
Calculation of interfacial energy

The rudimentary relationship between $\gamma_{sub/ZnO}$ (the interfacial energy between a ZnO nucleus and the SAM-treated substrate) and γ_{sub} (the total surface energy of the SAM-treated substrate) can be estimated by using a theoretical model suggested by Wu.¹⁹

$$\gamma_{\text{sub}/\text{ZnO}} = \gamma_{\text{sub}} + \gamma_{\text{ZnO}} - 4(\gamma_{\text{sub}}{}^{d} \gamma_{\text{ZnO}}{}^{d}) / (\gamma_{\text{sub}}{}^{d} + \gamma_{\text{ZnO}}{}^{d}) - 4(\gamma_{\text{sub}}{}^{p} \gamma_{\text{ZnO}}{}^{p}) / (\gamma_{\text{sub}}{}^{p} + \gamma_{\text{ZnO}}{}^{p}),$$

where γ_{ZnO} is the surface energy of a ZnO nucleus and the indices d and p refer respectively to the dispersive and polar components. γ_{ZnO} was assumed to be identical to the surface energy of the bare ZnO seed layer. Based on the measurement in Table 1, $\gamma_{sub/ZnO}$ is shown as a function of γ_{sub} in Figure S1. The estimated interfacial energy $\gamma_{sub/ZnO}$ would decrease as γ_{sub} increases. Hence, until a minimum surface energy is exceeded (i.e., $\gamma_{sub/ZnO}$ becomes less than $\gamma_{liq/ZnO}$), heterogeneous nucleation on the treated substrates is expected to be suppressed.

Figure S1 Interfacial energy between a ZnO nucleus and the mixed SAM-treated ZnO substrate, as a function of the surface energy of the mixed SAM treated ZnO substrate.