Photo-Pens: A Simple and Versatile Tool for Maskless Photolithography

Chuanhong Zhou, Pradeep Ramiah Rajasekaran, Justin Wolff, Xuelian Li, and Punit Kohli*

Department of Chemistry & Biochemistry

Southern Illinois University

Carbondale, IL 62901

*pkohli@chem.siu.edu

Derivation of Equation 3. The emission intensity I_e is proportional to the fraction of the red-PDA (N_p) in the patterns since quantum yield of the blue-PDA is negligible. ^[1] We have modeled the emission intensity of patterns formed in our experiments. Assuming that the total number of diacetylene monomers present is N_t , then polymerization equations can be expressed by,

$$\frac{dN_{p}}{dt} = \rho N_{t}$$
 Eq. 1S

where $N_t + N_p = N_t$, N_p is the number of photo-polymerized diacetylene chains; ρ is the polymerization probability. Considering ρ is proportional to the exposure dose $E_p = I_p t = nh v_p t$, where I_p is the exposure intensity, n is the photon number per unit area. In general, I_p and n are position dependent are depicted by $I_p(r)$ and n(r). v_p is the photon frequency (hv_p) is the energy of photons, h is Plank's constant), and t is the exposure time. Thus, we have:

$$\gamma = \gamma \left(-e^{-amg} \right)$$
 Eq. 28

where *a* is a polymerization coefficient that depends upon the interaction of photons with diacetylene monomers. Since the emission intensity (I_e) is directly dependent upon the degree of photopolymerization, we have:

$$I_{e} = Kh v_{e} N_{t} \left(1 - e^{-an(r)hv_{p}t} \right) = I_{es} \left(1 - e^{-aI_{p}(r)t} \right)$$
 Eq. 3S

where v_e is the emission frequency, *K* is a constant which accounts for red-PDA fraction, and I_{es} = KN_thv_e is the saturated emission intensity.

In Figure 5A of the main text, the emission intensities dependent on exposure time are shown. The red line is the fitting curve satisfies with $I_e = 1234(1 - e^{-0.087t})$. We measured the intensity of the incident UV light is $I_{inc}=15\mu$ W/cm², so the polymerization coefficient can be approximately derived by $a = 0.087/I_{inc}=5.8\times10^3$ cm²/J. It is qualitatively validated by the high polymerization efficiency of UV light to polydiacetylene reported by references.^[1,2] Furthermore, the experimental fitting curve fits well with the theoretical model (Figure 5).

References:

- 1. B. Tieke and G.Wegner, Makrmol.Chem.179, 1639-1642, (1978).
- R. W. Carpick, D. Y. Sasaki, M. S. Marcus, M. A. Eriksson, A. R. Burns, J. Phys.: Condens. Matter. 16 R679-R697 (2004).