The Influence of $\boldsymbol{\beta}$-Substituents in Aldol Reactions of Boron Enolates of $\boldsymbol{\beta}$-alkoxy
 Methylketones

Luiz C. Dias*, Emílio C. de Lucca Jr., Marco A. B. Ferreira, Danilo C. Garcia and Cláudio F. Tormena

Instituto de Química, Universidade Estadual de Campinas, UNICAMP, C.P. 6154, 13084-971, Campinas, SP, Brazil
ldias@iqm.unicamp.br

General Informations

Unless noted, all reactions were carried out under an atmosphere of argon in flame-dried glassware with magnetic stirring. Dichloromethane, triethylamine, 2,6-lutidine and dimethylformamide were distilled from CaH_{2}. Dimethyl sulfoxide was distilled under reduced pressure from CaH_{2} and stored over molecular sieves. THF and diethylether were distilled from sodium/benzophenone ketyl. Oxalyl chloride was distilled immediately prior to use. Purification of reaction products was carried out by flash column chromatography using silica gel (230-400 mesh). Analytical thin layer chromatography was performed on silica gel 60 and GF (5-40$\mu \mathrm{m}$ thickness) plates. Visualization was accomplished with UV light and phosphomolybdic acid followed by heating.

Optical rotations were measured on a LEP A2 with a sodium lamp and are reported as follows: $[\alpha]_{\lambda}{ }^{\top} \mathrm{C}(\mathrm{c}=\mathrm{g} / 100 \mathrm{~mL}$, solvent).

Melting points were measured with a Microquímica MQAPF-301 equipment and are uncorrected.

Infrared spectra were recorded on Bomem Hartman \& Braun spectrometer. Wavelengths of maximum absorbance (max) are quoted in wavenumbers $\left(\mathrm{cm}^{-1}\right)$.
${ }^{1} \mathrm{H}$ and proton-decoupled ${ }^{13} \mathrm{C}$ NMR spectra were taken in $\mathrm{C}_{6} \mathrm{D}_{6}$ or CDCl_{3} in a Bruker DPX250 at $250 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right)$ and $62.5 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)$ or in a Varian INOVA at 500 $\mathrm{MHz}\left({ }^{1} \mathrm{H}\right)$ and $125 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)$. The chemical shifts (δ) are reported in ppm using
solvent as an internal standard $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right.$ at 7.16 ppm and CDCl_{3} at 7.26 ppm$)$. Data are reported as: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, quint = quintuplet, sext $=$ sextet, $\mathrm{br} \mathrm{s}=$ broad singlet, $\mathrm{dd}=$ doublet of doublets, $\mathrm{dt}=$ doublet of triplets, ddd $=$ doublet of doublet of doublets, $\mathrm{tt}=$ triplet of triplets, $\mathrm{m}=$ multiplet; coupling constant(s) in Hz; integration. The signals of the minor isomer are shown between brackets.

High resolution mass spectrometry (HRMS) was recorded by the Waters Xevo Q-Tof using Electrospray Ionisation (ESI). The parent ion $\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$is quoted.

Preparation of (+)-(R)-4-hydroxy-5,5-dimethylhexan-2-one (5)

5
a) List, B. Tetrahedron 2002, 58, 5573. b) List, B.; Pojarliev, P.; Castello, C. Org. Lett. 2001, 3, 573. c) List, B.; Lerner, R. A.; Barbas, C. F., III J. Am. Chem. Soc. 2000, 122, 2395.

Preparation of (S)-((R)-2,2-dimethyl-5-oxohexan-3-yl)
 3,3,3-trifluoro-2-methoxy-2-phenylpropanoate (5a)

Alcohol 5 ($20 \mathrm{mg}, 0.13 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.6 \mathrm{~mL})$ and DMAP $(16 \mathrm{mg}, 0.13 \mathrm{mmol}),(S)-\alpha-m e t h o x y-\alpha-$ trifluoromethylphenylacetic acid $(0.026 \mathrm{~mL}$, $0.14 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.11 \mathrm{~mL}, 0.78 \mathrm{mmol})$ were added. The mixture was stirred at room temperature for 15 min . Then, the reaction medium was applied directly to a flash column chromatography (silica gel 200-400 mesh) and purified using a
mixture of hexane/ethyl acetate (70:30) as eluent, providing $46 \mathrm{mg}(98 \%)$ of 5 a as a yellow oil (95:5 diastereoselectivity).
Rf 0.79 (30\% EtOAc in hexane)
IR (neat) 3061, 2970, 2876, 2851, 1749, 1724, 1568, 1481, 1470, 1452, 1423, $1400,1369,1265,1180,1122,1082,1047,1016,995,966,924,816,764,739$, $704,640 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz} ;$ CDCl $_{3}$) $\delta 0.92$ (s, 9H); (2.05 (s, 3H)); 2.08 (s, 3H); 2.60 (dd, J = 3.5 and $16.9 \mathrm{~Hz}, 1 \mathrm{H}$); 2.66 (dd, $J=8.0$ and $16.9 \mathrm{~Hz}, 1 \mathrm{H}$); 3.49-3.50 (m, 3H); (3.533.54 (m. 3H)); 5.36 (dd, J = 3.5 and $8.0 \mathrm{~Hz}, 1 \mathrm{H}$); 7.37-7.39 (m, 3H); 7.50-7.54 (m, 2 H).
${ }^{13}$ C NMR ($125 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 25.8 ; 30.2 ; 34.5 ; 44.0$; (52.6); 55.3 (q, $J=1.4 \mathrm{~Hz}$); 79.4; 84.5 (q, J = 27.2 Hz); 123.3 (q, J = 288.6 Hz); 127.7; 128.3; 129.5; 131.9; 165.7; 205.0.

HRMS (ESI TOF-MS): calcd. for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{O}_{4} \mathrm{Na}$: 383.1446; found: 383.1361.

Preparation of (+)-(R)-4-(4-methoxybenzyloxy)-5,5-dimethylhexan-2-one (6)

Doi, T.; Numajiri, Y.; Munakata, A.; Takahashi, T. Org. Lett. 2006, 8, 531.

Preparation of (+)-(R)-4-(tert-butyldimethylsilyloxy)-5,5-dimethylhexan-2-one (7)

Zou, B.; Wei, J.; Cai, G.; Ma.; D. Org. Lett. 2003, 5, 3503.

Preparation of (-)-(R)-5,5-dimethyl-4-(trityloxy)hexan-2-one (17)

17
A solution of alcohol $5(1.01 \mathrm{~g}, 7.00 \mathrm{mmol})$, $\operatorname{AgOTf}(2.15 \mathrm{~g}, 8.3 \mathrm{mmol})$, and 2.6-lutidine ($1.2 \mathrm{~mL}, 10.2 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL})$ was cooled to $0{ }^{\circ} \mathrm{C}$. Trityl chloride ($2.33 \mathrm{~g}, 8.3 \mathrm{mmol}$) was added and the resulting suspension was stirred for 5 min at $0{ }^{\circ} \mathrm{C}$ and 1 h at room temperature. After this period, the crude reaction was filtered through a pad of Celite ${ }^{\circledR}$. The filtrate was washed with saturated aqueous NaHCO_{3} followed by brine. Subsequently, the organic phase was dried over MgSO_{4} and concentrated. The residue was purified by flash column chromatography (silica gel 200-400 mesh) using a mixture of hexane/ethyl acetate (95:5) as eluent, providing 2.40 g (88%) of 17 as a white solid.
$[\mathrm{a}]_{\mathrm{D}}{ }^{20}-16.0\left(\mathrm{c}=0.98, \mathrm{CHCl}_{3}\right)$
Rf 0.49 (5\% EtOAc in hexane)
mp $78-80^{\circ} \mathrm{C}$
IR (neat) 3088, 3059, 3020, 2961, 2910, 2870, 1718, 1597, 1489, 1448, 1364, 1217, 1059, 758, 706, $669 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz} ; \mathbf{C}_{6} \mathrm{D}_{6}$) $\delta 0.87$ (s, 9H); 1.35 (s, 3H); 2.44 (dd, $J=7.4$ and 18.1 $\mathrm{Hz}, 1 \mathrm{H}$); 2.63 (dd, $J=3.1$ and $18.1 \mathrm{~Hz}, 1 \mathrm{H}$); 3.93 (dd, $J=3.1$ and $7.4 \mathrm{~Hz}, 1 \mathrm{H}$); 7.02 (tt, $J=1.2$ and $7.3 \mathrm{~Hz}, 3 \mathrm{H}$); $7.12(\mathrm{tt}, J=2.0$ and $8.0 \mathrm{~Hz}, 6 \mathrm{H}) ; 7.57-7.60(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13}$ C NMR (125 MHz; $\mathbf{C}_{6} \mathrm{D}_{6}$) $\delta 26.5 ; 29.4 ; 36.3 ; 46.4 ; 76.3 ; 86.9 ; 127.2 ; 127.9 ; 129.7$; 145.7; 204.2.

HRMS (ESI TOF-MS): calcd. for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{Na}: 409.2144$; found: 409.2180 .

Preparation of 4-(trityloxy)pentan-2-ol (19)

19
A solution of alcohol 18 ($730 \mathrm{mg}, 7.00 \mathrm{mmol}$), AgOTf ($1.80 \mathrm{~g}, 7.0 \mathrm{mmol}$) and 2.6-lutidine ($1.0 \mathrm{~mL}, 8.6 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL})$ was cooled to $0{ }^{\circ} \mathrm{C}$. Trityl chloride ($1.95 \mathrm{~g}, 7.0 \mathrm{mmol}$) was added and the resulting suspension was
sttired for 5 min at $0^{\circ} \mathrm{C}$ and 1 h at room temperature. After this period, the crude reaction was filtered through a pad of Celite ${ }^{\circledR}$ and the filtrate was washed with saturated aqueous NaHCO_{3} followed by brine. Subsequently, the organic phase was dried over MgSO_{4} and concentrated. The residue was purified by flash column chromatography (silica gel 200-400 mesh) using a mixture of hexane/ethyl acetate (95:5) as eluent, providing $1.88 \mathrm{~g}(78 \%)$ of 19 as a pale yellow viscous oil.
Rf 0.74 (5\% EtOAc in hexane)
IR (neat) 3501, 3088, 3055, 3036, 2972, 2932, 1597, 1491, 1448, 1421, 1377, 1265, 1221, 1151, 1117, 1086, 1028, 1016, 1001, 951, 920, 899, 775, 741, 708, 648, $633 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (250 MHz; $\left.\mathbf{C}_{6} \mathrm{D}_{6}\right) \delta 0.93(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 6 \mathrm{H}) ;(1.02(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 6 \mathrm{H})$); 1.12-1.22 (m, 1H); 1.32 (ddd, $J=5.0,9.2$ and $14.2 \mathrm{~Hz}, 1 \mathrm{H}$); (1.57 (ddd, $J=6.0,9.1$ and $14.0 \mathrm{~Hz}, 1 \mathrm{H})$); (1.83 (br s, 1H)); 2.67 (br s, 1H); 3.57-3.83 (m, 1H); 3.98-4.08 (m, 1H); 6.97-7.13 (m, 9H); 7.56-7.63 (m, 6H).
${ }^{13}$ C NMR (62.5 MHz; C $_{6} \mathrm{D}_{6}$) δ 21.5; (22.2); 24.0; (24.4); 45.8; (47.2); 64.4; (65.9); 69.5; (69.8); (87.2); 87.6; (127.1); 127.3; 128.0; 129.3; 145.4; (145.8).

HRMS (ESI TOF-MS): calcd. for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{Na}: 369.1830$; found: 369.1836.

Preparation of (RS)-4-(trityloxy)pentan-2-one (20)

20
DMSO ($0.52 \mathrm{~mL}, 7.30 \mathrm{mmol}$) was added dropwise to a stirred solution of oxalyl chloride ($0.33 \mathrm{~mL}, 3.74 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(19.0 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ and the mixture was stirred for 30 min . A solution of the alcohol 19 ($1.05 \mathrm{~g}, 3.04 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (7.6 mL) was added dropwise via cannula and the mixture stirred at $-78^{\circ} \mathrm{C}$ for 30 min. Triethylamine ($2.15 \mathrm{~mL}, 15.2 \mathrm{mmol}$) was added dropwise and the suspension was allowed to warm to room temperature slowly and stirred for 1 h . The reaction was quenched with the addition of a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (10 mL). The phases were separated and the aqueous phase was extracted with EtOAc (3x $20 \mathrm{~mL})$. The organic phase was washed with water ($2 \times 25 \mathrm{~mL}$), brine ($2 \times 25 \mathrm{~mL}$), dried over MgSO_{4}, filtered and concentrated under reduced pressure. The residue
was purified by flash column chromatography (silica gel 200-400 mesh) using a mixture of hexane/ethyl acetate ($90: 10$) as eluent, providing $906 \mathrm{mg}(86 \%)$ of $\mathbf{2 0}$ as a white solid.

