Supporting Information:

A Novel Ring-Shaped Phosphovanadomolybdate Built by Bicapped Pseudo-Keggin Clusters and Copper(II) Complexes

Jingyang Niu, Guo Chen, Junwei Zhao, Chunfa Yu, Pengtao Ma, Jingping Wang*
${ }^{1}$ Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004,P. R. China; ${ }^{2}$ College of Pharmacy, Henan University, Kaifeng, Henan 475004,P. R. China
E-mail: jpwang@henu.edu.cn

I. Experimental section

II. Crystal structure figures

III. Physical measurement and characterization
IV. Cationic exchange property study

I. Experimental Section.

1. Materials and Methods: All chemicals were commercially purchased and used without further purification. The TG analysis was conducted on Mettler-Toledo TGA/SDTA851 ${ }^{\mathrm{e}}$ analyzer under the nitrogen gas atmosphere with a heating rate of $10{ }^{\circ} \mathrm{C} / \mathrm{min}$ from $25^{\circ} \mathrm{C}$ to $800^{\circ} \mathrm{C}$. UV spectrum was obtained on a Agilent HP8453 UV-Vis spectrometer (distilled water as solvent) in the range of $400-190 \mathrm{~nm}$. IR spectrum was recorded on a Nicolet FT-IR 360 spectrometer using KBr pellets in the range of $4000-400 \mathrm{~cm}^{-1} . \mathrm{C}, \mathrm{H}$ and N elemental analyses were performed on a Perkin-Elmer 2400-II CHNS/O analyzer. XPS analysis was performed on an AXIS ULTRA spectrometer with an Al $\mathrm{K} \alpha$ achromatic X-ray source. XRPD measurement was performed on a Philips X'Pert-MPD instrument with $\mathrm{Cu} \mathrm{K} \alpha$ radiation $(\lambda=1.54056 \AA)$ in the angular range $2 \theta=6-40^{\circ}$ at 293 K .
2. The synthesis of compound 2: A mixture of $\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(1.200 \mathrm{~g}, 7.039 \mathrm{mmol}), \mathrm{Na}_{2} \mathrm{MoO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ $(1.600 \mathrm{~g}, 6.613 \mathrm{mmol}), \mathrm{NH}_{4} \mathrm{VO}_{3}(0.800 \mathrm{~g}, 6.839 \mathrm{mmol}), 1,2-$ dap $(0.600 \mathrm{~mL}, 7.042 \mathrm{mmol})$, phen $(0.076$ $\mathrm{g}, 0.384 \mathrm{mmol}), \mathrm{H}_{3} \mathrm{PO}_{4}(0.5 \mathrm{~mL}, 50 \%)$ and distilled water $(12 \mathrm{~mL})$ at pH 7.0 was stirred for 20 min . The mixture was then transferred to a Teflon-lined stainless steel autoclave (30 mL) and kept at $170{ }^{\circ} \mathrm{C}$ for 6 days. After being slowly cooled to room temperature, block-shaped black crystals were isolated (42% based on Mo), then washed with distilled water and air-dried at room temperature.
3. The cell parameter of compound 2: Triclinic system, space group P-1 with $a=12.5639(12), b=$ 18.0617(18), $c=20.306(2) \AA ; \alpha=67.512(1), \beta=85.134(1), \gamma=87.603(1)^{\circ}$.

II. Crystal structure figures.

Figure S1 Polyhedral/ball-and-stick view of 2.

Figure S2 Ball-and-stick view of the cluster $\left[\mathrm{Cu}(1,2-\mathrm{dap})_{2}\left\{\mathrm{PMo}^{\mathrm{VI}}{ }_{8} \mathrm{~V}^{\mathrm{IV}}{ }_{4} \mathrm{O}_{40}\left(\mathrm{~V}^{\mathrm{IV}} \mathrm{O}\right)_{2} \mathrm{Cu}(1,2-\text { dap })_{2}\right\}\right]^{3-}$.

Figure S3 The $\mathrm{C}_{2 \mathrm{~V}}$ symmetry of the bicapped pseudo-Keggin structure.

Figure S4 The pseudo-Keggin anion capped by two five-coordinate $\{\mathrm{VO}\}$ units forming the bicapped pseudo-Keggin anion.

Figure S5 Polyhedral view of the polyoxoanion cluster $\left[\mathrm{PMo}^{\mathrm{VI}}{ }_{8} \mathrm{~V}^{\mathrm{IV}}{ }_{4} \mathrm{O}_{40}\left(\mathrm{~V}^{\mathrm{IV}} \mathrm{O}\right)_{2}\right]^{7-}$ showing the alternating vanadium and molybdenum oxide layers.

