm{br} \mathrm{s}, 4 \mathrm{H}), 1.18(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right): \delta$ $=22.10,25.55,28.08,49.70,55.77,55.89,63.98,67.44,111.71,115.54,119.92$, 126.48, 148.19, 149.98 ppm. ESI-MS for $\mathrm{C}_{30} \mathrm{H}_{50} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}$: calcd. (M-Br) ${ }^{+}$: 581.2948, found: 581.2936.
N, N^{\prime}-(3,4-dimethoxybenzyl)- N, N, N ', N '-tetramethyl-1,9-nonanediamine
dibromide (8e) ${ }^{1} \mathrm{H}$ NMR ($\mathrm{D}_{2} \mathrm{O}$): $\delta=6.97-6.99(\mathrm{~m}, 6 \mathrm{H}), 4.28(\mathrm{~s}, 4 \mathrm{H}), 3.74-3.75(\mathrm{~m}$, 12 H), 3.07-3.13 (m, 4 H), 2.86 (s, 12 H), 1.71 ($\mathrm{br} \mathrm{s}, 4 \mathrm{H}$), 1.21 (m, 10 H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}\right): \delta=22.23,25.72,27.88,28.27,49.39,49.82,55.88,56.03,64.17,67.39$, 111.74, 115.53, 119.91, 126.50, 148.26, 150.02 ppm. ESI-MS for $\mathrm{C}_{31} \mathrm{H}_{52} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}$: calcd. $(\mathrm{M}-\mathrm{Br})^{+}$: 595.3105, found: 595.3121.
$N, N ’$-(3,4-dimethoxybenzyl)- N, N, N ', N '-tetramethyl-4,4'-biphenyldiamine dibromide (8f) ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right): \delta=7.71(\mathrm{~d}, J=7.8,4 \mathrm{H}), 7.51(\mathrm{~d}, J=7.8,4 \mathrm{H})$, 6.98-7.00 (m, 6 H), 4.43 (s, 4 H), 4.37 (s, 4 H), 3.75 (s, 6 H), 3.73 (s, 6 H), 2.81 (s, 12 H) ${ }^{13}{ }^{3} \mathrm{C}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}\right): \delta=48.56,56.02,68.10,68.60,111.88,115.93,119.67,126.83$, 127.07, 127.78, 133.90, 141.57, 148.37, 150.22, 152.84 ppm . ESI-MS for $\mathrm{C}_{36} \mathrm{H}_{46} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}$: calcd. (M-Br) ${ }^{+}: 649.2635$, found: 649.2629.
N, N '-(3,4-Dihydroxylbenzyl)- N, N, N ', N '-tetramethyl-l,5-pentanediamine
dibromide (9a) ${ }^{1} \mathrm{H}$ NMR ($\mathrm{D}_{2} \mathrm{O}$): $\delta=6.78-6.84(\mathrm{~m}, 6 \mathrm{H}), 4.19(\mathrm{~s}, 4 \mathrm{H}), 3.05-3.10(\mathrm{~m}, 4$ H), $2.84(\mathrm{~s}, 12 \mathrm{H}), 1.73(\mathrm{br} \mathrm{s}, 4 \mathrm{H}), 1.25(\mathrm{br} \mathrm{s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right): \delta=24.45$,
25.18, 52.37, 56.84, 70.37, 118.92, 122.04, 122.81, 128.47, 146.91, 149.01 ppm. ESI-MS for $\mathrm{C}_{23} \mathrm{H}_{36} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}$: calcd. (M-Br) ${ }^{+}: 483.1852$, found: 483.1848 .
N, N '-(3,4-Dihydroxylbenzyl)- N, N, N ', N '-tetramethyl-1,6-hexanediamine dibromide (9b) ${ }^{1} \mathrm{H}$ NMR ($\mathrm{D}_{2} \mathrm{O}$): $\delta=6.86-6.90(\mathrm{~m}, 6 \mathrm{H}), 4.23(\mathrm{~s}, 4 \mathrm{H}), 3.09-3.15(\mathrm{~m}$, 4 H), 2.88 ($\mathrm{s}, 12 \mathrm{H}$), 1.73 (br s, 4 H), 1.31 (br s, 4 H); ${ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right): \delta=22.17$, $25.39,49.79,63.82,67.80,116.43,119.64,120.41,126.01,144.36,146.50 \mathrm{ppm}$. ESI-MS for $\mathrm{C}_{24} \mathrm{H}_{38} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}$: calcd. (M-Br) ${ }^{+}: 497.2009$, found: 497.2019.