Rf 0.48 (10\% EtOAc in hexane)
mp $115-117^{\circ} \mathrm{C}$
IR (neat) 3088, 3055, 2988, 2934, 1711, 1597, 1491, 1448, 1421, 1375, 1364, 1265, 1219, 1128, 1076, 1024, 897, 750, 708, 650, $633 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 1.14$ (d, $J=6.2 \mathrm{~Hz}, 3 \mathrm{H}$); 1.48 (s, 3 H); 1.79 (dd, $J=3.6$ and $16.3 \mathrm{~Hz}, 1 \mathrm{H}$); 1.98 (dd, $J=8.2$ and $16.3 \mathrm{~Hz}, 1 \mathrm{H}$); 4.10-4.22 (m, 1H); 6.97-7.12 (m, 9H); 7.53-7.58 (m, 6H).
${ }^{13}{ }^{\mathbf{C}}$ NMR ($125 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 22.6 ; 30.0 ; 51.5 ; 67.1 ; 87.4 ; 127.2 ; 128.0 ; 129.3 ;$ 145.5; 204.9.

HRMS (ESI TOF-MS): calcd. for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{Na}$: 367.1674; found: 367.1701.

Preparation of (RS)-4-(4-nitrophenyl)-4-(trityloxy)butan-2-one (16)

16
A solution of alcohol $15(2.00 \mathrm{~g}, 9.56)$, AgOTf ($2.70 \mathrm{~g}, 10.5 \mathrm{mmol}$), and $2.6-$ lutidine ($1.6 \mathrm{~mL}, 14.3 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(19 \mathrm{~mL})$ was cooled to $0{ }^{\circ} \mathrm{C}$. Trityl chloride ($2.66 \mathrm{~g}, 9.56 \mathrm{mmol}$) was added and the resulting suspension was stirred for 5 min at $0^{\circ} \mathrm{C}$ and 1 h at room temperature. After this period, the crude reaction was filtered through a pad of Celite ${ }^{\circledR}$ and the filtrate was washed with saturated aqueous NaHCO_{3} solution followed by brine. Subsequently, the organic phase was dried over MgSO_{4} and concentrated. The residue was purified by flash column chromatography (silica gel 200-400 mesh) using a mixture of hexane/dichloromethane/ethyl acetate (50:40:10) as eluent, providing 2.21 g (51%) of 16 as a white solid.
Rf 0.79 (40% EtOAc in hexane)
IR (neat) 3055, 2990, 1717, 1607, 1522, 1348, 1265, 856, $744 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 1.8(\mathrm{~s}, 3 \mathrm{H}) ; 2.46(\mathrm{dd}, \mathrm{J}=3.3$ and $17.1 \mathrm{~Hz}, 1 \mathrm{H}) ; 2.74$ (dd, $J=9.2$ and $17.1 \mathrm{~Hz}, 1 \mathrm{H}$); 5.15 (dd, $J=3.3$ and $9.3 \mathrm{~Hz}, 1 \mathrm{H}$); 7.15-7.27 (m, 9H); $7.33-7.46$ (m, 8H); 8.01 (d, J = $8.8 \mathrm{~Hz}, 2 \mathrm{H}$).
${ }^{13}$ C NMR ($62.5 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6}$) δ 30.7; 52.3; 71.4; 88.6; 123.1; 127.3; 127.4; 127.9; 128.8; 143.9; 146.6; 151.2; 205.2.

HRMS (ESI TOF-MS): calcd. for $\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{NO}_{4} \mathrm{Na}$: 474.1681; found: 474.1656.

General procedure for methylketone aldol reactions: To a solution of the methylketone (1.0 equiv., 0.21 mmol) in $\mathrm{Et}_{2} \mathrm{O}(5.5 \mathrm{~mL})$ at $-30{ }^{\circ} \mathrm{C}$ was added carefully ($c-\mathrm{Hex})_{2} \mathrm{BCl}\left(2.0\right.$ equiv, 0.42 mmol), followed by $\mathrm{Et}_{3} \mathrm{~N}$ (2.1 equiv, 0.44 mmol). After the addition of $\mathrm{Et}_{3} \mathrm{~N}$ was complete (the formation of a white cloud was observed at this point), the reaction medium was immediately cooled down to -78 ${ }^{\circ} \mathrm{C}$. To this slurry, the corresponding aldehyde (4.0 equiv., 0.84 mmol) was added dropwise and the resulting mixture was stirred for 30 min . The reaction was quenched by the addition of $\mathrm{MeOH}(4.0 \mathrm{~mL})$ and the resulting solution was stirred at room temperature for 30 min . The solvent was removed under reduced pressure and the residue was purified by flash column chromatography (silica gel 200-400 mesh), providing the aldol adducts.

(3R,7S)-3-(tert-butyldimethylsilyloxy)-7-hydroxy-2,2,8-trimethylnonan-5-one

 (11a) and (3R,7R)-3-(tert-butyldimethylsilyloxy)-7-hydroxy-2,2,8-trimethyInonan-5-one (12a)

The mixture of aldol adducts 11a and 12a ($98 \%, 135 \mathrm{mg}, 0.41 \mathrm{mmol}$) was obtained as a yellow oil (65:35 diastereoselectivity), after purification by flash column chromatography (silica gel 200-400 mesh) using a mixture of hexane/ethyl acetate (80:20) as eluent.
$\mathbf{R f} 0.65$ (10\% EtOAc in hexane)

IR (neat) 3479, 2959, 2932, 2895, 2858, 1711, 1472, 1389, 1364, 1256, 1084, 1030, 939, 837, 775, $667 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (500 MHz; $\mathrm{C}_{6} \mathrm{D}_{6}$) $\delta(0.03(\mathrm{~s}, 3 \mathrm{H})$); 0.06 (s, 3H); 0.13 (s, 3H); (0.14 (s, 3H)); 0.84 (s, 9H); ($0.85(\mathrm{~s}, 9 \mathrm{H})$); 0.85 (d, J = $6.8 \mathrm{~Hz}, 3 \mathrm{H}) ; 0.90(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;(0.91$ (d, J = 6.8 Hz, 3H)); (0.96 (s, 9H)); $0.96(\mathrm{~s}, 9 \mathrm{H}) ; 1.49-1.60(\mathrm{~m}, 1 \mathrm{H}) ; 2.16-2.27(\mathrm{~m}$, 2H); 2.29-2.44 (m, 2H); (2.92 (br s, 1H)); 2.98 (br s, 1H); 3.75 (ddd, $J=2.9,5.4$ and $8.8 \mathrm{~Hz}, 1 \mathrm{H})$; (3.82 (ddd, $J=2.2,5.4$ and $7.8 \mathrm{~Hz}, 1 \mathrm{H})$); 4.09-4.12 (m, 1H).
${ }^{13}$ C NMR (62.5 MHz; $\mathrm{C}_{6} \mathrm{D}_{6}$) $\delta(-4.7) ;-4.7$; (-3.8); -3.8; 17.6; (17.7); 18.5; (18.5); (18.6); 18.7; 26.0; 26.3; (33.4); 33.4; (35.5); 35.6; 47.5; (47.7); 48.3; (48.3); (72.0); 72.2; 74.8; (75.0); 210.2.

HRMS (ESI TOF-MS): calcd. for $\mathrm{C}_{18} \mathrm{H}_{38} \mathrm{O}_{3} \mathrm{SiNa}$ 353.2488; found: 353.2466.
(3R,7R)-3-(tert-butyldimethylsilyloxy)-7-hydroxy-2,2-dimethyInonan-5-one (11b) and (3R,7S)-3-(tert-butyldimethylsilyloxy)-7-hydroxy-2,2-dimethylnonan-5-one (12b)

11b

12b

The mixture of aldol adducts 11b and 12b ($92 \%, 123 \mathrm{mg}, 0.39 \mathrm{mmol}$) was obtained as a yellow oil (74:26 diastereoselectivity) after purification by flash column chromatography (silica gel 200-400 mesh) using a mixture of hexane/dichloromethane/ethyl acetate (55:40:5) as eluent.
Rf 0.69 (10\% EtOAc in hexane)
IR (neat) 3448, 2957, 2930, 2885, 2858, 1713, 1472, 1393, 1364, 1256, 1088, 1032, 937, 837, 775, 733, $669 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (500 MHz; $\mathrm{C}_{6} \mathrm{D}_{6}$) $\delta(0.04(\mathrm{~s}, 3 \mathrm{H})$); 0.06 (s, 3H); 0.14 (s, 3H); (0.15 (s, 3H)); (0.84 (s, 9H)); $0.85(\mathrm{~s}, 9 \mathrm{H})$; (0.89 (t, $J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$); $0.90(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;(0.96$ (s, 9H)); $0.97(\mathrm{~s}, 9 \mathrm{H}) ; 1.23-1.31(\mathrm{~m}, 1 \mathrm{H}) ; 1.35-1.44(\mathrm{~m}, 1 \mathrm{H}) ; 2.10(\mathrm{dd}, J=3.3$ and $17.2 \mathrm{~Hz}, 1 \mathrm{H}) ;(2.12(\mathrm{dd}, J=2.8$ and $17.4 \mathrm{~Hz}, 1 \mathrm{H})$); 2.18 (dd, $J=8.6$ and 17.2 Hz , $1 \mathrm{H}) ;(2.19(\mathrm{dd}, J=9.1$ and $17.4 \mathrm{~Hz}, 1 \mathrm{H})$); (2.30 (dd, $J=6.0$ and $18.0 \mathrm{~Hz}, 1 \mathrm{H})$); 2.30 (dd, $J=5.8$ and $17.8 \mathrm{~Hz}, 1 \mathrm{H}$); $(2.38(\mathrm{dd}, J=4.0$ and $18.0 \mathrm{~Hz}, 1 \mathrm{H})$); $2.40(\mathrm{dd}, J=$
4.0 and $17.8 \mathrm{~Hz}, 1 \mathrm{H}$); (2.88 (br s, 1H)); 2.91 (br s, 1H); 3.81-3.87 (m, 1H); (3.89$3.94(\mathrm{~m}, 1 \mathrm{H})$); 4.11 (dd, $J=4.0$ and $5.8 \mathrm{~Hz}, 1 \mathrm{H}$); (4.11 (dd, $J=4.0$ and 6.0 Hz , 1H)).
${ }^{13} \mathrm{C}$ NMR (62.5 MHz; $\mathrm{C}_{6} \mathrm{D}_{6}$) $\delta(-4.7) ;-4.7 ;(-3.9) ;-3.8 ; 10.0 ; 18.5 ; 26.0 ; 26.3$; (29.8); 29.8; (35.5); 35.6; 48.2; (48.3); 50.0; (50.2); (68.7); 68.9; 74.7; (74.9); 209.7; (209.8).

HRMS (ESI TOF-MS): calcd. for $\mathrm{C}_{17} \mathrm{H}_{36} \mathrm{O}_{3} \mathrm{SiNa}$ 339.2332; found: 339.2391.

(-)-(3R,7S)-3-(tert-butyldimethylsilyloxy)-7-hydroxy-2,2,8,8-tetramethylnonan-

5-one (11c) and (+)-(3R,7R)-3-(tert-butyldimethylsilyloxy)-7-hydroxy-2,2,8,8-tetramethylnonan-5-one (12c)

11c
12c
The mixture of aldol adducts 11c and 12c ($98 \%, 142 \mathrm{mg}, 0.41 \mathrm{mmol}$) was obtained as a yellow oil (66:34 diastereoselectivity) after purification by flash column chromatography (silica gel 200-400 mesh) using a mixture of hexane/ethyl acetate (90:10) as eluent.
(-)-(3R,7S)-3-(tert-butyldimethylsilyloxy)-7-hydroxy-2,2,8,8-tetramethyInonan-5-one (11c)
[a] $]^{20}-7.0\left(c=1.50, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, yellow oil.
Rf 0.38 (10\% EtOAc in hexane)
IR (neat) 3528, 3055, 2959, 2941, 2905, 2858, 1707, 1472, 1364, 1265, 1084, 1030, 939, 837, 775, 741, $667 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 0.08$ (s, 3H); 0.15 (s, 3H); 0.86 (s, 9H); 0.88 (s, 9H); 0.98 (s, 9H); 2.24 (dd, $J=10.0$ and $17.2 \mathrm{~Hz}, 1 \mathrm{H}$); 2.31 (dd, $J=2.3$ and 17.2 Hz , $1 \mathrm{H}) ; 2.35(\mathrm{dd}, \mathrm{J}=5.8$ and $17.6 \mathrm{~Hz}, 1 \mathrm{H}) ; 2.40(\mathrm{dd}, J=4.1$ and $17.6 \mathrm{~Hz}, 1 \mathrm{H}) ; 3.02$ (d, $J=3.1 \mathrm{~Hz}, 1 \mathrm{H}$); 3.71 (ddd, $J=2.3,3.1$ and $10.0 \mathrm{~Hz}, 1 \mathrm{H}$); 4.13 (dd, $J=4.1$ and $5.8 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13}$ C NMR (125 MHz; $\mathbf{C}_{6} \mathrm{D}_{6}$) $\delta-4.6 ;-3.8 ; 18.5 ; 25.7 ; 26.1 ; 26.4 ; 34.3 ; 35.6 ; 45.4 ;$ 48.4; 74.9; 75.0; 210.5.

