Supporting Information

Multifrequency EPR Studies of Manganese Catalases Provide a Complete Description of Proteinaceous Nitrogen Coordination

Troy A. Stich, James, W. Whittaker, and R. David Britt

Contents

Table S1. Effective ¹⁴N hyperfine coupling constants found for exchange-coupled Fe dimers

Table S2. Measured HFI parameters of ⁵⁵Mn atoms in exchange-coupled dimers

Figure S1. Effect of soft pulses on Mn(II) contaminated EPR spectra of MnCat

Figure S2. Simulation of tau-dependence of LP MnCat X-band three-pulse ESEEM

Figure S3. Simulation of field-dependence of LP MnCat X-band three-pulse ESEEM

Figure S4. Tau-dependence of LP MnCat K_a -band three-pulse ESEEM at two field positions

Figure S5. Simulation of tau-dependence of LP MnCat K_a -band three-pulse ESEEM

Figure S6. Simulation of tau-dependence of TT MnCat X-band three-pulse ESEEM

Figure S7. Tau-dependence of TT MnCat K_a -band three-pulse ESEEM at two field positions

Figure S8. Simulation of tau-dependence of TT MnCat K_a -band three-pulse ESEEM

Figure S9. Direct comparison of pulse EPR data of LP and TT MnCat

Species	Coordination Geometry ^{<i>a</i>} A_{iso} (MHz		Ref.						
Dinuclear Non-Heme Fe(II)Fe(III) Clusters									
methane									
monooxygenase	eq. to O _h Fe(III)	13.6	1						
hydroxylase									
	eq. to O_h Fe(II)	5.0	2						
	eq. to O_h Fe(III) 17.5		3						
	eq. to O_h Fe(II)	5.2	5						
uteroferrin		12.6	4						
semimethemerythrin	eq. to O _h Fe(III)	9.3							
	eq. to O _h Fe(III)	≈15	E						
	ax. to O_h Fe(II)	5.1	5						
	eq. to O_h Fe(II)	6.7							
ribonucleotide	ribonucleotide								
reductase R2		7.51	6						
		3.16							
Δ^9 -desaturase		9.1	(
		3.34	0						
MiaE		6.4	7						
		4.1	/						
Oxidized Rieske-type [2Fe2S] Clusters									
autradarin		4.6	8						
suiredoxin		5.4							
oxygenase-associated	4.4	0							
ferredoxin		5.4	8						
MitoNEET		6.25	9						

Table S1. Effective Isotropic HFI for ¹⁴N Atoms Coupled to Exchange Coupled Metal Clusters

a. Simple description of the geometry of the metal-ligand interaction. For example, "eq. to O_h

Fe(III)" refers to a ¹⁴N atom bound in the equatorial plane to a pseudo-octahedral Fe(III) ion.

Table S2. Measured HFI Parameters of ⁵⁵Mn Atoms in Exchange-Coupled Systems.

	Mn(III)			Mn(IV)				
Species	$A_{ m iso}$	A_{\perp}	A_{\parallel}	$A_{ m iso}$	A_{\perp}	A_{\parallel}	Meth.	Ref.
Ion in anatase	-247*2 = 494			-215				
LP MnCat	431	473	347	260	251	278	а	10
LP MnCat $+ N_3^-$	417	457	337	257	249	273	а	10
LP MnCat $+$ CN ⁻	414	457	327	249	242	263	а	10
TT MnCat	382	423	300	237	228	255	b	11
TT MnCat	387	424	312	235	228	250	е	12
TT MnCat	388	426	312	235	228	250	а	13
bipy2Mn(III)O2Mn(IV)bipy2	440	480	360	218	212	231	С	14
TACN	393	444	297	213	208	223	d	15

- a. X-band CW EPR
- b. X-, Q-, and W-band CW and pulse EPR
- c. *X*-band EPR and ENDOR
- d. X- and Q-band CW EPR and ENDOR
- e. *S*-, *X*-, and *P*-band CW EPR

References.

- 1. Hendrich, M. P.; Fox, B. G.; Andersson, K. K.; Debrunner, P. G.; Lipscomb, J. D., *J. Biol. Chem.* **1992**, *267* (1), *261-269*.
- 2. Bender, C. J.; Rosenzweig, A. C.; Lippard, S. J.; Peisach, J., *J. Biol. Chem.* **1994**, 269 (23), 15993-15998.
- 3. DeRose, V. J.; Liu, K. E.; Lippard, S. J.; Hoffman, B. M., *J. Am. Chem. Soc.* **1996**, *118* (1), 121-134.
- 4. Doi, K.; McCracken, J.; Peisach, J.; Aisen, P., J. Biol. Chem. 1988, 263 (12), 5757-5763.
- 5. Dikanov, S. A.; Davydov, R. M.; Graslund, A.; Bowman, M. K., J. Am. Chem. Soc. 1998, 120 (27), 6797-6805.
- 6. Davydov, R.; Behrouzian, B.; Smoukov, S.; Stubbe, J.; Hoffman, B. M.; Shanklin, J., *Biochemistry* **2005**, *44* (4), 1309-1315.
- Mathevon, C.; Pierrel, F.; Oddou, J. L.; Garcia-Serres, R.; Blonclin, G.; Latour, J. M.; Menage, S.; Gambarelli, S.; Fontecave, M.; Atta, M., *Proc. Natl. Acad. Sci. U. S. A.* 2007, 104 (33), 13295-13300.
- 8. Dikanov, S. A.; Shubin, A. A.; Kounosu, A.; Iwasaki, T.; Samoilova, R. I., *J. Biol. Inorg. Chem.* **2004**, *9* (6), 753-767.
- 9. Dicus, M. M.; Stoll, S.; Conlan, A.; Nechustai, R.; Jennings, P. A.; Paddock, M. L.; Britt, R. D., *Biochemistry* **2009**, *submitted*.
- 10. Stemmler, T. L.; Sturgeon, B. E.; Randall, D. W.; Britt, R. D.; Penner-Hahn, J. E., *J. Am. Chem. Soc.* **1997**, *119* (39), 9215-9225.

- 11. Schäfer, K.-O.; Bittl, R.; Lendzian, F.; Barynin, V.; Weyhermüller, T.; Wieghardt, K.; Lubitz, W., *J. Phys. Chem. B* **2003**, *107* (5), 1242-1250.
- 12. Haddy, A.; Waldo, G. S.; Sands, R. H.; Penner-Hahn, J. E., *Inorg. Chem.* **1994**, *33* (12), 2677-82.
- 13. Ivancich, A.; Barynin, V. V.; Zimmermann, J.-L., *Biochemistry* **1995**, *34* (20), 6628-39.
- 14. Randall, D. W.; Sturgeon, B. E.; Ball, J. A.; Lorigan, G. A.; Chan, M. K.; Klein, M. P.; Armstrong, W. H.; Britt, R. D., *J. Am. Chem. Soc.* **1995**, *117* (47), 11780-9.
- 15. Zweygart, W.; Bittl, R.; Wieghardt, K.; Lubitz, W., Chem. Phys. Lett. **1996**, 261 (3), 272-276.

Stich et al. Supplemental Figure S1.

Stich et al. Supplemental Figure S2.

Stich et al. Supplemental Figure S3.

Stich et al. Supplemental Figure S4.

Stich et al. Supplemental Figure S5.

Stich et al. Supplemental Figure S6.

Stich et al. Supplemental Figure S7.

Stich et al. Supplemental Figure S8.

Stich et al. Supplemental Figure S9.