N, N '-(3,4-Dihydroxylbenzyl)- N, N, N ', N '-tetramethyl-1,7-heptanediamine

dibromide (9c) ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}\right): ~ \delta=6.82-6.85(\mathrm{~m}, 6 \mathrm{H}), 4.20(\mathrm{~s}, 4 \mathrm{H}), 3.07$ (br s, 4 H), $2.84(\mathrm{~s}, 12 \mathrm{H}), 1.69(\mathrm{br} \mathrm{s}, 4 \mathrm{H}), 1.25(\mathrm{br} \mathrm{s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right): \delta=22.66$, 26.08, 50.30, 64.35, 68.20, 116.93, 120.15, 120.91, 126.54, 144.89, 147.03 ppm. ESI-MS for $\mathrm{C}_{25} \mathrm{H}_{40} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}$: calcd. (M-Br) ${ }^{+}: 511.2166$, found: 511.2163.

$N, N ’$-(3,4-Dihydroxylbenzyl)- N, N, N ', N '-tetramethyl-1,8-octanediamine

dibromide (9d) ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}\right): \delta=6.74-6.77(\mathrm{~m}, 6 \mathrm{H}), 4.11(\mathrm{~s}, 4 \mathrm{H}), 2.99(\mathrm{br} \mathrm{s}, 4$ H), 2.76 ($\mathrm{s}, 12 \mathrm{H}$), $1.60(\mathrm{br} \mathrm{s}, 4 \mathrm{H}), 1.14$ (br s, 8 H); ${ }^{13} \mathrm{C}$ NMR (d_{6}-DMSO): $\delta=22.44$, 26.44, 28.97, 49.47, 63.35, 67.08, 116.26, 119.20, 120.58, 125.04, 145.94, 147.88 ppm. ESI-MS for $\mathrm{C}_{26} \mathrm{H}_{42} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}$: calcd. (M-Br) ${ }^{+}: 525.2322$, found: 525.2327.
N, N^{\prime}-(3,4-Dihydroxylbenzyl)- N, N, N ’,N '-tetramethyl-1,9-nonanediamine dibromide (9e) ${ }^{1} \mathrm{H}$ NMR ($\mathrm{D}_{2} \mathrm{O}$): $\delta=6.76-6.79(\mathrm{~m}, 6 \mathrm{H}), 4.13(\mathrm{~s}, 4 \mathrm{H}), 2.98-3.03$ (m, 4 H), $2.78(\mathrm{~s}, 12 \mathrm{H}), 1.62(\mathrm{br} \mathrm{s}, 4 \mathrm{H}), 1.43(\mathrm{br} \mathrm{s}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (d_{6}-DMSO): $\delta=$ 22.48, 26.49, 29.06, 49.41, 63.31, 66.90, 116.26, 119.26, 120.61, 125.07, 145.89, 147.84 ppm. ESI-MS for $\mathrm{C}_{27} \mathrm{H}_{44} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}$: calcd. (M-Br) ${ }^{+}$: 539.2479, found: 539.2475.
N, N '-(3,4-Dihydroxylbenzyl)- $N, N, N^{\prime}, N^{\prime}$ '-tetramethyl-4,4'-biphenyldiamine
dibromide (9 f) ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right): \delta=7.72-7.74(\mathrm{~m}, 4 \mathrm{H}), 7.51-7.54(\mathrm{~m}, 4 \mathrm{H})$, 6.88-6.92 (m, 6 H$), 4.44(\mathrm{~s}, 4 \mathrm{H}), 4.34(\mathrm{~s}, 4 \mathrm{H}), 2.82(\mathrm{~s}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (d_{6}-DMSO): $\delta=48.34,66.37,67.93,116.36,119.07,120.88,125.36,127.82,128.59,134.50$, 141.21, 145.97, 148.00 ppm. ESI-MS for $\mathrm{C}_{32} \mathrm{H}_{38} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}$: calcd. (M-Br) ${ }^{+}$: 693.2009, found: 693.1999.

