Supporting Information:

A Novel Ring-Shaped Phosphovanadomolybdate Built by Bicapped Pseudo-Keggin Clusters and Copper(II) Complexes

Jingyang Niu, Guo Chen, Junwei Zhao, Chunfa Yu, Pengtao Ma, Jingping Wang*

¹Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004,P. R. China; ²College of Pharmacy, Henan University, Kaifeng, Henan 475004,P. R. China

E-mail: jpwang@henu.edu.cn

I. Experimental section

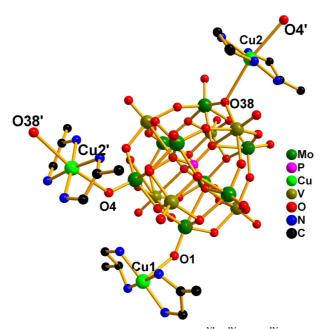
II. Crystal structure figures

III. Physical measurement and characterization

IV. Cationic exchange property study

I. Experimental Section.

1. Materials and Methods: All chemicals were commercially purchased and used without further purification. The TG analysis was conducted on Mettler-Toledo TGA/SDTA851^e analyzer under the nitrogen gas atmosphere with a heating rate of 10 °C/min from 25 °C to 800 °C. UV spectrum was obtained on a Agilent HP8453 UV-Vis spectrometer (distilled water as solvent) in the range of 400–190 nm. IR spectrum was recorded on a Nicolet FT-IR 360 spectrometer using KBr pellets in the range of 4000–400 cm⁻¹. C, H and N elemental analyses were performed on a Perkin-Elmer 2400-II CHNS/O analyzer. XPS analysis was performed on an AXIS ULTRA spectrometer with an Al K α achromatic X-ray source. XRPD measurement was performed on a Philips X'Pert-MPD instrument with Cu K α radiation ($\lambda = 1.54056$ Å) in the angular range $2\theta = 6-40^{\circ}$ at 293 K.


2. The synthesis of compound 2: A mixture of $CuCl_2 \cdot 2H_2O$ (1.200 g, 7.039 mmol), $Na_2MoO_4 \cdot 2H_2O$ (1.600 g, 6.613 mmol), NH_4VO_3 (0.800 g, 6.839 mmol), 1,2-dap (0.600 mL, 7.042 mmol), phen (0.076 g, 0.384 mmol), H_3PO_4 (0.5 mL, 50%) and distilled water (12 mL) at pH 7.0 was stirred for 20 min. The mixture was then transferred to a Teflon-lined stainless steel autoclave (30 mL) and kept at 170 °C for 6 days. After being slowly cooled to room temperature, block-shaped black crystals were isolated (42% based on Mo), then washed with distilled water and air-dried at room temperature.

3. The cell parameter of compound 2: Triclinic system, space group *P*-1 with a = 12.5639(12), b = 18.0617(18), c = 20.306(2) Å; a = 67.512(1), $\beta = 85.134(1)$, $\gamma = 87.603(1)^{\circ}$.

II. Crystal structure figures.

Figure S1 Polyhedral/ball-and-stick view of 2.

 $\label{eq:Figure S2} \begin{array}{ll} \mbox{Ball-and-stick view of the cluster} \left[Cu(1,2\mbox{-}dap)_2 \{PMo^{VI}_8V^{IV}_4O_{40}(V^{IV}O)_2Cu(1,2\mbox{-}dap)_2\}\right]^{3-}. \end{array}$

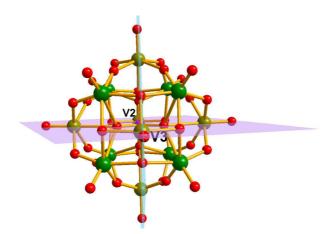
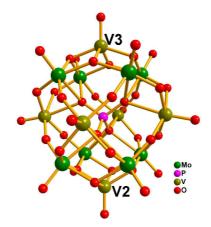
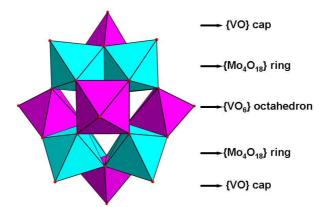
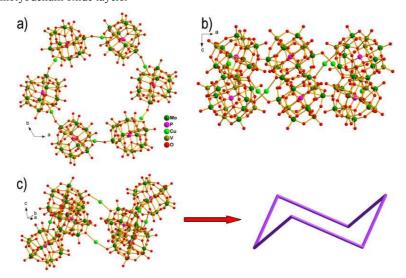
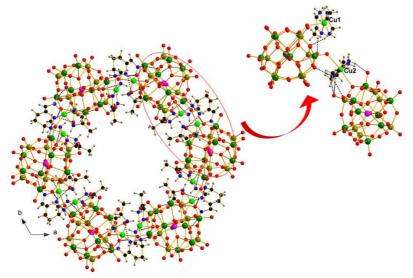
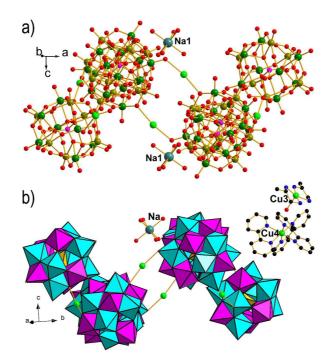




Figure S3 The $C_{\rm 2V}$ symmetry of the bicapped pseudo-Keggin structure.

