Supporting Information for

A Convergent Assembly of the Spiroacetal Subunit of Didemnaketal B

Haruhiko Fuwa*, Sayaka Noji, and Makoto Sasaki

Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan

*Corresponding author. Email: hfuwa@bios.tohoku.ac.jp

Contents

General methods	S2
Experimental procedures and spectroscopic data	S3
Stereochemical assignment of compounds 15 and 4	S29
Copies of ¹ H and ¹³ C NMR spectra	S30

General methods. All reactions sensitive to moisture and/or air were carried out under an atmosphere of argon in dry, freshly distilled solvents under anhydrous conditions using oven-dried glassware unless otherwise noted. Anhydrous dichloromethane (CH₂Cl₂) was purchased from Kanto Chemical Co. Inc. and used directly without further drying. Anhydrous tetrahydrofuran, diethyl ether, and toluene were purchased from Wako Pure Chemical Industries, Ltd. and further purified by a Glass Contour solvent purification system under an atmosphere of argon immediately prior to use. Diisopropylethylamine, triethylamine, 2,6-lutidine, acetonitrile (CH₃CN), benzene, and methanol were distilled from calcium hydride under an atmosphere of argon. Hexamethyphosphoramide (HMPA) and N.N.-dimethylpropyleneurea (DMPU) were distilled from calcium hydride under reduced pressure. N,N-dimethylformamide (DMF) and dimethyl sulfoxide (DMSO) were distilled from magnesium sulfate under reduced pressure. All other chemicals were purchased at highest commercial grade and used directly. Analytical thin-layer chromatography (TLC) was performed using E. Merck silica gel 60 F₂₅₄ plates (0.25-mm thickness). Flash column chromatography was carried out using Kanto chemical silica gel 60N (40-100 mesh, spherical, neutral) or Fuji Silysia silica gel BW-300 (200-400 mesh). Optical rotations were recorded on a JASCO P-1020 digital polarimeter. IR spectra were recorded on a JASCO FT/IR-4100 spectrometer. ¹H and ¹³C NMR spectra were recorded on a JEOL JNM-ECA-600 spectrometer, and chemical shift values are reported in ppm (δ) downfield from tetramethylsilane with reference to internal solvent [¹H NMR, CHCl₃ (7.24), C₆HD₅ (7.15); ¹³C NMR, CDCl₃ (77.0), C₆D₆ (128.0)] unless otherwise noted. Coupling constants (J) are reported in Hertz (Hz). The following abbreviations were used to designate the multiplicities: s = singlet; d = doublet; t = triplet; m = multiplet; br = broad. FAB mass spectra were recorded on a JEOL JMS-700 spectrometer and ESI-TOF mass spectra were measured on a Bruker microTOF focus spectrometer.

Sulfone 12. To a solution of alcohol 11 (0.8965 g, 4.977 mmol) in THF (40 mL) cooled to 0 °C were added 1-phenyl-1H-tetrazole-5-thiol (1.33 g, 7.46 mmol), Ph₃P (1.96 g, 7.47 mmol), and DEAD (2.2 M solution in toluene, 3.40 mL, 7.48 mmol), and the resultant solution was stirred at room temperature for 25 min. The reaction was quenched with saturated aqueous NaHCO₃ solution at 0 °C, and the resultant mixture was diluted with EtOAc. The organic layer was washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. Purification of the residue by flash chromatography on silica gel (8 to 15% EtOAc/hexanes) gave sulfide S1 (1.6017 g, 95%) as a colorless oil: $[\alpha]_D^{26}$ -8.0 (c 1.00, CHCl₃); IR (film) 2930, 1595, 1498, 1454, 1385, 1014, 962, 759, 695, 443 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.57-7.49 (m, 5H), 7.33–7.23 (m, 5H), 4.49 (d, J = 12.0 Hz, 1H), 4.47 (d, J = 12.0 Hz, 1H), 3.54 (dd, J = 12.7, 6.2 Hz, 1H), 3.47 (dd, J = 9.6, 4.9 Hz, 1H), 3.40 (dd, J = 9.6, 5.8 Hz, 1H), 3.38 (dd, J = 12.7, 6.8 Hz, 1H), 2.29 (m, 1H), 1.08 (d, J = 6.8 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) & 154.7, 138.2, 133.7, 130.0, 129.7 (2C), 128.3 (2C), 127.6 (3C), 123.8 (2C), 73.5, 73.1, 37.1, 33.6, 16.5; HRMS (ESI) calcd for $C_{18}H_{20}N_4OSNa$ [(M + Na)⁺] 363.1250, found 363.1259.