HRMS (ESI TOF-MS): calcd. for $\mathrm{C}_{19} \mathrm{H}_{40} \mathrm{O}_{3} \mathrm{SiNa}$: 367.2644; found: 367.2664.
(+)-(3R,7R)-3-(tert-butyldimethylsilyloxy)-7-hydroxy-2,2,8,8-tetramethyInonan-5-one (12c)
$[\mathrm{a}]_{\mathrm{D}}{ }^{20}+85.0\left(\mathrm{c}=0.80, \mathrm{C}_{6} \mathrm{H}_{6}\right)$
Rf 0.30 (10% EtOAc in hexane)
$\mathrm{mp} 42-45^{\circ} \mathrm{C}$, flat white solid.
IR (neat) 3535, 2959, 2935, 2907, 2858, 1709, 1474, 1366, 1265, 1082, 1030, 935, 837, 775, 743, $665 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 0.04$ (s, 3H); 0.16 (s, 3H); 0.85 (s, 9H); 0.90 (s, 9H);
0.97 (s, 9H); 2.26-2.35 (m, 4H); 2.93 (br s, 1H); 3.78 (dd, $J=5.1$ and $7.3 \mathrm{~Hz}, 1 \mathrm{H}$); 4.13 (dd, $J=4.7$ and $5.4 \mathrm{~Hz}, 1 \mathrm{H}$).
${ }^{13}$ C NMR (62.5 MHz; $\mathrm{C}_{6} \mathrm{D}_{6}$) δ-4.7; -3.8; 18.5; 25.8; 26.1; 26.4; 34.2; 35.5; 45.9; 48.3; 74.6; 75.1; 210.5.

HRMS (ESI TOF-MS): calcd. for $\mathrm{C}_{19} \mathrm{H}_{40} \mathrm{O}_{3} \mathrm{SiNa}$: 367.2644; found: 367.2668.
(3S,7R)-7-(tert-butyldimethylsilyloxy)-3-hydroxy-2,8,8-trimethyInon-1-en-5one (11d) and (3R,7R)-7-(tert-butyldimethylsilyloxy)-3-hydroxy-2,8,8-trimethylnon-1-en-5-one (12d)

The mixture of aldol adducts 11d and 12d ($86 \%, 119 \mathrm{mg}, 0.36 \mathrm{mmol}$) was obtained as a yellow oil (72:28 diastereoselectivity) after purification by flash column chromatography (silica gel 200-400 mesh) using a mixture of hexane/ethyl acetate ($90: 10$) as eluent.
Rf 0.50 (10\% EtOAc in hexane)
IR (neat) 3454, 2957, 2930, 2858, 1715, 1472, 1393, 1364, 1256, 1088, 1030, 903, $837,775,667 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta(0.03(\mathrm{~s}, 3 \mathrm{H})$); 0.06 (s, 3H); 0.13 (s, 3H); (0.14 (s, 3H)); 0.84 (s, 9H); (0.95 (s, 9H)); 0.96 (s, 9H); 1.63 (br s, 3H); 2.25-2.46 (m, 4H); 2.97 (br $\mathrm{s}, 1 \mathrm{H}) ; 4.08-4.11(\mathrm{~m}, 1 \mathrm{H}) ; 4.44$ (dd, $J=2.6$ and $9.2 \mathrm{~Hz}, 1 \mathrm{H}) ;(4.50$ (dd, $J=2.4$ and $9.4 \mathrm{~Hz}, 1 \mathrm{H})$); 4.79 (m, 1H); 5.03 (m, 1H); (5.05 (m, 1H)).
${ }^{13}$ C NMR (62.5 MHz; C ${ }_{6} \mathrm{D}_{6}$) $\delta(-4.7) ;-4.7 ;(-3.9) ;-3.8 ; 18.3 ;(18.4) ; 18.5 ;(18.5) ;$ 26.0; 26.3; (35.5); 35.6; 48.4; (48.4); 48.9; (49.2); (71.1); 71.3; 74.7; (74.9); (110.8); 110.9; 146.5; (146.5); 209.0; (209.1).

HRMS (ESI TOF-MS): calcd. for $\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{O}_{3} \mathrm{SiNa}$: 351.2332; found: 351.2373.
(1S,5R)-5-(tert-butyldimethylsilyloxy)-1-hydroxy-6,6-dimethyl-1-phenylheptan3 -one (11e) and ($1 R, 5 R$)-5-(tert-butyldimethylsilyloxy)-1-hydroxy-6,6-dimethyl-

1-phenylheptan-3-one (12e)

11e

12e

The mixture of aldol adducts 11 e and $\mathbf{1 2 e}(71 \%, 55 \mathrm{mg}, 0.15 \mathrm{mmol})$ was obtained as a yellow oil (68:32 diastereoselectivity) after purification by flash column chromatography (silica gel 200-400 mesh) using a mixture of hexane/ethyl acetate ($90: 10$) as eluent.
Rf 0.19 (10% EtOAc in hexane)
IR (neat) 3475, 3057, 3032, 2957, 2930, 2895, 2858, 1711, 1607, 1472, 1364, 1265, 1086, 932, 837, 775, 741, 702, $667 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta(0.03(\mathrm{~s}, 3 \mathrm{H})) ; 0.06(\mathrm{~s}, 3 \mathrm{H}) ; 0.14(\mathrm{~s}, 3 \mathrm{H}) ;(0.15(\mathrm{~s}, 3 \mathrm{H})$); 0.82 (s, 9H); (0.82 (s, 9H)); (0.95 (s, 9H)); 0.96 (s, 9H); 2.24-2.40 (m, 3H); 2.50$2.64(\mathrm{~m}, 1 \mathrm{H}) ; 3.25(\mathrm{brs}, 1 \mathrm{H}) ; 4.07-4.11(\mathrm{~m}, 1 \mathrm{H}) ; 5.05(\mathrm{dd}, J=3.4$ and $9.2 \mathrm{~Hz}, 1 \mathrm{H})$; (5.12 (dd, $J=2.9$ and $9.2 \mathrm{~Hz}, 1 \mathrm{H}$)); 7.08-7.11 (m, 1H); 7.16-7.20 (m, 2H); 7.28-7.31 ($\mathrm{m}, 2 \mathrm{H}$).
${ }^{13}$ C NMR (125 MHz; C ${ }_{6} \mathrm{D}_{6}$) $\delta-4.7$; (-4.7); (-3.8); -3.8; 18.5; (18.5); 26.0; (26.0); 26.4; (35.5); 35.6; 48.4; (48.4); 52.7; (52.9); (69.9); 70.1; 74.7; (74.9); (126.0); 126.0; (127.5); 127.6; 128.5; (128.6); 144.0; (144.1); 208.8; (208.9).

HRMS (ESI TOF-MS): calcd. for $\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{O}_{3} \mathrm{SiNa}$: 387.2332 ; found: 387.2351 .
(-)-(1S,5R)-5-(tert-butyldimethylsilyloxy)-1-hydroxy-6,6-dimethyl-1-(4-
nitrophenyl)heptan-3-one (11f) and (+)-(1R,5R)-5-(tert-butyldimethylsilyloxy)-1-hydroxy-6,6-dimethyl-1-(4-nitrophenyl)heptan-3-one (12f)

11f

$12 f$
The mixture of aldol adducts 11 f and $12 \mathrm{f}(90 \%, 77 \mathrm{mg}, 0.19 \mathrm{mmol})$ was obtained as a yellow solid (62:38 diastereoselectivity) after purification by flash column chromatography (silica gel 200-400 mesh) using a mixture of hexane/ethyl acetate $(75: 25)$ as eluent.
(-)-(1S,5R)-5-(tert-butyldimethylsilyloxy)-1-hydroxy-6,6-dimethyl-1-(4-nitrophenyl)heptan-3-one (11f)
$[a]_{D}{ }^{20}-14.0\left(c=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
Rf 0.17 (10\% EtOAc in hexane)
mp $48-50^{\circ} \mathrm{C}$, yellow solid.
IR (neat) 3487, 3055, 2959, 2932, 2858, 1707, 1607, 1524, 1472, 1348, 1265, 1086, 837, 739, $706 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (250 MHz; C ${ }_{6} \mathrm{D}_{6}$) $\delta 0.05$ (s, 3H); 0.14 (s, 3H); 0.84 (s, 9H); 0.97 (s, 9H);
2.16 (dd, $J=3.6$ and $17.6 \mathrm{~Hz}, 1 \mathrm{H}) ; 2.22-2.40(\mathrm{~m}, 3 \mathrm{H}) ; 3.18(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H})$;
$4.08(\mathrm{dd}, J=4.2$ and $5.7 \mathrm{~Hz}, 1 \mathrm{H}) ; 4.85(\mathrm{dt}, J=3.0$ and $8.9 \mathrm{~Hz}, 1 \mathrm{H}) ; 6.99(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 2 \mathrm{H}) ; 7.90$ (dt, $J=2.2$ and $8.6 \mathrm{~Hz}, 2 \mathrm{H}$).
${ }^{13}$ C NMR (62.5 MHz; $\mathrm{C}_{6} \mathrm{D}_{6}$) $\delta-4.7 ;-3.8 ; 18.4 ; 26.0 ; 26.3 ; 35.6 ; 48.2 ; 51.7 ; 69.0$;
74.7; 123.6; 126.4; 147.6; 150.3; 208.5.

HRMS (ESI TOF-MS): calcd. for $\mathrm{C}_{21} \mathrm{H}_{35} \mathrm{NO}_{5} \mathrm{SiNa}$: 432.2182; found: 432.2207.
(+)-(1R,5R)-5-(tert-butyldimethylsilyloxy)-1-hydroxy-6,6-dimethyl-1-(4-nitrophenyl)heptan-3-one (12f)
$[a]_{\mathrm{D}}{ }^{20}+43.0\left(\mathrm{c}=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, yellow oil.
Rf 0.17 (10\% EtOAc in hexane)
IR (neat) 3452, 2957, 2930, 2856, 1713, 1607, 1524, 1472, 1346, 1256, 1082, 933, 837, 775, 739, 702, $665 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 0.04$ (s, 3H); 0.16 (s, 3H); 0.82 (s, 9 H); 0.97 (s, 9 H$)$; 2.13 (dd, $J=3.2$ and $17.7 \mathrm{~Hz}, 1 \mathrm{H})$; 2.19-2.37 (m, 3H); 3.01 (br s, 1H); 4.09 (dd, $J=$ 4.4 and $5.7 \mathrm{~Hz}, 1 \mathrm{H}$); 4.90 (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}$); 6.99 (d, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}$); 7.90 (dt, $J=$ 2.2 and $9.0 \mathrm{~Hz}, 2 \mathrm{H}$).
${ }^{13}{ }^{1}$ C NMR (62.5 MHz; $\mathrm{C}_{6} \mathrm{D}_{6}$) $\delta-4.7 ;-3.9 ; 18.5 ; 26.0 ; 26.3 ; 35.5 ; 48.2 ; 51.9 ; 68.8$; 74.9; 123.6; 126.3; 147.6; 150.2; 208.5.

HRMS (ESI TOF-MS): calcd. for $\mathrm{C}_{21} \mathrm{H}_{35} \mathrm{NO}_{5} \mathrm{SiNa}$ 432.2182; found: 432.2216.
(1S,5R)-5-(tert-butyldimethylsilyloxy)-1-hydroxy-1-(4-methoxyphenyl)-6,6-dimethylheptan-3-one (11g) and (1R,5R)-5-(tert-butyldimethylsilyloxy)-1-hydroxy-1-(4-methoxyphenyl)-6,6-dimethylheptan-3-one (12g)

11g

12g

The mixture of aldol adducts $\mathbf{1 1 g}$ and $\mathbf{1 2 g}(86 \%, 71 \mathrm{mg}, 0.18 \mathrm{mmol})$ was obtained as a yellow oil (70:30 diastereoselectivity) after purification by flash column chromatography (silica gel 200-400 mesh) using a mixture of hexane/ethyl acetate (90:10) as eluent.
Rf 0.23 (10% EtOAc in hexane)
IR (neat) 3501, 3053, 2957, 2932, 2899, 2856, 1707, 1612, 1587, 1514, 1472, 1364, 1250, 1175, 1086, 1036, 932, 835, 775, 741, 704, $669 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta(0.05(\mathrm{~s}, 3 \mathrm{H})) ; 0.09(\mathrm{~s}, 3 \mathrm{H}) ; 0.15$ (s, 3H); (0.16 (s, 3H)); 0.83 (s, 9H); (0.84 (s, 9H)); (0.96 (s, 9H)); 0.97 (s, 9H); 2.27-2.44 (m, 3H); 2.58 (dd, $J=9.3$ and $17.1 \mathrm{~Hz}, 1 \mathrm{H}) ;(2.60(\mathrm{dd}, J=9.5$ and $17.1 \mathrm{~Hz}, 1 \mathrm{H})$); 3.08 (br s, 1H); 3.34 (s, 3H); (3.34 (s, 3H)); 4.10-4.14 (m, 1H); 5.06 (dd, J = 3.4 and $9.0 \mathrm{~Hz}, 1 \mathrm{H}$); (5.12 (dd, $J=2.7$ and $9.5 \mathrm{~Hz}, 1 \mathrm{H})$); 6.79-6.83 (m, 2H); 7.21-7.24 (m, 2H).
${ }^{13}$ C NMR (62.5 MHz; $\mathbf{C}_{6} \mathrm{D}_{6}$) $\delta-4.7$; (-3.9); -3.8; 18.5; 26.0; 26.3; (35.5); 35.6; 48.4; (48.5); 52.7; (52.9); 54.8; (69.7); 69.8; 74.7; (74.9); 114.0; (127.2); 127.3; 136.1; 159.5; 208.9; (209.0).