Figure S6 Ball-and-stick view of the ring-shaped cluster 1a. (a) viewed down the crystallographic c axis; (b) viewed down the crystallographic b axis; (c) side view: 1a exhibits the cyclohexane-like ring-shaped structure. (All C, N and Cu atom are omitted for clarity)

Figure $\mathbf{S} 7$ The the $\mathrm{N}-\mathrm{H} \cdot \cdots \mathrm{O}$ hydrogen bonds between $\left[\mathrm{Cu}(1)(1,2-\mathrm{dap})_{2}\right]^{2+},\left[\mathrm{Cu}(2)(1,2-\mathrm{dap})_{2}\right]^{2+}$ cations and 1b clusters. Hydrogen bonds are shown as black dotted lines.

Figure S8 (a) The $\left\{\mathrm{Na}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right\}^{+}$ions are along the S_{6} symmetry axis of the ring (All C, N and Cu 1 atom are omitted for clarity); (b) the isolated countercations, $\left[\mathrm{Cu}(3)(1,2-\mathrm{dap})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$ and $\left[\mathrm{Cu}(4)\left(2,2^{\prime}-\text { bipy }\right)_{3}\right]^{2+}$ distribute around the polyoxoanion ring cluster.

Figure S9 (a) Top view of the infinite 3-D architecture. (b) Side view of the ring cluster: A ring and B ring are linked together through the hydrogen-bonding interaction between the $\left[\mathrm{Cu}(1)(1,2-\mathrm{dap})_{2}\right]^{2+},\left[\mathrm{Cu}(2)(1,2-\mathrm{dap})_{2}\right]^{2+}$, $\left[\mathrm{Cu}(3)(1,2-\mathrm{dap})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$ cations and ring clusters. (c) In the $a b$ plane, the neighbouring rings are linked together through the hydrogen-bonding interaction between the $\left[\mathrm{Cu}(3)(1,2-\mathrm{dap})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$ cations and ring clusters; in the $b c$ or $a c$ plane, the hydrogen-bonding interaction also exist between the $\left[\mathrm{Cu}(3)(1,2-\mathrm{dap})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$ cations and ring clusters.

Figure S10 The coordination geometric frameworks of the $\mathrm{Cu}(1)^{2+}, \mathrm{Cu}(2)^{2+}, \mathrm{Cu}(3)^{2+}$ and $\mathrm{Cu}(4)^{2+}$ cations.

III. Physical measurement and characterization.

Figure S11. The IR spectrum of $\mathbf{1}$.

Figure S12. The photos for the solubility experiments of $\mathbf{1}$ in water (left) and ethanol solvent (right): 0.01 g sample $\mathbf{1}$ is added in the water or ethanol $(10 \mathrm{~mL})$. After stirred for $6 \mathrm{~h}, \mathbf{1}$ still exist as the black solid in the solvent. Additionally, the solubility experiments phenomena in methanol and acetonitrile solvent is the same as above.

Figure S13. The UV spectrum of $\mathbf{1}$ in the saturated aqueous solution.

Figure S14. The in-situ UV spectra of $\mathbf{1}$ in the saturated aqueous solution with the period of $0-12 \mathrm{~h}$, indicating that $\mathbf{1}$ begins to decompose after 9 h .

Figure S15. The visible-near-IR reflectance spectrum in solid of $\mathbf{1}$ showing an obvious absorption band at 544 nm attributed to the transition related to the black color.

Figure S16. The TG-DTA curve of $\mathbf{1}$.

Figure S17. The black crystals of $\mathbf{1}$.

IV. Cationic exchange study.

Considering the 3-D supramolecular channel characteristic of $\mathbf{1}$ with $\left[\mathrm{Na}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{+}$ions as the counter cations, we want to explore its cationic exchange property with other cations, such as $\mathrm{Ag}^{+}, \mathrm{NH}_{4}^{+}, \mathrm{K}^{+}$ and Ba^{2+} ions.