To a solution of sulfide S1 (0.6626 g, 1.948 mmol) in CH₂Cl₂ (10 mL) cooled

to 0 °C was added *m*-CPBA (77% purity, 1.07 g, 4.77 mmol), and the resultant solution was stirred at room temperature for 22 h. The reaction was quenched with 3.0 M aqueous NaOH solution at 0 °C, and the resultant mixture was stirred at room temperature for 10 min. The resultant mixture was diluted with EtOAc, and the organic layer was washed successively with 3.0 M aqueous NaOH solution, saturated aqueous NH₄Cl solution, and brine. The organic layer was dried over Na₂SO₄, filtered, and concentrated under reduced pressure. Purification of the residue by flash chromatography on silica gel (10 to 15% EtOAc/hexanes) gave sulfone 12 (0.7321 g, 100%) as a colorless viscous oil: $[\alpha]_D^{28}$ -14.0 (c 1.00, C₆H₆); IR (film) 2861, 1496, 1455, 1336, 1152, 1096, 764, 689, 634, 520 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.63—7.53 (m, 5H), 7.36—7.25 (m, 5H), 4.48 (d, J = 11.6 Hz, 1H), 4.43 (d, J = 11.6 Hz, 1H), 4.03 (dd, J = 14.8, 5.2 Hz, 1H), 3.56 (dd, J = 14.8, 7.5 Hz, 1H), 3.52 (dd, J = 9.3, 4.8 Hz, 1H), 3.36 (dd, J = 9.3, 6.5 Hz, 1H), 2.60 (m, 1H), 1.18 (d, J = 6.9 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) & 154.0, 137.8, 133.0, 131.4, 129.6 (2C), 128.4 (2C), 127.8, 127.6 (2C), 125.2 (2C), 73.1, 73.0, 59.0, 29.3, 17.1; HRMS (ESI) calcd for $C_{18}H_{20}N_4O_3SNa [(M + Na)^+] 395.1148$, found 395.1151.

Olefin 14. To a solution of sulfone **12** (2.565 g, 6.893 mmol) in THF/DMPU (4:1, v/v, 40 mL) cooled to -78 °C was added dropwise KHMDS (0.5 M solution in toluene, 12 mL, 6.0 mmol), and the resultant mixture was stirred at -78 °C for 40 min. To this

solution was added dropwise a solution of aldehyde 13 (0.7355 g, 3.311 mmol) in THF (17 mL + 10 mL rinse), and the resultant mixture was allowed to warm to room temperature over a period of 11 h 20 min. The reaction was quenched with saturated aqueous NH₄Cl solution at 0 °C, and the mixture was extracted with EtOAc. The organic layer was washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. Purification of the residue by flash chromatography on silica gel (3 to 15% EtOAc/hexanes) gave olefin 14 (0.9981 g, 82%, E/Z = 16:1 by 600 MHz ¹H NMR analysis) as a yellow oil: $[\alpha]_D^{24} + 2.1$ (c 1.80, C₆H₆); IR (film) 2852, 1612, 1513, 1454, 1361, 1248, 1093, 1037, 971, 698 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.35—7.30 (m, 4H), 7.29—7.22 (m, 3H), 6.89—6.85 (m, 2H), 5.42 (ddd, J = 15.4, 6.5, 6.5 Hz, 1H), 5.36 (dd, J = 15.4, 6.9 Hz, 1H), 4.51 (d, J = 12.0 Hz, 1H), 4.49 (d, J = 12.0Hz, 1H), 4.41 (s, 2H), 3.79 (s, 3H), 3.34 (dd, J = 8.9, 6.5 Hz, 1H), 3.29 (dd, J = 8.9, 6.2 Hz, 1H), 3.26 (dd, J = 9.3, 6.9 Hz, 1H), 3.21 (dd, J = 9.3, 6.5 Hz, 1H), 2.46 (m, 1H), 2.14 (ddd, J = 12.7, 6.5, 6.5 Hz, 1H), 1.89—1.74 (m, 2H), 1.01 (d, J = 6.5 Hz, 3H), 0.89 (d, J = 6.5 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 159.0, 138.7, 134.4, 130.8, 129.1 (2C), 128.3 (2C), 127.9, 127.5 (2C), 127.4, 113.7 (2C), 75.5, 75.0, 72.8, 72.6, 55.2, 36.9, 36.7, 33.6, 17.3, 16.8; HRMS (ESI) calcd for $C_{24}H_{32}O_3Na \left[(M + Na)^+\right]$ 391.2244, found 391.2255.