HRMS (ESI TOF-MS): calcd. for $\mathrm{C}_{22} \mathrm{H}_{38} \mathrm{O}_{4} \mathrm{SiNa}: 417.2437$; found: 417.2447 .
(+)-(3R,7R)-7-(tert-butyldimethylsilyloxy)-3-hydroxy-8,8-dimethyl-1-phenylnonan-5-one (11h) and (+)-(3S,7R)-7-(tert-butyldimethylsilyloxy)-3-hydroxy-8,8-dimethyl-1-phenyInonan-5-one (12h)

The mixture of aldol adducts 11 h and $\mathbf{1 2 h}(88 \%, 146 \mathrm{mg}, 0: 37 \mathrm{mmol})$ was obtained as a yellow oil (65:35 diastereoselectivity) after purification by flash column chromatography (silica gel 200-400 mesh) using a mixture of hexane/ethyl acetate $(90: 10)$ as eluent.
(+)-(3R,7R)-7-(tert-butyldimethylsilyloxy)-3-hydroxy-8,8-dimethyl-1-phenyInonan-5-one (11h)
$[a]_{\mathrm{D}}{ }^{20}+13.0\left(\mathrm{c}=0.80, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, colorless oil.
Rf 0.37 (10\% EtOAc in hexane)
IR (neat) 3522, 3086, 3055, 3028, 2955, 2930, 2895, 2856, 1707, 1603, 1585, 1497, 1472, 1454, 1408, 1393, 1364, 1296, 1265, 1088, 1030, 1007, 939, 930, 897, 837, 816, 775, 744, $702 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 0.07$ (s, 3H); 0.15 (s, 3H); 0.84 (s, 9H); 0.98 (s, 9H); 1.41-1.54 (m, 1H); 1.62-1.77 (m, 1H); $1.99(\mathrm{dd}, J=3.0$ and $17.7 \mathrm{~Hz}, 1 \mathrm{H}) ; 2.14(\mathrm{dd}$, $J=8.9$ and $17.7 \mathrm{~Hz}, 1 \mathrm{H}$); $2.24(\mathrm{dd}, J=3.3$ and $17.8 \mathrm{~Hz}, 1 \mathrm{H}) ; 2.33(\mathrm{dd}, J=4.2$ and $17.8 \mathrm{~Hz}, 1 \mathrm{H}$); 2.60-2.85 (m, 2H); 2.97 (br s, 1H); 3.88-3.98 (m, 1H); 4.10 (dd, J = 4.3 and $5.4 \mathrm{~Hz}, 1 \mathrm{H})$; 7.05-7.22 (m, 5H).
${ }^{13} \mathrm{C}$ NMR (62.5 MHz; $\mathrm{C}_{6} \mathrm{D}_{6}$) δ-4.7; -3.8; 18.5; 26.0; 26.3; 32.0; 35.5; 38.7; 48.1; 50.3; 66.8; 74.7; 126.1; 128.7; 128.8; 142.5; 209.8.

HRMS (ESI TOF-MS): calcd. for $\mathrm{C}_{23} \mathrm{H}_{40} \mathrm{O}_{3} \mathrm{SiNa}: 415.2644$; found: 415.2658.

(+)-(3S,7R)-7-(tert-butyldimethylsilyloxy)-3-hydroxy-8,8-dimethyl-1-phenyInonan-5-one (12h)

$[\mathrm{a}]_{\mathrm{D}}{ }^{20}+16.0\left(\mathrm{c}=0.80, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, yellow oil.
Rf 0.31 (10\% EtOAc in hexane)

IR (neat) 3483, 3055, 3028, 2957, 2932, 2858, 1707, 1603, 1472, 1364, 1265, 1086, 1030, 837, 741, $704 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 0.03$ (s, 3H); 0.15 (s, 3H); 0.83 (s, 9H); 0.97 (s, 9H); 1.43-1.57 (m, 1H); 1.64-1.78 (m, 1H); 2.06 (dd, $J=3.2$ and $17.6 \mathrm{~Hz}, 1 \mathrm{H}) ; 2.18$ (dd, $J=8.8$ and $17.6 \mathrm{~Hz}, 1 \mathrm{H}$); $2.25(\mathrm{dd}, J=5.6$ and $17.8 \mathrm{~Hz}, 1 \mathrm{H}) ; 2.34(\mathrm{dd}, J=4.2$ and $17.8 \mathrm{~Hz}, 1 \mathrm{H}$); 2.57-2.69 (m, 1H); 2.73-2.85 (m, 1H); 2.93 (br s, 1H); 3.95-4.05 (m, $1 \mathrm{H}) ; 4.10(\mathrm{dd}, \mathrm{J}=4.2$ and $5.6 \mathrm{~Hz}, 1 \mathrm{H}) ; 7.04-7.22(\mathrm{~m}, 5 \mathrm{H})$.
${ }^{13}$ C NMR (62.5 MHz; $\mathrm{C}_{6} \mathrm{D}_{6}$) $\delta-4.7 ;-3.9 ; 18.5 ; 26.0 ; 26.3 ; 32.1 ; 35.5 ; 38.7 ; 48.2$; 50.5; 66.7; 74.9; 126.1; 128.7; 128.8; 142.4; 209.8.

HRMS (ESI TOF-MS): calcd. for $\mathrm{C}_{23} \mathrm{H}_{40} \mathrm{O}_{3} \mathrm{SiNa}: 415.2644$; found: 415.2586 .
(3R,7S)-7-hydroxy-3-(4-methoxybenzyloxy)-2,2,8-trimethylnonan-5-one
and (3R,7R)-7-hydroxy-3-(4-methoxybenzyloxy)-2,2,8-trimethyInonan-5-one (10a)

The mixture of aldol adducts 9 a and $10 \mathrm{a}(91 \%, 64 \mathrm{mg}, 0.19 \mathrm{mmol})$ was obtained as a yellow oil (80:20 diastereoselectivity) after purification by flash column chromatography (silica gel 200-400 mesh) using a mixture of hexane/ethyl acetate (80:20) as eluent.
Rf 0.40 (20\% EtOAc in hexane)
IR (neat) 3520, 3053, 2962, 2908, 2874, 1705, 1612, 1587, 1514, 1468, 1391, $1366,1340,1302,1265,1248,1175,1076,1036,895,824,739,704 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (500 MHz; $\mathrm{C}_{6} \mathrm{D}_{6}$) $\delta(0.84(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$); $0.84(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$; 0.88-0.91 (m, 12H); 1.49-1.56 (m, 1H); 2.16 (dd, J = 2.4 and $17.2 \mathrm{~Hz}, 1 \mathrm{H}) ;(2.17$ (dd, $J=2.7$ and $17.2 \mathrm{~Hz}, 1 \mathrm{H})$); 2.24 (dd, $J=2.9$ and $16.2 \mathrm{~Hz}, 1 \mathrm{H}$); $2.30(\mathrm{dd}, J=9.8$ and $17.2 \mathrm{~Hz}, 1 \mathrm{H}) ; 2.48(\mathrm{dd}, \mathrm{J}=8.3$ and $16.2 \mathrm{~Hz}, 1 \mathrm{H}) ;(2.96(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$); 3.05 (br s, 1H); 3.30 (s, 3H); 3.72-3.80 (m, 2H); 4.42 (d, J = $10.8 \mathrm{~Hz}, 1 \mathrm{H}$); (4.46 (d, J = 11.0 $\mathrm{Hz}, 1 \mathrm{H})$); $4.56(\mathrm{~d}, \mathrm{~J}=10.8 \mathrm{~Hz}, 1 \mathrm{H}) ; 6.77-6.81(\mathrm{~m}, 2 \mathrm{H}) ;(7.24(\mathrm{dt}, J=2.9$ and 9.5 $\mathrm{Hz}, 2 \mathrm{H})$); $7.30(\mathrm{dt}, J=2.9$ and $9.5 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13}{ }^{3}$ NMR (62.5 MHz; $\mathbf{C}_{6} \mathrm{D}_{6}$) δ 17.7; 18.7; 26.2; (33.4); 33.5; 35.7; 45.4; (45.4); (48.1); 48.2; 54.7; (72.0); 72.2; 74.3; (83.2); 83.2; (114.0); 114.0; (129.4); 129.7; 131.4; (131.6); (159.6); 159.7; (211.2); 211.5.

HRMS (ESI TOF-MS): calcd. for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{Na}$: 359.2198; found: 359.2231.
(3R,7R)-7-hydroxy-3-(4-methoxybenzyloxy)-2,2-dimethyInonan-5-one (9b) and (3R,7S)-7-hydroxy-3-(4-methoxybenzyloxy)-2,2-dimethyInonan-5-one (10b)

The mixture of aldol adducts $\mathbf{9 b}$ and $\mathbf{1 0 b}(85 \%, 57 \mathrm{mg}, 0.18 \mathrm{mmol}$) was obtained as a yellow oil ($82: 18$ diastereoselectivity) after purification by flash column chromatography (silica gel 200-400 mesh) using a mixture of hexane/ethyl acetate (80:20) as eluent.
Rf 0.37 (20\% EtOAc in hexane)
IR (neat) 3497, 3053, 2962, 2937, 2874, 1705, 1612, 1587, 1514, 1466, 1391, $1366,1302,1265,1248,1175,1080,1036,897,824,739,704 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6}$) δ 0.87-0.91 (m, 12H); 1.22-1.30 (m, 1H); 1.35-1.44 (m, $1 \mathrm{H}) ; 2.10$ (dd, $J=2.7$ and $17.1 \mathrm{~Hz}, 1 \mathrm{H}$); (2.12 (dd, $J=3.2$ and $17.3 \mathrm{~Hz}, 1 \mathrm{H}$)); 2.172.28 (m, 2H); (2.42 (dd, $J=8.2$ and $16.6 \mathrm{~Hz}, 1 \mathrm{H}$)); 2.44 (dd, $J=8.2$ and 16.4 Hz , 1 H); (2.99 (br s, 1 H)); 3.04 (br s, 1H); 3.30 (s, 3 H); 3.72 (dd, $J=3.2$ and 8.2 Hz , $1 \mathrm{H})$; (3.73 (dd, $J=3.2$ and $8.2 \mathrm{~Hz}, 1 \mathrm{H}$)); 3.84-3.91 (m, 1H); 4.40 (d, $J=10.7 \mathrm{~Hz}$, $1 \mathrm{H})$; (4.44 (d, $J=11.0 \mathrm{~Hz}, 1 \mathrm{H})$); 4.56 (d, $J=10.7 \mathrm{~Hz}, 1 \mathrm{H}) ; 6.77-6.81$ (m, 2H); (7.24 (dt, $J=2.7$ and $8.5 \mathrm{~Hz}, 2 \mathrm{H}$); 7.28 (dt, $J=2.9$ and $9.5 \mathrm{~Hz}, 2 \mathrm{H}$).
${ }^{13}$ C NMR (62.5 MHz; $\mathbf{C}_{6} \mathrm{D}_{6}$) $\delta 10.0$; 26.2; (29.8); 29.8; 35.7; 45.3; (45.3); (50.6); 50.7; 54.7; (68.9); 69.0; 74.2; 83.1; (114.0); 114.0; (129.4); 129.7; 131.5; (131.6); (159.6); 159.7; (210.8); 211.1.

