Supporting Information

Noncovalent Binding between Fullerenes and Protonated Porphyrins in the Gas Phase

Sunghan Jung, Jongcheol Seo, and Seung Koo Shin^{*}

Bio-Nanotechnology Center, Department of Chemistry, Pohang University of Science and Technology,

San 31 Hyojadong Namgu, Pohang, Kyungbuk 790-784, Korea

^{*}To whom correspondence should be addressed. E-mail: skshin@postech.ac.kr.

Figure S1. Energy levels of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of porphyrins as a function of proton affinity of porphine nitrogens. Both HOMO and LUMO energies increase linearly with increasing proton affinity: The slopes (in units of eV/eV) of HOMO and LUMO energies are 0.959 and 1.045 for neutral porphyrins, respectively, and

1.053 and 1.139 for singly-protonated porphyrins, respectively. Orbital energies of unsubstituted porphine (**por**) deviate from the linearity established by meso-substituted porphyrins.

Table S1. Total Energy (*E*, in hartree) and Zero-Point Energy (ZPE, in kcal mol^{-1}) of Neutral and Protonated Porphyrins^{a,b}

	Neutral (P)		$[P + H]^+$		$[P + 2H]^{2+}$		$[P + 3H]^{3+}$	
	Ε	ZPE	Ε	ZPE	Ε	ZPE	Ε	ZPE
1	-1890.807687	381.6	-1891.231343	389.6	-1891.542754	396.8		
2	-1954.375780	353.1	-1954.779128	$360.6 (po^1)$	-1955.067841	367.5 (po ²)	-1955.308219	375.7 (po ² py ¹)
			-1954.763884	361.3 (py ¹)	-1955.094348	369.1 (po ¹ py ¹)	-1955.354893	377.2 (po ¹ py ²)
					-1955.105895	370.1 (py ²)	-1955.380586	378.3 (py ³)
3	-2637.089050	417.7	-2637.499431	425.4	-2637.799507	432.5		
4	-3133.031072		-3133.461812		-3133.785433			
5	-3857.085775	282.6	-3857.472015	291.6	-3857.742482	298.6		
Por	-977.745679	183.4	-978.155837	191.0	-978.434007	197.9		

^a At the Hartree–Fock level with a 3-21G basis set.

^b Zero-point energies are scaled by a factor of 0.9085.

Table S2. Change of Energy (ΔE), Zero-Point Energy (ΔZPE) and Enthalpy (ΔH)^a for the Protonation

Reaction (in kcal mol⁻¹)

	$\mathrm{P} + \mathrm{H}^{\scriptscriptstyle +} \longrightarrow \left[\mathrm{P} + \mathrm{H}\right]^{\scriptscriptstyle +}$		$\left[P+H\right]^{+} \rightarrow \left[P+2H\right]^{2+}$			$[P+2H]^{2+} \rightarrow [P+3H]^{3+}$			
	ΔE	ΔZPE	ΔH	ΔE	ΔZPE	ΔH	ΔE	ΔZPE	ΔH
1	-265.8	8.0	-257.8	-195.4	7.2	-188.2			
2	-253.1	7.5	$-245.6 \ (2 \rightarrow \mathbf{po}^{1})$	-181.2	6.9	$-174.3 \ (\mathbf{po}^1 \rightarrow \mathbf{po}^2)$	-150.8	8.2	$-142.6 \ (\mathbf{po}^2 \rightarrow \mathbf{po}^2 \mathbf{py}^1)$
	-243.5	8.2	$-235.3 (2 \rightarrow py^{1})$	-197.8	8.5	$-189.3 \ (\mathbf{po}^1 \rightarrow \mathbf{po}^1 \mathbf{py}^1)$	-134.2	6.6	$-127.6 (\mathbf{po}^1 \mathbf{py}^1 \rightarrow \mathbf{po}^2 \mathbf{py}^1)$
				-207.4	7.8	$-199.6 \ (\mathbf{py}^1 \rightarrow \mathbf{po}^1 \mathbf{py}^1)$	-163.5	8.1	$-155.4 \ (\mathbf{po}^{1}\mathbf{py}^{1} \rightarrow \mathbf{po}^{1}\mathbf{py}^{2})$
				-214.6	8.8	$-205.8 \ (\mathbf{py}^1 \rightarrow \mathbf{py}^2)$	-156.2	7.1	$-149.1 \ (\mathbf{py}^2 \rightarrow \mathbf{po}^1 \mathbf{py}^2)$
							-172.4	8.2	$-164.2 \ (\mathbf{py}^2 \rightarrow \mathbf{py}^3)$
3	-257.5	7.7	-249.8	-188.3	7.1	-181.2			
4	-270.3	7.7 ^b	-262.6	-203.1	7.0 ^b	-196.1			
5	-242.4	9.0	-233.4	-169.7	7.0	-162.7			
Por	-257.4	7.6	-249.8	-174.6	6.9	-167.7			
a									