1,2-Diol 15. To a solution of olefin **14** (1.437 g, 3.902 mmol, E/Z = 16:1) in *t*-BuOH/H₂O (1:1, v/v, 34 mL) were added (DHQ)₂PHAL (60.8 mg, 78.1 µmol),

K₃Fe(CN)₆ (3.85 g, 11.7 mmol), and K₂CO₃ (1.62 g, 11.7 mmol). The resultant mixture was cooled to 0 °C, treated with OsO₄ (0.039 M solution in *t*-BuOH, 1.0 mL, 39 µmol) and MeSO₂NH₂ (371.0 mg, 3.900 mmol), and stirred vigorously at 0 °C for 15 h 20 min. The reaction was quenched with solid Na₂SO₃, and the mixture was stirred at room temperature for 10 min. The resultant mixture was extracted with EtOAc. The organic layer was washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (10 to 50% EtOAc/hexanes) to give 1,2-diol 15 (1.442 g) along with unreacted olefin 14 (0.0837 g, 6%, E/Z = 5:2). The former material was further purified by recrystallization from CH₂Cl₂/hexanes to give 1.2-diol **15** (1.265 g, 81%, dr >20:1 by 600 MHz 1 H NMR analysis) as a colorless solid: mp 89.0—89.5 °C; $[\alpha]_D^{23}$ +4.5 (c 1.00, CHCl₃); IR (film) 3341, 2936, 1514, 1248, 1100, 1032, 816, 698 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.36–7.26 (m, 5H), 7.25–7.20 (m, 2H), 6.89–6.81 (m, 2H), 4.50 (s, 2H), 4.43 (d, J =11.7 Hz, 1H), 4.41 (d, J = 11.7 Hz, 1H), 3.78 (s, 3H), 3.67 (ddd, J = 10.0, 3.0, 3.0 Hz, 1H), 3.54—3.50 (m, 2H), 3.31—3.24 (m, 3H), 2.04 (m, 1H), 1.98 (m, 1H), 1.69 (ddd, J = 14.1, 10.0, 5.9 Hz, 1H), 1.29 (ddd, J = 14.1, 7.6, 3.0 Hz, 1H), 0.92 (d, J = 7.3 Hz, 3H), 0.91 (d, J = 6.8 Hz, 3H) (two protons missing presumably due to H/D exchange); ¹³C NMR (150 MHz, CDCl₃) δ 159.1, 137.6, 130.4, 129.2 (2C), 128.5 (2C), 127.8, 127.7 (2C), 113.7 (2C), 78.7, 76.2, 74.1, 73.4, 72.7, 69.9, 55.2, 39.5, 35.8, 30.9, 17.5, 14.6; HRMS (ESI) calcd for $C_{24}H_{34}O_5Na[(M + Na)^+]$ 425.2298, found 425.2305.