HRMS (ESI TOF-MS): calcd. for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{Na}$: 345.2042; found: 345.1998.

tetramethyInonan-5-one (10c)

The mixture of aldol adducts 9 c and $10 \mathrm{c}(80 \%, 60 \mathrm{mg}, 0.17 \mathrm{mmol})$ was obtained as a yellow oil (78:22 diastereoselectivity) after purification by flash column chromatography (silica gel 200-400 mesh) using a mixture of hexane/ethyl acetate $(90: 10)$ as eluent.
Rf 0.44 (15\% EtOAc in hexane)
IR (neat) 3539, 3053, 2957, 2939, 2908, 2872, 1705, 1612, 1587, 1514, 1468, 1391, 1366, 1302, 1265, 1248, 1175, 1090, 1080, 1036, 1011, 933, 895, 824, 739, $704 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (500 MHz; $\mathrm{C}_{6} \mathrm{D}_{6}$) $\delta(0.86(\mathrm{~s}, 9 \mathrm{H})$); $0.87(\mathrm{~s}, 9 \mathrm{H}) ;(0.89(\mathrm{~s}, 9 \mathrm{H})) ; 0.89(\mathrm{~s}, 9 \mathrm{H}) ;$
2.21-2.32 (m, 3H); (2.46 (dd, $J=8.5$ and $17.0 \mathrm{~Hz}, 1 \mathrm{H})$); 2.49 (dd, $J=8.5$ and 16.2 $\mathrm{Hz}, 1 \mathrm{H}) ;(3.02(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 1 \mathrm{H})$); $3.14(\mathrm{~d}, \mathrm{~J}=3.2 \mathrm{~Hz}, 1 \mathrm{H}) ; 3.30(\mathrm{~s}, 3 \mathrm{H}) ; 3.69-3.77$ (m, 2H); $4.42(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}) ;(4.46(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H})$); $4.55(\mathrm{~d}, J=10.5 \mathrm{~Hz}$, $1 \mathrm{H}) ;(4.56(\mathrm{~d}, \mathrm{~J}=11.3 \mathrm{~Hz}, 1 \mathrm{H})$); 6.77-6.82 (m, 2H); (7.24 (dt, $J=2.9$ and 9.5 Hz , $2 \mathrm{H})$); 7.30 (dt, J = 2.7 and $9.3 \mathrm{~Hz}, 2 \mathrm{H}$).
${ }^{13}$ C NMR (125 MHz; $\mathbf{C}_{6} \mathrm{D}_{6}$) δ (25.8); 25.8; (26.2); 26.2; (34.2); 34.3; (35.7); 35.7; 45.5; (45.6); (46.0); 46.1; 54.7; (74.3); 74.3; (74.8); 75.0; (83.2); 83.4; (114.0); 114.0; (129.4); 129.7; 131.4; (131.6); (159.6); 159.7; (211.5); 211.9.

HRMS (ESI TOF-MS): calcd. for $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{Na}: 373.2355$; found: 373.2328 .
(3S,7R)-3-hydroxy-7-(4-methoxybenzyloxy)-2,8,8-trimethylnon-1-en-5-one (9d) and (3R,7R)-3-hydroxy-7-(4-methoxybenzyloxy)-2,8,8-trimethyInon-1-en-5-one (10d)

The mixture of aldol adducts 9 d and $10 \mathrm{~d}(86 \%, 61 \mathrm{mg}, 0.18 \mathrm{mmol})$ was obtained as a yellow oil (81:19 diastereoselectivity) after purification by flash column chromatography (silica gel 200-400 mesh) using a mixture of hexane/ethyl acetate $(80: 20)$ as eluent.
Rf 0.47 (20\% EtOAc in hexane)
IR (neat) 3495, 3053, 2961, 2910, 2872, 2839, 1709, 1653, 1612, 1587, 1514, $1466,1391,1366,1302,1265,1248,1175,1084,1036,905,824,739,704 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (500 MHz; $\mathbf{C}_{6} \mathrm{D}_{6}$) $\delta(0.87(\mathrm{~s}, 9 \mathrm{H})$); $0.88(\mathrm{~s}, 9 \mathrm{H}) ;(1.59(\mathrm{~m}, 3 \mathrm{H})$); 1.61 (m, $3 \mathrm{H}) ; 2.22-2.29(\mathrm{~m}, 2 \mathrm{H}) ; 2.36-2.48(\mathrm{~m}, 2 \mathrm{H}) ;(2.82(\mathrm{~d}, \mathrm{~J}=3.2 \mathrm{~Hz}, 1 \mathrm{H})$); $2.90(\mathrm{~d}, \mathrm{~J}=$ $3.4 \mathrm{~Hz}, 1 \mathrm{H}) ;(3.29(\mathrm{~s}, 3 \mathrm{H})) ; 3.30(\mathrm{~s}, 3 \mathrm{H}) ; 3.73(\mathrm{dd}, \mathrm{J}=3.2$ and $8.1 \mathrm{~Hz}, 1 \mathrm{H}) ; 4.41(\mathrm{~d}$, $J=10.7 \mathrm{~Hz}, 1 \mathrm{H}) ; 4.44-4.48(\mathrm{~m}, 1 \mathrm{H}) ;(4.56(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H})$); $4.57(\mathrm{~d}, J=11.0$ Hz, 1H); 4.79-4.80 (m, 1H); 5.04-5.05 (m, 1H); (5.05-5.06 (m, 1H)); 6.77-6.82 (m, $2 \mathrm{H}) ;(7.25(\mathrm{dt}, J=2.9$ and $8.8 \mathrm{~Hz}, 2 \mathrm{H})$); $7.29(\mathrm{dt}, J=2.9$ and $8.8 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13}$ C NMR (62.5 MHz; C ${ }_{6} \mathrm{D}_{6}$) ठ 18.4; 26.2; 35.7; 45.5; (45.6); 49.5; 54.7; (71.2); 71.4; 74.0; (74.1); 82.9; (83.0); (110.7); 110.8; 114.0; (129.4); 129.7; 131.5; (131.6); (146.6); 146.6; (159.6); 159.6; (210.1); 210.3.

HRMS (ESI TOF-MS): calcd. for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{Na}: 357.2042$; found: 357.2125 .
(1S,5R)-1-hydroxy-5-(4-methoxybenzyloxy)-6,6-dimethyl-1-phenylheptan-3one (9e) and (1R,5R)-1-hydroxy-5-(4-methoxybenzyloxy)-6,6-dimethyl-1-phenylheptan-3-one (10e)

The mixture of aldol adducts $9 \mathbf{e}$ and $\mathbf{1 0 e}(95 \%, 74 \mathrm{mg}, 0.20 \mathrm{mmol})$ was obtained as a yellow oil (83:17 diastereoselectivity) after purification by flash column chromatography (silica gel 200-400 mesh) using a mixture of hexane/ethyl acetate (70:30) as eluent.
Rf 0.44 (30\% EtOAc in hexane)
IR (neat) 3481, 3055, 3034, 2961, 2908, 2872, 2837, 1709, 1612, 1585, 1514, $1466,1391,1366,1302,1265,1248,1175,1086,1036,895,824,737,702 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta(0.85(\mathrm{~s}, 9 \mathrm{H})$); 0.86 (s, 9H); (2.16 (dd, $J=3.2$ and 16.4 $\mathrm{Hz}, 1 \mathrm{H}$); 2.17 (dd, $J=3.3$ and $16.3 \mathrm{~Hz}, 1 \mathrm{H}) ; 2.30-2.48(\mathrm{~m}, 2 \mathrm{H}) ; 2.58$ (dd, $J=9.5$ and $17.4 \mathrm{~Hz}, 1 \mathrm{H}$); 3.19 (d, $J=3.0 \mathrm{~Hz}, 1 \mathrm{H}$); 3.30 (s, 3H); (3.70 (dd, $J=3.0$ and 8.1 $\mathrm{Hz}, 1 \mathrm{H})$); 3.70 (dd, $J=3.3$ and $8.1 \mathrm{~Hz}, 1 \mathrm{H}$); 4.39 (d, $J=10.9 \mathrm{~Hz}, 1 \mathrm{H}) ; 4.56$ (d, $J=$ $10.7 \mathrm{~Hz}, 1 \mathrm{H}) ; 5.07(\mathrm{dt}, J=3.0$ and $9.5 \mathrm{~Hz}, 1 \mathrm{H}) ; 6.77-6.84(\mathrm{~m}, 2 \mathrm{H}) ; 7.06-7.22(\mathrm{~m}$, 5H); 7.26-7.31 (m, 2H).
${ }^{13}$ C NMR (62.5 MHz; $\mathrm{C}_{6} \mathrm{D}_{6}$) δ 26.2; 35.6; 45.4; 53.0; (53.1); (53.3); 54.7; (69.9); 70.1; 74.0; (74.1); 82.9; (83.1); 114.0; (126.0); 126.1; (127.5); 127.6; (128.5); 128.5; (129.4); 129.6; 131.4; (131.6); 144.0; (159.6); 159.6; 210.1; (210.2).

HRMS (ESI TOF-MS): calcd. for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{Na}$: 393.2042; found: 393.2073.
(1S,5R)-1-hydroxy-5-(4-methoxybenzyloxy)-6,6-dimethyl-1-(4-nitrophenyl)heptan-3-one (9f) and (1R,5R)-1-hydroxy-5-(4-methoxybenzyloxy)-6,6-dimethyl-1-(4-nitrophenyl)heptan-3-one (10f)

$9 f$
$+$

$10 f$

The mixture of aldol adducts 9 and $10 \mathrm{f}(85 \%, 75 \mathrm{mg}, 0.18 \mathrm{mmol}$) was obtained as a yellow solid ($75: 25$ diastereoselectivity) after purification by flash column chromatography (silica gel 200-400 mesh) using a mixture of hexane/ethyl acetate ($80: 20$) as eluent.
Rf 0.16 (20% EtOAc in hexane)
mp $55-57^{\circ} \mathrm{C}$
IR (neat) 3533, 3055, 2962, 2908, 2872, 2839, 1709, 1610, 1587, 1516, 1466, 1421, 1393, 1348, 1302, 1265, 1250, 1175, 1109, 1082, 1036, 1014, 897, 856, 824, 741, $704 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta(0.86(\mathrm{~s}, 9 \mathrm{H})$); $0.88(\mathrm{~s}, 9 \mathrm{H}) ;$ 2.11-2.48 (m, 4H); (3.31 (s, $3 \mathrm{H})$); 3.32 (s, 3H); (3.38 (d, J= $2.8 \mathrm{~Hz}, 1 \mathrm{H}$)); 3.44 (d, $J=3.1 \mathrm{~Hz}, 1 \mathrm{H}$); 3.63-3.68 (m, 1H); 4.38-4.50 (m, 2H); 4.85-4.91 (m, 1H); 6.74-6.84 (m, 2H); 6.95-7.01 (m, 2H); 7.21-7.27 (m, 2H); 7.87-7.91 (m, 2H).
${ }^{13}{ }^{3}$ NMR (62.5 MHz; $\mathrm{C}_{6} \mathrm{D}_{6}$) $\delta(26.1)$; 26.2; 35.7; (45.1); 45.2; 52.3; (52.5); 54.8; (68.8); 69.0; 74.4; (74.5); 83.4; (83.7); 114.0; (123.5); 123.5; (126.4); 126.4; (129.2); 129.5; 131.2; (131.4); 147.5; 150.4; (159.7); 159.7; 209.9.

HRMS (ESI TOF-MS): calcd. for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{NO}_{6} \mathrm{Na}: 438.1893$; found: 438.1944.
(1S,5R)-1-hydroxy-5-(4-methoxybenzyloxy)-1-(4-methoxyphenyl)-6,6-dimethylheptan-3-one (9 g) and ($1 R, 5 R$)-1-hydroxy-5-(4-methoxybenzyloxy)-1-(4-methoxyphenyl)-6,6-dimethylheptan-3-one (10 g)

9 g

10 g

The mixture of aldol adducts $\mathbf{9 g}$ and $\mathbf{1 0 g}(86 \%, 72 \mathrm{mg}, 0.18 \mathrm{mmol})$ was obtained as a yellow oil (79:21 diastereoselectivity) after purification by flash column chromatography (silica gel 200-400 mesh) using a mixture of hexane/ethyl acetate ($80: 20$) as eluent.
Rf 0.12 (20\% EtOAc in hexane)
IR (neat) 3508, 3055, 2961, 2937, 2910, 2872, 2839, 1707, 1612, 1587, 1514, 1466, 1391, 1366, 1302, 1265, 1250, 1175, 1082, 1036, 895, 833, 739, $704 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z ; ~}$ CDCl $_{3}$) $\delta 0.92$ (s, 9H); 2.55 (dd, $J=3.0$ and $16.3 \mathrm{~Hz}, 1 \mathrm{H}$); (2.68 (dd, $J=8.2$ and $16.1 \mathrm{~Hz}, 1 \mathrm{H}$)); $2.70(\mathrm{dd}, J=8.6$ and $16.3 \mathrm{~Hz}, 1 \mathrm{H}) ;(2.76$ (dd, $J=2.8$ and $17.6 \mathrm{~Hz}, 1 \mathrm{H})$); 2.78 (dd, $J=3.3$ and $17.4 \mathrm{~Hz}, 1 \mathrm{H}$); (2.86 (dd, $J=9.2$ and $17.7 \mathrm{~Hz}, 1 \mathrm{H})$); 2.90 (dd, $J=9.4$ and $17.4 \mathrm{~Hz}, 1 \mathrm{H}) ;(3.26$ (br s, 1H)); 3.34 (br s, 1H); 3.68-3.71 (m, 1H); 3.79 (s, 3H); 3.79 (s, 3H); 4.43-4.50 (m, 2H); 5.05-5.07 (m, 1H); 8.84-8.87 (m, 4H); 7.19-7.26 (m, 4H).
${ }^{13}$ C NMR (125 MHz; CDCl ${ }_{3}$) δ (26.1); 26.1; 35.7; (35.7); (45.3); 45.3; 52.6; 55.2; 55.2; (69.4); 69.6; 74.0; (74.0); 83.1; (83.1); (113.6); 113.6; (113.8); 113.8; (126.8); 126.9; (129.1); 129.3; 130.8; (131.0); (134.9); 134.9; (159.0); (159.0); 159.0; 159.0; (211.0); 211.3.