Experiment: 0.01 g sample 1 was added to the $1 \mathrm{~mol} \cdot \mathrm{~L}^{-1} \mathrm{AgNO}_{3}, \mathrm{NH}_{4} \mathrm{Cl}, \mathrm{KCl}$ and BaCl_{2} aqueous solution, respectively. After the mixture was stirred for 6 h , the samples in $\mathrm{AgNO}_{3}, \mathrm{KCl}$ and BaCl_{2} aqueous solution still exist as the black solids (Figure S 18 left, the sample in AgNO_{3} as the example). The solids were filtered and washed with water. The results of the IR spectrum (Figure S19) and elemental analyses of the sample in AgNO_{3} suggest that $\mathbf{1}$ does not show the obvious cationic exchange behavior with the Ag^{+}cations. Similarly, 1 also does not show the obvious cationic exchange behavior with the K^{+}or Ba^{2+} cations. Interestingly, when the sample was treated with $\mathrm{NH}_{4} \mathrm{Cl}$ for $6 \mathrm{~h}, \mathbf{1}$ was completely dissolved and decomposed (Figure S18 right, S20). We presume that 1 can't be stably in the acidic $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution due to the stronger acidity of the solution, which was further confirmed by the phenomenon that the sample was dissolved in $0.01 \mathrm{~mol} \cdot \mathrm{~L}^{-1} \mathrm{HCl}$ solution (Figure S21).

Figure S18. The cationic exchange experiments of $\mathbf{1}$ in $1 \mathrm{~mol} \cdot \mathrm{~L}^{-1} \mathrm{AgNO}_{3}$ (left) and $1 \mathrm{~mol} \cdot \mathrm{~L}^{-1} \mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution (right).

Figure S19. IR spectra of the original sample 1 and the sample treated by the $1 \mathrm{~mol} \cdot \mathrm{~L}^{-1} \mathrm{AgNO}_{3}$.

Figure S20. Comparison of the UV spectra of $\mathbf{1}$ and the sample treated by $\mathrm{NH}_{4} \mathrm{Cl}$ solution.

Figure S21. The phenomenon that $\mathbf{1}$ was dissolved in $0.01 \mathrm{~mol} \cdot \mathrm{~L}^{-1} \mathrm{HCl}$ aqueous solution.

Table S1 Hydrogen Bond Lengths (\AA) and Bond Angles $\left({ }^{\circ}\right)$ of $\mathbf{1}$.

D-H...A	d(D-H)	$\mathrm{d}(\mathrm{H} \cdots \mathrm{A})$	$\mathrm{d}(\mathrm{D} \cdots \mathrm{A})$	$\square \mathrm{D}-\mathrm{H} \cdots \mathrm{A}$
N1-H1C..O16	0.900	2.244	3.115	162.67
N1-H1D \cdots O31	0.900	2.251	3.124	163.55
$\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B} \cdots \mathrm{O} 34$	0.900	2.317	3.177	159.65
N2-H2C‥O14	0.900	2.206	3.059	158.10
N3-H3D \cdots - ${ }^{\text {O }}$	0.900	2.480	3.166	133.26
N3-H3D \cdots O26	0.900	2.535	3.063	118.05
N3-H3E \cdots - 09	0.900	2.096	2.915	150.95
N4-H4B $\cdots \mathrm{O} 7$	0.900	1.990	2.876	167.83
N4-H4C…O10	0.900	2.063	2.859	146.77
N5-H5A \cdots O12	0.900	2.173	2.940	142.73
N5-H5B \cdots O2	0.900	2.144	2.993	156.98
N6-H6D...O34	0.900	2.322	3.173	157.65
N6-H6D ..- 99	0.900	2.500	3.151	129.60
N6-H6E..-O27	0.900	1.968	2.831	159.97
N7-H7C..O12	0.900	2.330	3.074	139.90
N7-H7C..O31	0.900	2.478	3.228	141.12
N8-H8A \cdots - ${ }^{\text {O }} 7$	0.900	2.020	2.916	173.80
N8-H8B \cdots - 9	0.900	1.959	2.799	154.75
N9-H9D...O28	0.900	2.489	3.002	116.66
N9-H9D...O2	0.900	2.642	3.224	123.19
N9-H9E...O21	0.900	2.578	3.193	126.19
N9-H9E..-O29	0.900	2.595	3.347	141.60
N10-H10C...O6	0.900	2.629	3.131	116.13
N10-H10C..O19	0.900	2.630	3.530	177.35
N10-H10D \ldots O6	0.900	2.435	3.142	135.65
N11-H11B..O11	0.900	2.390	3.243	158.15
N11-H11C...O6	0.900	2.368	3.057	133.45
N11-H11C...O32	0.900	2.483	3.297	150.58
N12-H12D \cdots O29	0.900	2.482	3.270	146.38