Alcohol 16. To a solution of 1,2-diol 15 (92.6 mg, 0.230 mmol) in CH₂Cl₂ (2.3 mL) cooled to 0 °C were added 2,6-lutidine (0.11 mL, 0.94 mmol) and TIPSOTf (0.18 mL, 0.67 mmol). The resultant solution was stirred at 0 °C for 2 h and then at room temperature for 1 h. The reaction was quenched with saturated aqueous NH₄Cl solution at 0 °C, and the resultant mixture was extracted with EtOAc. The organic layer was washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. Purification of the residue by flash chromatography on silica gel (3 to 5% EtOAc/hexanes) gave silvl ether S2 (166.6 mg, 100%) as a colorless oil: $\left[\alpha\right]_{D}^{25}$ -28.3 (c 1.00, CHCl₃); IR (film) 2944, 2866, 1513, 1463, 1248, 1097, 997, 882, 678 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) & 7.32-7.26 (m, 4H), 7.26-7.19 (m, 3H), 6.89-6.80 (m, 2H), 4.47 (d, J = 12.0 Hz, 1H), 4.43 (d, J = 12.0 Hz, 1H), 4.40 (s, 2H), 3.95 (ddd, J =9.3, 3.8, 2.7 Hz, 1H), 3.86 (dd, J = 4.1, 3.8 Hz, 1H), 3.78 (s, 3H), 3.64 (dd, J = 9.3, 3.1 Hz, 1H), 3.31 (dd, J = 9.3, 7.6 Hz, 1H), 3.30 (dd, J = 8.9, 3.4 Hz, 1H), 3.14 (dd, J = 8.9, 3.4 Hz, 1H7.6 Hz, 1H), 2.20 (m, 1H), 1.97 (m, 1H), 1.46 (ddd, J = 12.4, 9.3, 3.8 Hz, 1H), 1.41 (ddd, J = 12.4, 9.6, 2.7 Hz, 1H), 1.14 (d, J = 6.8 Hz, 3H), 1.06-0.98 (m, 42H), 0.92 (d, J = 0.000 Hz, 0.0000 Hz, 0.000 Hz,J = 6.5 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 159.0, 138.9, 131.0, 128.9 (2C), 128.2 (2C), 127.6 (2C), 127.3, 113.7 (2C), 78.0, 76.4, 74.3, 73.5, 72.9, 72.4, 55.2, 35.8, 35.0,

29.8, 18.4 (7C), 18.33 (3C), 18.31 (3C), 17.4, 13.1 (6C); HRMS (ESI) calcd for $C_{42}H_{74}O_5Si_2Na [(M + Na)^+] 737.4967$, found 737.4963.

To a solution of silvl ether S2 (27.9 mg, 39.0 µmol) in CH₂Cl₂/pH 7 buffer (10:1, v/v, 0.77 mL) cooled to 0 °C was added DDQ (9.8 mg, 43 µmol). The resultant mixture was stirred at room temperature for 2 h 40 min, after which point an additional portion of DDQ (0.90 mg, 3.96 µmol) was added to the reaction mixture. After being stirred at room temperature for further 45 min, the reaction was quenched with saturated aqueous NaHCO₃ solution at 0 °C. The resultant mixture was extracted with EtOAc. The organic layer was washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was passed through a pad of silica gel (5 to 8% EtOAc/hexanes) and then purified by preparative HPLC to give alcohol 16 (20.6 mg, 89%) as a colorless oil: $[\alpha]_D^{25}$ -35.7 (*c* 1.00, CHCl₃); IR (film) 3375, 2944, 2867, 1463, 1110, 882, 733, 677, 416 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.33—7.29 (m, 4H), 7.25 (m, 1H), 4.48 (d, J = 12.0 Hz, 1H), 4.46 (d, J = 12.0 Hz, 1H), 3.95 (ddd, J = 9.2, 3.8, 2.8Hz, 1H), 3.88 (dd, J = 4.1, 3.8 Hz, 1H), 3.65 (dd, J = 9.2, 3.1 Hz, 1H), 3.45 (m, 1H), 3.37 (m, 1H), 3.31 (dd, J = 8.9, 8.9 Hz, 1H), 2.20 (m, 1H), 1.82 (m, 1H), 1.46 (ddd, J =13.7, 9.2, 3.8 Hz, 1H), 1.41 (ddd, J = 13.7, 9.3, 2.8 Hz, 1H), 1.29 (br s, 1H), 1.15 (d, J =6.9 Hz, 3H), 1.09–0.97 (m, 42H), 0.90 (d, J = 6.8 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) & 138.9, 128.2 (2C), 127.6 (2C), 127.4, 77.9, 74.4, 73.3, 72.9, 69.2, 35.4, 35.0, 32.2, 18.33 (6C), 18.30 (6C), 17.4, 16.7, 13.1 (6C); HRMS (ESI) calcd for $C_{34}H_{66}O_4Si_2Na [(M + Na)^+] 617.4392$, found 617.4393.