8-[benzeneboromic acid]-1, 3, 5, 7-tetramethyl-4, 4-difluoro-4-bora-3a, 4a-diaza-sindacene (10) ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): ~ \delta=7.87-7.88(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.35(\mathrm{~m}, 2 \mathrm{H}), 5.98(\mathrm{~s}$, $2 \mathrm{H}), 2.55(\mathrm{~s}, 6 \mathrm{H}), 1.36(\mathrm{~s}, 6 \mathrm{H})$; ESI-MS for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~B}_{2} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$: calcd. (M+H) ${ }^{+}$: 369.1752, found: 369.1722 .

4-bromo-3, 4-Bis(benzyloxy) phenyl (11) ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=7.44-7.29(\mathrm{~m}, 10$ H), $7.05(\mathrm{~s}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=67.68,67.77,73.09,73.30,73.51,109.73,112.76,114.43,120.46$, 123.56, 123.64, 124.21, 124.30, 124.81, 124.85, 132.87, 133.17, 144.43, 146.12 ppm.

8-[3, 4-Bis(benzyloxy)biphenyl]-1, 3, 5, 7-tetramethyl-4, 4-difluoro-4-bora-3a, 4a-diaza-s-indacene (12) ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=7.61(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.48(\mathrm{~m}, 4 \mathrm{H})$, $7.37(\mathrm{~m}, 6 \mathrm{H}), 7.19-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.03(\mathrm{~m}, 2 \mathrm{H}), 5.97(\mathrm{~s}, 2 \mathrm{H}), 5.25(\mathrm{~s}, 2 \mathrm{H}), 5.22(\mathrm{~s}, 2$ $\mathrm{H}), 2.55(\mathrm{~s}, 6 \mathrm{H}), 1.42(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=14.85,71.48,71.82,77.05$,
$77.27,77.48,114.33,115.48,120.44,121.44,127.37,127.49,127.70,128.12,128.17$, $128.65,128.78,129.94,131.70,133.66,134.95,135,39,137,34,137.38,141.40$, 141.81, 143.36, 149.26, 149.47, 155.68 ppm. ESI-MS for $\mathrm{C}_{39} \mathrm{H}_{35} \mathrm{BF}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$: calcd. $(\mathrm{M}+\mathrm{H})^{+}: 613.2832$, found: 613.2811.
8-[3, 4-Dihydroxybiphenyl]-1, 3, 5, 7-tetramethyl-4, 4-difluoro-4-bora-3a, 4a-diaza-s-indacene (13). ${ }^{1} \mathrm{H}$ NMR (d_{6}-DMSO): $\delta=9.14$ (s, 1 H), 9.04 (s, 1 H), 7.70 (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$), $7.33(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.05-7.02(\mathrm{~m}, 1 \mathrm{H}), 6.82-6.80(\mathrm{~m}, 1 \mathrm{H})$, $6.15(\mathrm{~s}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 6 \mathrm{H}), 1.39(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (d_{6}-DMSO): $\delta=14.89$, 29.30, 114.64, 116.90, 118.50, 122.10, 127.12, 128.16, 129.01, 130.98, 131.55, 132.58, 141.72, 142.75, 143.48, 146.46, 155.54 ppm. ESI-MS for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{BF}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$: calcd. $(\mathrm{M}+\mathrm{H})^{+}: 433.1893$, found: 433.1883.

${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR spectra of compound $9 f$.