Figure S4 The pseudo-Keggin anion capped by two five-coordinate {VO} units forming the bicapped pseudo-Keggin anion.

Figure S5 Polyhedral view of the polyoxoanion cluster $[PMo_{8}^{VI}V^{IV}_{4}O_{40}(V^{IV}O)_{2}]^{7-}$ showing the alternating vanadium and molybdenum oxide layers.

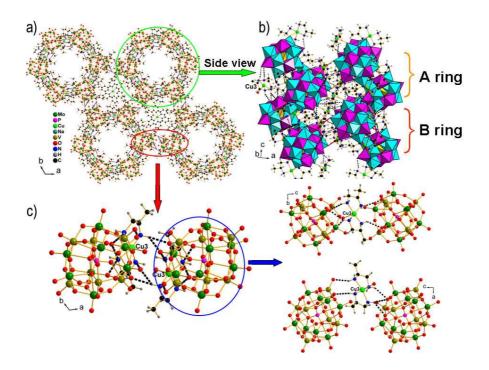

Figure S6 Ball-and-stick view of the ring-shaped cluster 1a. (a) viewed down the crystallographic c axis; (b) viewed down the crystallographic b axis; (c) side view: 1a exhibits the cyclohexane-like ring-shaped structure. (All C, N and Cu1 atom are omitted for clarity)

Figure S7 The the N–H•••O hydrogen bonds between $[Cu(1)(1,2-dap)_2]^{2+}$, $[Cu(2)(1,2-dap)_2]^{2+}$ cations and **1b** clusters. Hydrogen bonds are shown as black dotted lines.

Figure S8 (a) The $\{Na(H_2O)_6\}^+$ ions are along the S_6 symmetry axis of the ring (All C, N and Cu1 atom are omitted for clarity); (b) the isolated countercations, $[Cu(3)(1,2-dap)_2(H_2O)]^{2+}$ and $[Cu(4)(2,2'-bipy)_3]^{2+}$ distribute around the polyoxoanion ring cluster.

Figure S9 (a) Top view of the infinite 3-D architecture. (b) Side view of the ring cluster: A ring and B ring are linked together through the hydrogen-bonding interaction between the $[Cu(1)(1,2-dap)_2]^{2+}$, $[Cu(2)(1,2-dap)_2]^{2+}$, $[Cu(3)(1,2-dap)_2(H_2O)]^{2+}$ cations and ring clusters. (c) In the *ab* plane, the neighbouring rings are linked together through the hydrogen-bonding interaction between the $[Cu(3)(1,2-dap)_2(H_2O)]^{2+}$ cations and ring clusters; in the *bc* or *ac* plane, the hydrogen-bonding interaction also exist between the $[Cu(3)(1,2-dap)_2(H_2O)]^{2+}$ cations and ring clusters.

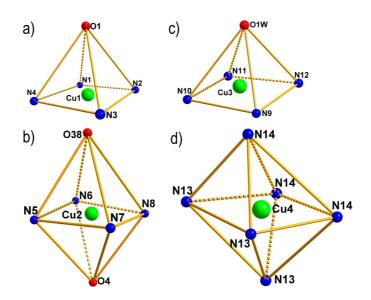


Figure S10 The coordination geometric frameworks of the $Cu(1)^{2+}$, $Cu(2)^{2+}$, $Cu(3)^{2+}$ and $Cu(4)^{2+}$ cations.

III. Physical measurement and characterization.

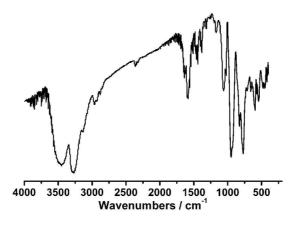


Figure S11. The IR spectrum of 1.

Figure S12. The photos for the solubility experiments of **1** in water (left) and ethanol solvent (right): 0.01 g sample **1** is added in the water or ethanol (10 mL). After stirred for 6 h, **1** still exist as the black solid in the solvent. Additionally, the solubility experiments phenomena in methanol and acetonitrile solvent is the same as above.

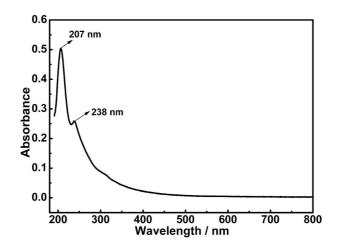


Figure S13. The UV spectrum of 1 in the saturated aqueous solution.

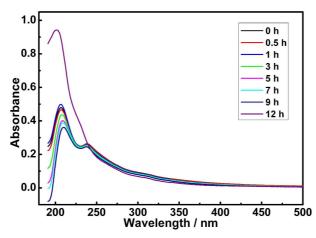


Figure S14. The in-situ UV spectra of 1 in the saturated aqueous solution with the period of 0-12 h, indicating that 1 begins to decompose after 9 h.