HRMS (ESI TOF-MS): calcd. for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{5} \mathrm{Na}$: 423.2148; found: 423.2170.
(3R,7S)-7-hydroxy-2,2,8-trimethyl-3-(trityloxy)nonan-5-one (23a) and (3R,7R)-7-hydroxy-2,2,8-trimethyl-3-(trityloxy)nonan-5-one (24a)

The mixture of aldol adducts 23a and 24a ($71 \%, 68 \mathrm{mg}, 0.15 \mathrm{mmol}$) was obtained as a yellow oil (50:50 ratio) after purification by flash column chromatography (silica gel 200-400 mesh) using a mixture of hexane/ethyl acetate (80:20) as eluent.
$\boldsymbol{R f} 0.94$ (20\% EtOAc in hexane)
IR (neat) 3501, 3088, 3057, 3034, 2962, 2908, 2874, 1707, 1595, 1489, 1468, 1448, 1393, 1366, 1265, 1229, 1182, 1149, 1080, 1055, 1028, 1003, 972, 930, 897, 768, 741, 708, $633 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 0.78(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;(0.80(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H})$); 0.84 (d, J = $6.8 \mathrm{~Hz}, 3 \mathrm{H})$; ($0.85(\mathrm{~s}, 9 \mathrm{H})$); (0.86 (d, J = $6.7 \mathrm{~Hz}, 3 \mathrm{H})$); 0.89 (s, 9H); 1.38-1.46 (m, 1H); $1.74(\mathrm{dd}, \mathrm{J}=2.0$ and $17.3 \mathrm{~Hz}, 1 \mathrm{H}) ;(1.74-1.83(\mathrm{~m}, 2 \mathrm{H})$); 1.88 (dd, $J=10.0$ and $17.3 \mathrm{~Hz}, 1 \mathrm{H}$); $2.44(\mathrm{dd}, J=6.6$ and $18.1 \mathrm{~Hz}, 1 \mathrm{H}) ;(2.48$ (dd, $J=$ 7.3 and $18.1 \mathrm{~Hz}, 1 \mathrm{H})$); 2.67 (dd, $J=2.8$ and $13.5 \mathrm{~Hz}, 1 \mathrm{H}$); $(2.70$ (dd, $J=3.4$ and $13.7 \mathrm{~Hz}, 1 \mathrm{H})$); 2.76 (br s, 1H); (2.80 (br s, 1H)); 3.41-3.44 (m, 1H); (3.54-3.59 (m, $1 \mathrm{H})$); ($3.92(\mathrm{dd}, J=2.8$ and $7.3 \mathrm{~Hz}, 1 \mathrm{H})$); $3.99(\mathrm{dd}, J=3.4$ and $6.6 \mathrm{~Hz}, 1 \mathrm{H}) ; 6.99-$ 7.04 (m, 3H); 7.10-7.14 (m, 6H); 7.57-7.60 (m, 6H).
${ }^{13}$ C NMR (62.5 MHz; C ${ }_{6}$ D $_{6}$) δ 17.6; (17.7); 18.6; (18.6); 26.5; 33.1; (33.2); 36.2; (36.4); 46.1; (46.2); 46.3; (46.7); 71.8; (71.8); 75.7; (76.1); 87.0; (87.0); 127.2; (127.3); 127.9; (128.0); 129.6; (129.8); 145.6; (145.7); 209.4.

HRMS (ESI TOF-MS): calcd. for $\mathrm{C}_{31} \mathrm{H}_{38} \mathrm{O}_{3} \mathrm{Na}$: 481.2719; found: 481.2756.
(1S,5R)-1-hydroxy-6,6-dimethyl-1-phenyl-5-(trityloxy)heptan-3-one (23e) and (1R,5R)-1-hydroxy-6,6-dimethyl-1-phenyl-5-(trityloxy)heptan-3-one (24e)

23e

24e

The mixture of aldol adducts 23 e and $\mathbf{2 4 e}(95 \%, 98 \mathrm{mg}, 0.20 \mathrm{mmol})$ was obtained as a white oil (50:50 ratio) after purification by flash column chromatography (silica gel 200-400 mesh) using a mixture of hexane/ethyl acetate (80:20) as eluent.

Rf 0.60 (20\% EtOAc in hexane)
IR (neat) 3555, 3088, 3055, 3034, 2982, 2961, 2908, 2872, 1707, 1595, 1491, $1479,1468,1448,1421,1408,1394,1364,1317,1265,1227,1184,1151,1084$, $1055,1028,1003,970,930,897,743,706,642,633 \mathrm{~cm}^{-1}$.
${ }^{1}{ }^{\mathbf{H}}$ NMR (500 MHz; $\mathbf{C}_{6} \mathrm{D}_{6}$) $\delta 0.84$ (s, 9H); (0.86 (s, 9H)); 1.94 (dd, $J=2.7$ and 17.3 $\mathrm{Hz}, 1 \mathrm{H}) ;(2.01(\mathrm{dd}, J=2.4$ and $17.1 \mathrm{~Hz}, 1 \mathrm{H})$); $2.08(\mathrm{dd}, J=8.8$ and $17.3 \mathrm{~Hz}, 1 \mathrm{H})$; (2.18 (dd, $J=9.5$ and $17.3 \mathrm{~Hz}, 1 \mathrm{H})$); $2.42(\mathrm{dd}, J=7.3$ and $18.1 \mathrm{~Hz}, 1 \mathrm{H}) ; 2.62(\mathrm{dd}, J$ $=2.7$ and $18.1 \mathrm{~Hz}, 1 \mathrm{H}) ;(2.67(\mathrm{dd}, J=3.4$ and $18.3 \mathrm{~Hz}, 1 \mathrm{H})$); $(3.13(\mathrm{~s}, 1 \mathrm{H})) ; 3.23(\mathrm{~s}$, 1H); (3.87-3.89 (m, 1H)); 3.99-4.01 (m, 1H); 4.76 (d, J = 9.8 Hz, 1H); (4.83 (d, J = 7.3 Hz, 1H)); 6.99-7.02 (m, 3H); 7.08-7.22 (m, 11H); 7.56-7.59 (m, 6H).
${ }^{13}$ C NMR (62.5 MHz; $\mathbf{C}_{6} \mathrm{D}_{6}$) δ 26.4; 36.2; (36.3); 46.2; (46.6); 51.2; 69.6; (69.7); 75.5; (75.9); 86.9; (87.0); 125.9; (126.1); 127.2; (127.3); 127.4; (127.5); 127.9; (128.0); 128.4; 129.6; (129.7); 143.7; (143.9); 145.6; (145.7); 208.1; (208.2).

HRMS (ESI TOF-MS): calcd. for $\mathrm{C}_{34} \mathrm{H}_{36} \mathrm{O}_{3} \mathrm{Na}$: 515.2562; found: 515.2596.
(2RS,6RS)-6-hydroxy-7-methyl-2-(trityloxy)octan-4-one (25a) and (2RS,6SR)-6-hydroxy-7-methyl-2-(trityloxy)octan-4-one (26a)

25a

The mixture of aldol adducts 25a and 26a ($95 \%, 83 \mathrm{mg}, 0.20 \mathrm{mmol}$) was obtained as a yellow oil (50:50 ratio) after purification by flash column
chromatography (silica gel 200-400 mesh) using a mixture of chloroform/methanol (95:5) as eluent.

Rf 0.90 (5\% methanol in chloroform)
IR (neat) 3531, 3080, 3057, 3036, 3024, 2964, 2932, 2876, 1703, 1597, 1491, 1468, 1448, 1408, 1377, 1319, 1265, 1221, 1151, 1126, 1074, 1036, 1024, 1003, $951,930,899,775,743,708,648,631 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (500 MHz; $\mathrm{C}_{6} \mathrm{D}_{6}$) $\delta(0.81(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$); $0.81(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H})$; $0.87(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;(0.88(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})) ; 1.14(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}) ; 1.45-$ $1.52(\mathrm{~m}, 1 \mathrm{H}) ; 1.79-2.13(\mathrm{~m}, 4 \mathrm{H}) ; 2.92(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ; 3.61-3.68(\mathrm{~m}, 1 \mathrm{H}) ; 4.10-4.17(\mathrm{~m}$, 1H); 7.00-7.04 (m, 3H); 7.07-7.12 (m, 6H); 7.54-7.57 (m, 6H).
${ }^{13}$ C NMR (125 MHz; C ${ }_{6} \mathrm{D}_{6}$) $\delta 17.7$; (17.7); 18.6; (18.7); 22.6; (22.7); (33.4); 33.4; (47.0); 47.1; 51.6; (67.0); 67.0; 71.9; (72.0); (87.4); 87.4; 127.3; (127.3); 128.0; (128.1); (129.3); 129.3; (145.4); 145.4; (209.9); 209.9.

HRMS (ESI TOF-MS): calcd. for $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{Na}: 439.2249$; found: 439.2313.
(2RS,6RS)-6-hydroxy-7-methyl-2-(trityloxy)oct-7-en-4-one (25d) and (2RS,6SR)-6-hydroxy-7-methyl-2-(trityloxy)oct-7-en-4-one (26d)

The mixture of aldol adducts 25d and 26d ($95 \%, 84 \mathrm{mg}, 0.20 \mathrm{mmol}$) was obtained as a yellow oil (50:50 ratio) after purification by flash column chromatography (silica gel 200-400 mesh) using a mixture of hexane/ethyl acetate (80:20) as eluent.
Rf 0.41 (20\% EtOAc in hexane)
IR (neat) 3528, 3088, 3055, 2984, 2934, 1703, 1653, 1597, 1491, 1448, 1421, 1377, 1317, 1265, 1221, 1184, 1151, 1119, 1084, 1036, 1024, 1003, 951, 930, 901, 771, 739, 708, 648, $631 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz} ; \mathbf{C}_{6} \mathrm{D}_{6}$) $\delta(1.12(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H})$); $1.14(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 3 \mathrm{H})$; $1.58(\mathrm{~s}, 3 \mathrm{H}) ; 1.85-1.92(\mathrm{~m}, 1 \mathrm{H}) ;$ 1.99-2.06 (m, 1H); 2.12-2.14 (m, 1H); (2.22-2.27 $(\mathrm{m}, 1 \mathrm{H})$); $2.91(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ; 4.09-4.18(\mathrm{~m}, 1 \mathrm{H}) ; 4.32-4.37(\mathrm{~m}, 1 \mathrm{H}) ; 4.77(\mathrm{~m}, 1 \mathrm{H}) ; 5.00-$ $5.01(\mathrm{~m}, 1 \mathrm{H})$; 6.99-7.03 (m, 3H); 7.08-7.11 (m, 6H); 7.53-7.57 (m, 6H).
${ }^{13}$ C NMR (125 MHz; $\mathbf{C}_{6} \mathrm{D}_{6}$) δ (18.4); 18.4; 22.6; (48.4); 48.6; (51.6); 51.6; 66.9; (71.0); 71.1; 87.4; (87.4); 110.7; (110.7); 127.3; (127.3); 128.0; (128.1); (129.3); 129.3; (145.3); 145.4; 146.4; (146.5); 208.9.