Iodide 9. To a solution of alcohol **16** (113.7 mg, 0.1913 mmol) in CH₂Cl₂ (2.0 mL) cooled to 0 °C were added Et₃N (53 μ L, 0.38 mmol), DMAP (3.0 mg, 20 μ mol) and TsCl (55.0 mg, 0.289 mmol), and the resultant solution was stirred at room temperature for 12 h. The reaction was quenched with H₂O at 0 °C, and the resultant mixture was extracted with EtOAc. The organic layer was washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residual crude tosylate was used in the next reaction without further purification.

To a solution of the above tosylate in acetone (2.5 mL) was added NaI (143 mg, 0.954 mmol), and the resultant mixture was stirred at 50 °C for 15 h. After being cooled to room temperature, the reaction mixture was diluted with EtOAc. The organic layer was washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. Purification of the residue by flash chromatography on silica gel (1 to 1.5% EtOAc/hexanes) gave iodide **9** (131.8 mg, 98% for the two steps) as a colorless oil: $[\alpha]_D^{25}$ –33.7 (*c* 1.00, CHCl₃); IR (film) 2944, 2866, 1462, 1110, 882, 732, 679 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.35—7.29 (m, 4H), 7.25 (m, 1H), 4.49 (s, 2H), 3.91 (ddd, *J* = 8.9, 3.8, 2.8 Hz, 1H), 3.87 (dd, *J* = 4.1, 3.8 Hz, 1H), 3.66 (dd, *J* = 9.3, 3.1 Hz, 1H), 3.33 (dd, *J* = 8.9, 8.9 Hz, 1H), 3.21 (dd, *J* = 9.3, 4.4 Hz, 1H), 3.12 (dd, *J* = 9.6, 6.5 Hz, 1H), 2.21 (m, 1H), 1.72 (m, 1H), 1.56 (ddd, *J* = 13.4, 8.6, 2.8 Hz, 1H), 1.51 (ddd, *J* = 13.4, 8.9, 3.8 Hz, 1H), 1.16 (d, *J* = 6.9 Hz, 3H), 1.08—0.99 (m, 42H), 0.96 (d, *J* = 6.5 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 138.8, 128.2 (2C), 127.6 (2C), 127.3, 77.9,

74.5, 73.4, 73.0, 39.3, 35.0, 31.2, 20.4, 19.2, 18.35 (6C), 18.33 (3C), 18.29 (3C), 17.5, 13.1 (6C); HRMS (ESI) calcd for $C_{34}H_{65}IO_3Si_2Na$ [(M + Na)⁺] 727.3409, found 727.3438.

Diene 18. To a mixture of epoxide **17** (3.28 g, 16.9 mmol) and CuI (322 mg, 1.69 mmol) in THF (140 mL) cooled to -35 °C was added vinylmagnesium bromide (1.0 M solution in THF, 20.3 mL, 20.3 mmol), and the resultant mixture was allowed to warm to -20 °C over a period of 30 min. The reaction was quenched with saturated aqueous NH₄Cl solution. The resultant mixture was allowed to warm to room temperature and then extracted with EtOAc. The organic layer was washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. Purification of the residue by flash chromatography on silica gel (10 to 20% EtOAc/hexanes) gave a homoallylic alcohol, which was contaminated with some impurities but was used in the next reaction without further purification.