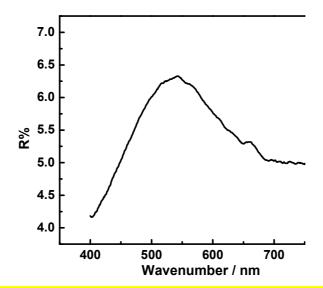


Figure S15. The visible-near-IR reflectance spectrum in solid of 1 showing an obvious absorption band at 544 nm attributed to the transition related to the black color.

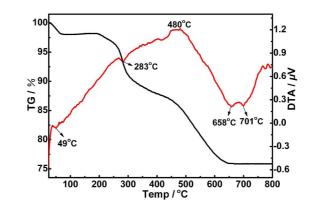


Figure S16. The TG-DTA curve of 1.

Figure S17. The black crystals of 1.

IV. Cationic exchange study.

Considering the 3-D supramolecular channel characteristic of 1 with $[Na(H_2O)]^+$ ions as the counter cations, we want to explore its cationic exchange property with other cations, such as Ag^+ , NH_4^+ , K^+ and Ba^{2+} ions.

Experiment: 0.01 g sample **1** was added to the 1 mol·L⁻¹ AgNO₃, NH₄Cl, KCl and BaCl₂ aqueous solution, respectively. After the mixture was stirred for 6 h, the samples in AgNO₃, KCl and BaCl₂ aqueous solution still exist as the black solids (Figure S18 left, the sample in AgNO₃ as the example). The solids were filtered and washed with water. The results of the IR spectrum (Figure S19) and elemental analyses of the sample in AgNO₃ suggest that **1** does not show the obvious cationic exchange behavior with the Ag⁺ cations. Similarly, **1** also does not show the obvious cationic exchange behavior with the K⁺ or Ba²⁺ cations. Interestingly, when the sample was treated with NH₄Cl for 6 h, **1** was completely dissolved and decomposed (Figure S18 right, S20). We presume that **1** can't be stably in the acidic NH₄Cl aqueous solution due to the stronger acidity of the solution, which was further confirmed by the phenomenon that the sample was dissolved in 0.01 mol·L⁻¹ HCl solution (Figure S21).

Figure S¹⁸. The cationic exchange experiments of 1 in 1 mol·L⁻¹ AgNO₃ (left) and 1 mol·L⁻¹ NH₄Cl aqueous solution (right).

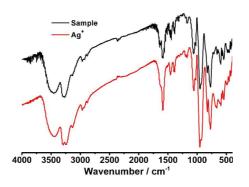


Figure S19. IR spectra of the original sample 1 and the sample treated by the 1 mol·L⁻¹ AgNO₃.

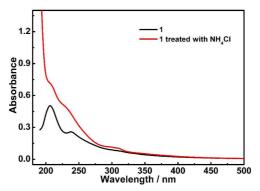


Figure S²¹. The phenomenon that 1 was dissolved in 0.01 mol·L⁻¹ HCl aqueous solution.

D–H···A	d(D–H)	d(H…A)	d(D…A)	D–H···A
N1-H1C…O16	0.900	2.244	3.115	162.67
N1-H1DO31	0.900	2.251	3.124	163.55
N2-H2B-···O34	0.900	2.317	3.177	159.65
N2-H2C-014	0.900	2.206	3.059	158.10
N3-H3D-014	0.900	2.480	3.166	133.26
N3-H3D-026	0.900	2.535	3.063	118.05
N3–H3E…O9	0.900	2.096	2.915	150.95
N4–H4B…O7	0.900	1.990	2.876	167.83
N4-H4C…O10	0.900	2.063	2.859	146.77
N5-H5A-012	0.900	2.173	2.940	142.73
N5-H5B-02	0.900	2.144	2.993	156.98
N6-H6D-034	0.900	2.322	3.173	157.65
N6-H6D-09	0.900	2.500	3.151	129.60
N6-H6E…O27	0.900	1.968	2.831	159.97
N7-H7C…O12	0.900	2.330	3.074	139.90
N7-H7C-031	0.900	2.478	3.228	141.12
N8–H8A…O17	0.900	2.020	2.916	173.80
N8–H8B…O9	0.900	1.959	2.799	154.75
N9-H9D-028	0.900	2.489	3.002	116.66
N9-H9D-02	0.900	2.642	3.224	123.19
N9-H9E…O21	0.900	2.578	3.193	126.19
N9-H9E…O29	0.900	2.595	3.347	141.60
N10-H10C…O6	0.900	2.629	3.131	116.13
N10-H10C…O19	0.900	2.630	3.530	177.35
N10-H10D-06	0.900	2.435	3.142	135.65
N11-H11B…O11	0.900	2.390	3.243	158.15
N11-H11C…O6	0.900	2.368	3.057	133.45
N11-H11C…O32	0.900	2.483	3.297	150.58
N12-H12D-029	0.900	2.482	3.270	146.38

Table S1 Hydrogen Bond Lengths (Å) and Bond Angles (°) of 1.