 $^{a}\Delta H = \Delta E + \Delta ZPE.$

^{*b*} Δ ZPE of porphyrin **4** was estimated from the average value of Δ ZPE of porphyrins **1**, **2**, **3**, and **por**.

	1 () 0	dihedral angle of sul	ostituent (degree)	angle between the opposite pyrrole planes (degree)		
	$a(\mathbf{A})$	∠C1–C2–C3–C4	∠C5-C6-C7-C8	$(180 - \theta_{a})/2$	$(180 - \theta_{\rm b})/2$	
$[1 + H]^+$		117.4	124.9	16.8	15.2	
$\left[1+H\right]^{+} \cdot C_{60}$	2.79	117.3	124.5	10.5	17.9	
$\left[1+\mathrm{H}\right]^{+}\cdot\mathrm{C}_{70}$ (end-on)	2.76	118.3	123.5	9.4	19.9	
$\left[1+\mathrm{H}\right]^{+} \cdot \mathrm{C}_{70} \text{ (side-on)}$	2.94	118.5	125.4	9.7	19.9	
$[2 + H]^+$		120.1	127.9	15.7	14.4	
$[2 + H]^+ \cdot C_{60}$	2.80	115.4	122.8	9.1	16.9	
$[2 + H]^+ \cdot C_{70}$ (end-on)	2.76	115.2	122.5	7.6	16.7	
$\left[2+\mathrm{H}\right]^{+} \cdot \mathrm{C}_{70} \text{ (side-on)}$	2.93	115.7	124.6	8.3	18.2	
$\left[3+\mathrm{H}\right]^{+}$		116.1	125.5	17.9	14.9	
$[3 + H]^+ \cdot C_{60}$	2.79	115.8	124.2	13.0	16.6	
$[3 + \mathrm{H}]^+ \cdot \mathrm{C}_{70} \text{ (end-on)}$	2.77	116.4	124.4	11.4	17.0	
$[3 + \mathrm{H}]^+ \cdot \mathrm{C}_{70} \text{ (side-on)}$	2.93	116.3	124.3	11.3	18.1	
$[4 + H]^+$		119.0	126.2	17.9	16.1	
$[4 + H]^+ \cdot C_{60}$	2.77	117.7	123.5	10.0	17.5	
$\left[4+\mathrm{H}\right]^{+}\cdot\mathrm{C}_{70}$ (end-on)	2.78	120.7	129.6	12.2	20.0	
$[4 + H]^+ \cdot C_{70}$ (side-on)	2.95	128.0	133.6	15.3	25.1	
$[5 + H]^+$		112.0	117.0	15.4	14.3	
$[{\bf 5} + H]^+ \cdot C_{60}$	2.82	112.2	120.0	12.7	17.5	
$\left[5+\mathrm{H}\right]^{+}\cdot\mathrm{C}_{70} \text{ (end-on)}$	2.81	112.3	119.1	12.8	15.0	
$[5 + H]^+ \cdot C_{70}$ (side-on)	2.97	114.0	121.6	15.2	19.9	
$[2 + 2H]^{2+} (py^2)$		89.9	90.2	0.0	0.1	
$[2 + 2H]^{2+} \cdot C_{60}$	2.73	77.8	53.4	0.1	7.4	
$[2 + 2H]^{2+} \cdot C_{70}$ (end-on)	2.73	90.6	54.1	6.4	1.4	
$[2 + 2H]^{2+} C_{70}$ (side-on)	2.89	126.3	107.5	10.1	4.6	

Table S3. Distance (Å) between Protonated Porphyrin and Fullerene, Dihedral Angles of Meso-Substituents, and Out-of-Plane Angle of Porphine Ring

^{*a*} From the center of four porphine nitrogens to the closest 6:6 C–C bond of fullerene