To a solution of the above homoallylic alcohol in CH_2Cl_2 (140 mL) cooled to 0 °C were added *i*-Pr₂NEt (9.00 mL, 49.2 mmol) and acryloyl chloride (1.73 ml, 21.3 mmol), and the resultant solution was stirred at 0 °C for 3 h. The reaction was quenched with saturated aqueous NaHCO₃ solution, and the resultant mixture was extracted with EtOAc. The organic layer was washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. Purification of the residue by flash chromatography on silica gel (6 to 7.5% EtOAc/hexanes) gave diene **18** (4.41 g, 95% for the two steps) as a colorless oil: $[\alpha]_D^{24}$ –8.6 (*c* 1.00, C₆H₆); IR (film) 2933, 1723, 1613, 1514, 1406, 1249, 1195, 1037, 809 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) 8 7.25—7.20 (m, 2H), 6.87—6.83 (m, 2H), 6.39 (dd, *J* = 17.5, 1.4 Hz, 1H), 6.11 (dd, *J* = 17.5, 10.6 Hz, 1H), 5.81 (dd, *J* = 10.6, 1.4 Hz, 1H), 5.72 (dddd, *J* = 17.2, 10.0, 7.2, 7.2 Hz, 1H), 5.14 (m, 1H) 5.07 (dddd, *J* = 17.2, 1.4, 1.4, 1.0 Hz, 1H), 5.04 (dddd, *J* = 10.0, 2.1, 1.4, 1.0 Hz, 1H), 4.49 (d, *J* = 11.7 Hz, 1H), 4.42 (d, *J* = 11.7 Hz, 1H), 3.78 (s, 3H), 3.53 (dd, *J* = 10.6, 5.5 Hz, 1H), 3.51 (dd, *J* = 10.6, 4.8 Hz, 1H), 2.42 (ddddd, *J* = 14.1, 7.2, 7.2, 2.1, 1.4 Hz, 1H), 2.39 (ddddd, *J* = 14.1, 7.2, 7.2, 1.0, 1.0 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) 8 165.7, 159.2, 133.1, 130.8, 130.1, 129.2 (2C), 128.6, 118.0, 113.8 (2C), 72.8, 72.1, 70.1, 55.3, 35.4; HRMS (ESI) calcd for C₁₆H₂₀O₄Na [(M + Na)⁺] 299.1254, found 299.1258.

 α , β -Unsaturated lactone 19. To a solution of diene 18 (0.510 g, 1.85 mmol) in CH₂Cl₂ (150 mL) was added Ti(O*i*-Pr)₄ (0.17 mL, 0.57 mmol), and the resultant solution was stirred at 45 °C for 1 h. To this mixture was added a solution of the Grubbs second-generation catalyst (80 mg, 94 µmol) in CH₂Cl₂ (30 mL), and the resultant solution was stirred at 45 °C for 12 h. After being cooled to room temperature, the reaction mixture was treated with Et₃N and stirred at room temperature for 1.5 h under air. The resultant mixture was passed through a pad of silica gel (EtOAc) and concentrated under reduced pressure. Purification of the residue by flash

chromatography on silica gel (15 to 40% EtOAc/hexanes) gave α,β-unsaturated lactone **19** (0.437 g, 95%) as a pale brown oil: $[\alpha]_D^{24}$ –94.4 (*c* 1.00, CHCl₃); IR (film) 2910, 1719, 1611, 1513, 1246, 1085, 1050, 814 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.29—7.20 (m, 2H), 6.91—6.84 (m, 3H), 6.00 (ddd, *J* = 9.6, 2.8, 1.0 Hz, 1H), 4.58 (dddd, *J* = 11.7, 4.8, 4.8, 4.1 Hz, 1H), 4.53 (d, *J* = 11.6 Hz, 1H) 4.50 (d, *J* = 11.6 Hz, 1H), 3.79 (s, 3H), 3.66 (dd, *J* = 10.3, 4.8 Hz, 1H), 3.64 (dd, *J* = 10.3, 4.8 Hz, 1H), 2.53 (dddd, *J* = 18.5, 11.7, 2.8, 2.8 Hz, 1H), 2.37 (dddd, *J* = 18.5, 5.5, 4.1, 1.0 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 163.7, 159.3, 144.9, 129.7, 129.4 (2C), 121.2, 113.8 (2C), 76.6, 73.3, 70.4, 55.3, 26.2; HRMS (ESI) calcd for C₁₄H₁₆O₄Na [(M + Na)⁺] 271.0935, found 271.0939.