HRMS (ESI TOF-MS): calcd. for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{Na}$: 437.2093; found: 437.2068.
(1RS,5RS)-1-hydroxy-1-phenyl-5-(trityloxy)hexan-3-one (25e) and (1SR,5RS)-1-hydroxy-1-phenyl-5-(trityloxy)hexan-3-one (26e)

25e

The mixture of aldol adducts 25 e and $\mathbf{2 6 e}(77 \%, 74 \mathrm{mg}, 0.16 \mathrm{mmol}$) was obtained as a white solid ($50: 50$ ratio) after purification by flash column chromatography (silica gel 200-400 mesh) using a mixture of hexane/ethyl acetate (80:20) as eluent.
$\mathbf{R f} 0.47$ (20\% EtOAc in hexane)
mp $46-48^{\circ} \mathrm{C}$
IR (neat) 3541, 3088, 3055, 3036, 2986, 2932, 1703, 1597, 1491, 1448, 1421, 1408, 1377, 1319, 1265, 1221, 1151, 1119, 1086, 1065, 1034, 1024, 1003, 897, $739,706,648,633 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta(1.10(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H})$); $1.12(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H})$; (1.90 (dd, $J=3.4$ and $13.3 \mathrm{~Hz}, 1 \mathrm{H})$); 1.93 (dd, $J=3.9$ and $13.3 \mathrm{~Hz}, 1 \mathrm{H}$); 2.19 (dd, J $=8.2$ and $16.3 \mathrm{~Hz}, 1 \mathrm{H}) ; 2.44(\mathrm{dd}, J=3.0$ and $17.6 \mathrm{~Hz}, 1 \mathrm{H}) ;(2.47$ (dd, $J=9.0$ and $18.5 \mathrm{~Hz}, 1 \mathrm{H})$); $2.58(\mathrm{dd}, \mathrm{J}=3.4$ and $18.1 \mathrm{~Hz}, 1 \mathrm{H})$; (2.62 (dd, $J=9.5$ and 17.6 Hz , $1 \mathrm{H})$); (3.20 (d, $J=3.0 \mathrm{~Hz}, 1 \mathrm{H}$)); 3.24 (d, $J=3.0 \mathrm{~Hz}, 1 \mathrm{H}$); 4.01-4.08 (m, 1H); 4.97 (dt, $J=2.2$ and $9.5 \mathrm{~Hz}, 1 \mathrm{H}$); ($5.00(\mathrm{dt}, J=2.4$ and $9.3 \mathrm{~Hz}, 1 \mathrm{H})$); 7.21-7.34 (m, 14H); 7.46-7.49 (m, 6H).
${ }^{13}$ C NMR (125 MHz; CDCl ${ }_{3}$) δ 22.5; 51.3; (51.3); (51.4); 51.5; 66.5; (66.5); (69.6); 69.6; (87.1); 87.1; (125.5); 125.6; (127.1); 127.1; (127.5); 127.6; 127.8; (127.8); (128.4); 128.4; (128.8); 128.8; (142.6); 142.6; (144.6); 144.7; 209.9; (210.0).

HRMS (ESI TOF-MS): calcd. for $\mathrm{C}_{31} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{Na}$: 473.2093; found: 473.2113 .

21a

22a

The mixture of aldol adducts 21a and 22a ($69 \%, 110 \mathrm{mg}, 0.21 \mathrm{mmol}$) was obtained as a yellow oil (73:27 diastereoselectivity) after purification by flash column chromatography (silica gel 200-400 mesh) using a mixture of hexane/dichloromethane/ethyl acetate (50:40:10) as eluent.

Rf 0.62 (10\% EtOAc in hexane)
IR (neat) $3566,3055,2966,1707,1607,1524,1346,1265,856,741 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta(0.70(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$); $0.71(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$; (0.76 (d, J = 6.79 Hz, 3H)); 0.77 (d, J = $6.8 \mathrm{~Hz}, 3 \mathrm{H}$); 1.26-1.44 (m, 2H); (1.71 (dd, J $=2.53$ and $17.2 \mathrm{~Hz}, 1 \mathrm{H})$); 1.81-1.89 (m, 2H); (1.96 (dd, $J=9.8$ and $17.2 \mathrm{~Hz}, 1 \mathrm{H})$); (2.24-2.51 (m, 4H)); $2.32(\mathrm{dd}, J=4.0$ and $17.1 \mathrm{~Hz}, 1 \mathrm{H}) ; 2.44(\mathrm{dd}, J=8.2$ and 16.9 $\mathrm{Hz}, 1 \mathrm{H}) ; 3.42-3.58$ (m, 2H); (5.10-5.19 (m, 1H)); 5.15 (dd, J = 4.0 and $8.2 \mathrm{~Hz}, 1 \mathrm{H})$; 6.09-7.07 (m, 22H); 7.38-7.43 (m, 12H); 7.75 (d, J = $8.8 \mathrm{~Hz}, 4 \mathrm{H})$.
${ }^{13}$ C NMR (62.5 MHz; $\mathrm{C}_{6} \mathrm{D}_{6}$) ठ 17.4; 18.4; (33.2); 33.3; 47.2; 52.5; (52.6); 71.8; 72.0; 88.9; 123.2; 127.4; 128.1; 128.5; 129.2; 144.5; 147.0; 151.0; (151.1); (208.0); 208.0.
(1SR,5SR)-5-hydroxy-1-(4-nitrophenyl)-1-(trityloxy)heptan-3-one (21b) and (1SR,5RS)-5-hydroxy-1-(4-nitrophenyl)-1-(trityloxy)heptan-3-one (22b)

21b

22b

The mixture of aldol adducts $\mathbf{2 1 b}$ and $\mathbf{2 2 b}(55 \%, 85 \mathrm{mg}, 1.47 \mathrm{mmol})$ was obtained as a yellow oil (60:40 diastereoselectivity) after purification by flash
column chromatography (silica gel 200-400 mesh) using a mixture of hexane/dichloromethane/ethyl acetate (50:40:10) as eluent.

Rf 0.43 (10\% EtOAc in hexane)
IR (neat) $3554,3055,2935,2966,1707,1607,1524,1348,1265,856,741 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta(0.75(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H})$); $0.76(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ; 1.00-$ $1.29(\mathrm{~m}, 4 \mathrm{H}) ;(1.66$ (dd, $J=2.7$ and $17.2 \mathrm{~Hz}, 1 \mathrm{H})$); 1.75-1.84 (m, 2H); (1.90 (dd, J = 9.5 and $17.4 \mathrm{~Hz}, 1 \mathrm{H})$); 2.25-2.50 (m, 6H); 3.59 (m, 2H); 5.08-5.20 (m, 2H); 6.887.08 (m, 22H); 7.35-7.50 (m, 12H); 7.74 (d, J = $8.7 \mathrm{~Hz}, 4 \mathrm{H}$).
${ }^{13}$ C NMR (62.5 MHz; C ${ }_{6} \mathrm{D}_{6}$) ס 9.8; (29.6); 29.7; (49.7); 49.8; 52.4; (52.5); (68.6); 68.7; (71.7); 71.8; 88.9; 123.5; 127.4; 127.8; 128.1; 128.5; 129.2; 144.5; 146.9; 151.0; (151.1).

HRMS (ESI TOF-MS): calcd. for $\mathrm{C}_{32} \mathrm{H}_{31} \mathrm{NO}_{5} \mathrm{Na}$: 532.2100; found: 532.2108.

(1SR,5SR)-5-hydroxy-6-methyl-1-(4-nitrophenyl)-1-(trityloxy)hept-6-en-3-one

 (21d) and (1SR,5RS)-5-hydroxy-6-methyl-1-(4-nitrophenyl)-1-(trityloxy)hept-6-en-3-one (22d)

The mixture of aldol adducts 21d and 22d (98%, $256 \mathrm{mg}, 0: 49 \mathrm{mmol}$) was obtained as a yellow oil (70:30 diastereoselectivity) after purification by flash column chromatography (silica gel 200-400 mesh) using a mixture of hexane/dichloromethane/ethyl acetate (50:40:10) as eluent.
Rf 0.59 (10\% EtOAc in hexane)
IR (neat) 3500, 3055, 1709, 1607, 1524, 1348, 1265, 897, $739 \mathrm{~cm}^{-1}$.
${ }^{1} \mathbf{H}$ NMR ($250 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta(1.46(\mathrm{~s}, 3 \mathrm{H})$); 1.48 (s, 3 H); (1.86 (dd, $J=3.0$ and 16.7 $\mathrm{Hz}, 1 \mathrm{H})$); $1.96(\mathrm{dd}, J=3.8$ and $16.6 \mathrm{~Hz}, 1 \mathrm{H}) ; 2.07(\mathrm{dd}, J=8.9$ and $16.6 \mathrm{~Hz}, 1 \mathrm{H})$; (2.14 (dd, J = 9.3 and 16.7 Hz, 1H)); 2.29-2.57 (m, 6H); 4.14-4.24 (m, 2H); 4.69 (br $\mathrm{s}, 2 \mathrm{H}$); 4.89 (br s, 2H); 5.10-5.21 (m, 2H); 6.90-7.08 (m, 22H); 7.38-7.47 (m, 12H); 7.74 (d, J = $8.7 \mathrm{~Hz}, 4 \mathrm{H}$).
${ }^{13}{ }^{3}$ NMR (62.5 MHz; $\mathrm{C}_{6} \mathrm{D}_{6}$) δ 18.1; (18.1); 48.7; 52.6; (52.7); (71.0); 71.2; 71.7; 88.9; 110.9; (123.1); 123.1; 127.5; 128.1; 128.5; 129.2; 144.5; (146.1); 146.3; 146.9; 151.0; (151.1); (206.8); 206.9.

HRMS (ESI TOF-MS): calcd. for $\mathrm{C}_{33} \mathrm{H}_{31} \mathrm{NO}_{5} \mathrm{Na}$: 544.2100 ; found: 544.2120 .
(1SR,5SR)-1-hydroxy-5-(4-nitrophenyl)-1-phenyl-5-(trityloxy)pentan-3-one (21e) and (1RS,5SR)-1-hydroxy-5-(4-nitrophenyl)-1-phenyl-5-(trityloxy)pentan-3-one (22e)

21e

22e

The mixture of aldol adducts 21e and 22e ($76 \%, 140 \mathrm{mg}, 0.25 \mathrm{mmol}$) was obtained as a yellow oil (67:33 diastereoselectivity) after purification by flash column chromatography (silica gel 200-400 mesh) using a mixture of hexane/dichloromethane/ethyl acetate (50:40:10) as eluent.
$\boldsymbol{R f} 0.68$ (10\% EtOAc in hexane)
IR (neat) 3547, 3059, 2926, 1607, 1522, 1346, 1265, 856, $739 \mathrm{~cm}^{-1}$.
${ }^{1}$ H NMR ($250 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta(2.05$ (dd, $J=3.6$ and $17.1 \mathrm{~Hz}, 1 \mathrm{H})$); 2.16 (dd, $J=4.0$ and $16.9 \mathrm{~Hz}, 1 \mathrm{H}) ; 2.19-2.45(\mathrm{~m}, 5 \mathrm{H}) ; 2.28(\mathrm{dd}, J=8.5$ and $17.1 \mathrm{~Hz}, 1 \mathrm{H}) ; 2.60(\mathrm{~d}, J$ $=3.5 \mathrm{~Hz}, 1 \mathrm{H}) ;(2.62(\mathrm{~d}, \mathrm{~J}=3.8 \mathrm{~Hz}, 1 \mathrm{H})$); 4.83-4.94 (m, 2H); 5.15-5.24 (m, 2H); 6.98-7.25 (m, 32H); 7.45-7.57 (m, 12H); 7.77-7.84 (m, 4H).
${ }^{13} \mathrm{C}$ NMR (62.5 MHz; $\mathrm{C}_{6} \mathrm{D}_{6}$) б 52.5; (52.3); 52.4; (52.5); (69.8); 70.0; 71.6; (71.7);
88.9; (123.1); 123.2; (125.8); 125.8; 127.4; 127.8; 128.1; 128.5; 128.6; 129.2; (143.5); 143.6; 144.4; 147.0; 150.8; (150.9); (206.6); 206.7.

HRMS (ESI TOF-MS): calcd. for $\mathrm{C}_{36} \mathrm{H}_{30} \mathrm{NO}_{5} \mathrm{Na}$: 580.2100 ; found: 580.2104.

21f

$22 f$

The mixture of aldol adducts 21 f and $\mathbf{2 2 f}(76 \%, 202 \mathrm{mg}, 0.34 \mathrm{mmol})$ was obtained as a yellow oil (70:30 diastereoselectivity) after purification by flash column chromatography (silica gel 200-400 mesh) using a mixture of hexane/dichloromethane/ethyl acetate (50:40:10) as eluent.

