Supporting Information for

Ligand Electronic Parameters as a Measure of the Polarization of the $C\equiv O$ Bond in $[M(CO)_x L_y]^n$ Complexes and of the Relative Stabilization of $[M(CO)_x L_y]^{n/n+1}$ Species

Fabio Zobi

Contents

Figure S1. Correlation between $IR_P(L)$ parameters (x axis, cm⁻¹) and (from top to bottom) computationally derived electronic parameters (CEP, cm⁻¹); Tolman's electronic parameters (v, cm⁻¹); Hammett's substituent constants (σ_m , V); Lever's electrochemical parameters (E_L , V) and P_L electrochemical parameters (V) for ligands common to all models.

Figure S2. DFT calculated natural atomic charge on the central metal ion for $[Ni(CO)_3L]^n$ and *fac*- $[Mn(CO)_3L_3]^n$ complexes (y axis) against the corresponding $IR_P(L)$ value (x axis, cm⁻¹).

Figure S3. Relationship between the HOMO and LUMO energy of $[M(CO)_x L_y]^n$ species as a function of E_L values. H⁻, H₂O and NH₃ were not included in the final regression analysis.

Figure S4. Relationship between E_L values and the relative difference of the metal ion charges (i.e. $\Delta \delta = \delta M^n - \delta M^{n+1}$ where $\delta =$ charge on metal ion) of $[Ni(CO)_3L]^n$ and $[Ni(CO)_3L]^{n+1}$.

Figure S1. Correlation between $IR_P(L)$ parameters (x axis, cm⁻¹) and (from top to bottom) computationally derived electronic parameters (CEP, cm⁻¹); Tolman's electronic parameters (v, cm⁻¹); Hammett's substituent constants (σ_m , V); Lever's electrochemical parameters (E_L , V) and P_L electrochemical parameters (V) for ligands common to all models.

Figure S2. DFT calculated natural atomic charge on the central metal ion for $[Ni(CO)_3L]^n$ and *fac*- $[Mn(CO)_3L_3]^n$ complexes (y axis) against the corresponding $IR_P(L)$ value (x axis, cm⁻¹).

Figure S3. Relationship between the HOMO and LUMO energy of $[M(CO)_x L_y]^n$ species as a function of E_L values. H^{*}, H₂O and NH₃ were not included in the final regression analysis.

Figure S4. Relationship between E_L values and the relative difference of the metal ion charges (i.e. $\Delta \delta = \delta M^n - \delta M^{n+1}$ where $\delta =$ charge on metal ion) of $[Ni(CO)_3L]^n$ and $[Ni(CO)_3L]^{n+1}$.