Rf 0.44 (20\% EtOAc in hexane)
IR (neat) 3522, 3057, 2926, 1711, 1607, 1522, 1348, 1265, 856, $739 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta(1.79(\mathrm{dd}, J=3.2$ and $17.5 \mathrm{~Hz}, 1 \mathrm{H})$); $1.91(\mathrm{dd}, J=4.1$ and $17.2 \mathrm{~Hz}, 1 \mathrm{H}) ; 2.01(\mathrm{dd}, J=8.2$ and $17.2 \mathrm{~Hz}, 1 \mathrm{H}) ;(2.07(\mathrm{dd}, J=9.3$ and 17.5 Hz, 1H)); 2.25 (dd, J = 3.8 and $16.9 \mathrm{~Hz}, 1 \mathrm{H}$); (2.30-2.34 (m, 2H)); 2.41 (dd, J = 8.5 and $16.9 \mathrm{~Hz}, 1 \mathrm{H}) ; 2.62(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;(2.74(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$); 4.59-4.70 (m, 2H); 5.07-5.16 (m, 2H); (6.83 (d, J = 8.5 Hz, 2H)); $6.85(\mathrm{~d}, ~ J=8.5 \mathrm{~Hz}, 2 \mathrm{H}) ; 6.90-7.07(\mathrm{~m}, 22 \mathrm{H})$; $7.37-7.46(\mathrm{~m}, 12 \mathrm{H}) ; 7.75(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 4 \mathrm{H}) ;(7.82(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H})) ; 7.83(\mathrm{~d}, \mathrm{~J}=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H})$.
HRMS (ESI TOF-MS): calcd. for $\mathrm{C}_{36} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{Na}:$ 625.1951; found: 625.2042.
(3R,7S)-3,7-dihydroxy-2,2,8,8-tetramethyInonan-5-one (13)

13
Aldol adduct 11c ($10 \mathrm{mg}, 0.03 \mathrm{mmol}$) was dissolved in 0.5 mL of acetonitrile at $0{ }^{\circ} \mathrm{C}$. To the resulting solution were added four drops of aqueous $48 \% \mathrm{HF}$ solution. The mixture was stirred for 5 min at $0^{\circ} \mathrm{C}$, for 3 h at room temperature and quenched by the addition of solid NaHCO_{3}, filtered and concentrated under reduced pressure to give 7 mg (100\%) of 13 as a yellow solid.

Rf 0.32 (20\% EtOAc in hexane)
mp $126-129^{\circ} \mathrm{C}$
IR (neat) 3464, 3055, 2961, 2935, 2908, 2872, 1703, 1634, 1479, 1366, 1265, 1086, 1068, 1013, 897, 837, 739, $704 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 0.87$ (s, 18H); 2.14 (dd, $J=2.2$ and $16.7 \mathrm{~Hz}, 2 \mathrm{H}$); 2.26 (dd, $J=10.0$ and $16.7 \mathrm{~Hz}, 2 \mathrm{H}$); 3.01 (br s, 2H); 3.70 (dd, $J=2.2$ and $10.0 \mathrm{~Hz}, 2 \mathrm{H}$). ${ }^{13}$ C NMR (62.5 MHz; C ${ }_{6} \mathrm{D}_{6}$) $\delta 25.7$; 34.4; 45.6; 75.2; 213.5.

(+)-(3R,7R)-3,7-dihydroxy-2,2,8,8-tetramethylnonan-5-one (14)

14
Aldol adduct 12 c ($10 \mathrm{mg}, 0.03 \mathrm{mmol}$) was dissolved in 0.5 mL of acetonitrile at $0^{\circ} \mathrm{C}$. To the resulting solution were added four drops of aqueous $48 \% \mathrm{HF}$ solution. The mixture was stirred for 5 min at $0^{\circ} \mathrm{C}$, for 3 h at room temperature and quenched by the addition of solid NaHCO_{3}, filtered and concentrated under reduced pressure to give 7 mg (100%) of $\mathbf{1 4}$ as a yellow solid.
$[a]_{\mathrm{D}}{ }^{20}+50.0\left(\mathrm{c}=0.45, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
Rf 0.38 (20\% EtOAc in hexane)
mp $98-100^{\circ} \mathrm{C}$
IR (neat) 3504, 3055, 2986, 2964, 2934, 2872, 1703, 1607, 1479, 1468, 1421, 1366, 1265, 1068, 1013, 897, 739, $706 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($\mathbf{2 5 0} \mathbf{~ M H z ; ~} \mathbf{C}_{6} \mathrm{D}_{6}$) $\delta 0.85$ (s, 18H); 2.12 (dd, $J=3.3$ and $16.9 \mathrm{~Hz}, 2 \mathrm{H}$); 2.22 (dd, $J=9.2$ and $16.9 \mathrm{~Hz}, 2 \mathrm{H}$); 2.79 (br s, 2H); 3.68 (dd, $J=3.3$ and $9.2 \mathrm{~Hz}, 2 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 25.7$; 34.3; 45.3; 74.9; 213.2.
(3R,7S)-3,7-dihydroxy-2,2,8,8-tetramethyInonan-5-one (13) and (+)-(3R,7R)-3,7-dihydroxy-2,2,8,8-tetramethyInonan-5-one (14)

13

Aldol adducts 11c and 12c ($20 \mathrm{mg}, 0.06 \mathrm{mmol}$) were dissolved in 1.0 mL of acetonitrile at $0{ }^{\circ} \mathrm{C}$. To the resulting solution were added four drops of aqueous $48 \% \mathrm{HF}$ solution. The mixture was stirred for 5 min at $0{ }^{\circ} \mathrm{C}$, for 3 h at room temperature and quenched by the addition of solid NaHCO_{3}, filtered and concentrated under reduced pressure to give 14 mg (100\%) of 13 and 14 as a yellow solid.

Rf 0.38 (20\% EtOAc in hexane)
${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta(0.87(\mathrm{~s}, 18 \mathrm{H})$); $0.89(\mathrm{~s}, 18 \mathrm{H}) ; 2.16$ (dd, $J=2.0$ and $16.4 \mathrm{~Hz}, 2 \mathrm{H}$); 2.22-2.38 (m, 2H); (3.08 (br s, 2H)); 3.35 (br s, 2H); 3.69-3.77 (m, 2H).
${ }^{13} \mathrm{C}$ NMR (62.5 MHz; $\mathrm{C}_{6} \mathrm{D}_{6}$) $\delta(25.8) ; 25.8 ;(34.4) ; 34.4 ;(45.4) ; 45.8 ;(74.8) ; 75.1$; (213.1); 213.5.
(3R,7S)-3,7-dihydroxy-2,2,8,8-tetramethyInonan-5-one (13) and (+)-(3R,7R)-3,7-dihydroxy-2,2,8,8-tetramethyInonan-5-one (14)

13

14

To a stirring solution of a mixture of PMB ethers 9c and 10c (20 mg, 0.06 mmol), in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$, containing buffer $\mathrm{pH} 7(0.2 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, was added DDQ ($21 \mathrm{mg}, 0.09 \mathrm{mmol}$). The reaction was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min . After this period, the reaction medium was applied directly to a flash column chromatography (silica gel 200-400 mesh) using a mixture of hexane/ethyl acetate (80:20) as eluent, providing 11 mg (78%) of 13 and 14 as a yellow solid.
Rf 0.38 (20\% EtOAc in hexane)
${ }^{1} \mathbf{H}$ NMR ($250 \mathrm{MHz} ; \mathbf{C}_{6} \mathrm{D}_{6}$) $\delta(0.86(\mathrm{~s}, 18 \mathrm{H})$); $0.88(\mathrm{~s}, 18 \mathrm{H}) ; 2.15(\mathrm{dd}, \mathrm{J}=2.0$ and $16.4 \mathrm{~Hz}, 2 \mathrm{H}$); 2.20-2.37 (m, 2H); (3.03 (s, 2H)); 3.28 (s, 2H); 3.68-3.76 (m, 2H).
${ }^{13}$ C NMR (62.5 MHz; $\mathrm{C}_{6} \mathrm{D}_{6}$) δ (25.7); 25.8; (34.4); 34.4; (45.4); 45.7; (74.8); 75.1; (213.2); 213.5 .
(1SR,5SR)-1,5-dihydroxy-6-methyl-1-(4-nitrophenyl)heptan-3-one (27) and (1RS,5SR)-1,5-dihydroxy-6-methyl-1-(4-nitrophenyl)heptan-3-one (28)

27

28

Aldol adducts 21a and 22a ($21 \mathrm{mg}, 0.041 \mathrm{mmol}$) were dissolved in 1.5 mL of acetonitrile and dichloromethane (4:1) at room temperature. To the resulting solution were added two drops of aqueous $48 \% \mathrm{HF}$ solution. The mixture was stirred for 1 h at room temperature, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel 200400 mesh) using a mixture of hexane/ethyl acetate ($50: 50$) as eluent to give 11.4 mg (99%) of $\mathbf{2 7}$ and $\mathbf{2 8}$ as a yellow oil.
Rf 0.38 (20\% EtOAc in hexane)
${ }^{1} \mathrm{H}$ NMR ($\mathbf{2 5 0} \mathbf{~ M H z ; ~} \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta(0.87(\mathrm{~s}, 18 \mathrm{H})$); 0.89 (s, 18H); 2.16 (dd, $J=2.0$ and $16.4 \mathrm{~Hz}, 2 \mathrm{H}$); 2.22-2.38 (m, 2H); (3.08 (br s, 2H)); 3.35 (br s, 2H); 3.69-3.77 (m, 2H).
${ }^{13}$ C NMR (62.5 MHz; $\mathrm{C}_{6} \mathrm{D}_{6}$) $\delta(25.8)$; 25.8; (34.4); 34.4; (45.4); 45.8; (74.8); 75.1; (213.1); 213.5.

Table 1: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) data of isolated 27 and $28 .{ }^{1}$

		1,5-ANTI (28)		1,5-SYN (27)		
H	$\delta \mathrm{H}$ (ppm)	$J(\mathrm{~Hz})$		$\delta \mathrm{H}$ (ppm)	$J(\mathrm{~Hz})$	
1a	0.77	$J_{1 a / 2}=6.8$	d	0.78	$J_{\text {1a/2 }}=6.8$	d
1b	0.82	$J_{10 / 2}=6.8$	d	0.83	$J_{10 / 2}=6.8$	d
2	1.42	$J_{2 / 1}=6.7 ; J_{2 / 3}=5.4$	ds	1.38-1.48		m
3	3.63-3.69		m	3.64-3.70		m
OH	2.31	$J=3.4$	brs	2.42-2.48		brs
4a	1.94	$J_{\text {gem }}=16.5 ; J_{4 \mathrm{a} / 3}=2.4$	dd	1.96	$J_{\text {gem }}=16.5 ; J_{4 a / 3}=2.4$	dd
4b	2.14	$\begin{aligned} J_{\mathrm{gem}}= & 16.5 ; J_{4 \mathrm{~b} / 3}= \\ & 10.0 \end{aligned}$	dd	2.17	$J_{\text {gem }}=16.5 ; J_{7 / 4}=10.0$	dd
6 a	2.07	$J_{\text {gem }}=17.2 ; J_{6 a / 7}=2.8$	dd	2.07	$J_{\text {gem }}=17.2 ; J_{6 a / 7}=2.8$	dd
6b	2.24	$J_{\text {gem }}=17.2 ; J_{6 b / 7}=9.8$	dd	2.30	$J_{\text {gem }}=17.2 ; J_{6 \mathrm{~b} / 7}=9.6$	dd
7	4.82-4.87		m	4.83-4.90		m
OH	3.13	$J=2.9$	d	3.24	$J=3.2$	d
9	6.96	$J_{9 / 10}=8.8$	d	6.98	$J_{9 / 10}=8.7$	d
10	7.89	$J_{10 / 9}=8.8$	d	7.89	$J_{10 / 9}=8.7$	d

${ }^{1}$ a) Dias, L. C.; Marchi, A. A.; Ferreira, M. A. B.; Aguilar, A. M. Org. Lett. 2007, 9, 4869. b) Dias, L. C.; Marchi, A. A.; Ferreira, M. A. B.; Aguilar, A. M. J. Org. Chem. 2008, 73, 6299.

Scheme 1: Compounds 27 and 28 obtained in different experiments. ${ }^{1}$

29

$25 a+26 a$

30

 63\%

27:28 (66:24)

27:28 (27:73)

27:28 (63:37)

Table 2: Spectroscopic data of diols mixture obtained in different experiments(500 $\left.\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) .{ }^{1}$

$\boldsymbol{\delta} \mathrm{H}$ (ppm)						
P	t-Bu (30)		Tr (25a and 26a)		TBS (29)	
H	1,5-SYN	1,5-ANTI	1,5-SYN	1,5-ANTI	1,5-SYN	1,5-ANTI
1a	0.78	0.77	0.78	0.77	0.78	0.77
1a	0.84	0.83	0.83	0.82	0.83	0.82
2	1.39-1.49		1.38-1.49		1.38-1.49	
3	3.65-3.72		3.64-3.71		3.65-3.71	
OH	2.60	2.48	2.53	2.43	2.51	2.40
4a	1.98	1.97	1.98	1.97	1.97	1.96
4b	2.21	2.17	2.20	2.16	2.19	2.16
6a	2.09	2.11	2.09	2.10	2.08	2.09
6b	2.34	2.28	2.33	2.27	2.32	2.26
7	4.86-4.93		4.85-4.92		4.84-4.91	
OH	3.40	3.30	3.33	3.26	3.31	3.23
9	7.00	6.99	6.99	6.98	6.99	6.97
10	7.90		7.90		7.90	

Figure 1: Expansion of ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of mixture of compounds 27 and 28 obtained in different experiments.