Lactone 20. To a suspension of CuI (286 mg, 1.50 mmol) in diethyl ether (10 mL) cooled to -10 °C was added MeLi (1.09 M solution in diethyl ether, 2.70 mL, 2.97 mmol), and the resultant mixture was stirred at -10 °C for 1 h. To this mixture was added a solution of α , β -unsaturated lactone **19** (0.241 g, 0.971 mmol) in diethyl ether (5 mL +2 mL rinse). The resultant solution was stirred at -10 °C for 40 min. The reaction was quenched with saturated aqueous NH₄Cl solution, and the resultant mixture was filtered through a pad of Celite, and the filtrate was extracted with diethyl ether. The organic layer was washed with brine. The aqueous layer was cooled to 0 °C and carefully acidified with 1 M aqueous HCl solution (pH = ca. 4). The resultant mixture was dried over

Na₂SO₄, filtered, and concentrated under reduced pressure. Purification of the residue by flash chromatography on silica gel (30 to 80% EtOAc/hexanes) gave lactone **20** (0.183 g, 72%): $[\alpha]_D^{25}$ +26.6 (*c* 1.00, CHCl₃); IR (film) 2955, 1735, 1612, 1513, 1247, 1173, 1080, 1032, 819, 419 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.26—7.20 (m, 2H), 6.89—6.83 (m, 2H), 4.54 (dddd, *J* = 8.6, 5.2, 4.8, 4.8 Hz, 1H), 4.48 (d, *J* = 11.7 Hz, 1H) 4.46 (d, *J* = 11.7 Hz, 1H), 3.78 (s, 3H), 3.57 (dd, *J* = 10.3, 4.8 Hz, 1H), 3.53 (dd, *J* = 10.3, 5.2 Hz, 1H), 2.55 (ddd, *J* = 16.5, 5.5, 0.7 Hz, 1H), 2.18 (m, 1H), 2.11 (dd, *J* = 16.5, 8.9 Hz, 1H), 1.91 (dddd, *J* = 14.0, 8.6, 6.2, 0.7 Hz, 1H), 1.55 (ddd, *J* = 14.0, 6.5, 4.8 Hz, 1H), 1.04 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 171.6, 159.3, 129.8, 129.3 (2C), 113.8 (2C), 76.1, 73.2, 71.3, 55.2, 37.6, 31.7, 23.7, 21.1; HRMS (ESI) calcd for C₁₅H₂₀O₄Na [(M + Na)⁺] 287.1254, found 287.1257.

Alcohol 24. To a suspension of CuCN (430 mg, 4.80 mmol) in THF (10 mL) cooled to

0 °C was added Me₂PhSiLi (ca. 0.96 M in THF, 10 mL, 9.6 mmol). After being stirred at 0 °C for 20 min, the reaction mixture was cooled to -78 °C. To this mixture was added a solution of alkyne 21 (0.940 g, 2.49 mmol) in THF (6 mL + 3 mL rinse twice). The resultant mixture was stirred at -78 °C for 2 h and then at 0 °C for 2 h. The reaction was quenched with a 9:1 mixture of saturated aqueous NH₄Cl solution and 28% NH₄OH solution at 0 °C, filtered through a pad of Celite, and the filtrate was extracted with EtOAc. The organic layer was washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. Purification of the residue by flash chromatography on silica gel (hexanes) gave vinyl silane 22 (1.361 g), which was contaminated with silane byproducts and used in the next reaction without further purification. ¹H NMR spectrum of the crude product indicated that the regioselectivity of the reaction was ca. 7:1. Data for 22: ¹H NMR (600 MHz, CDCl₃) δ 7.72—7.60 (m, 5H), 7.52–7.26 (m, 10H), 5.77 (ddq, J = 6.9, 6.9, 1.7 Hz, 1H), 3.74–3.62 (m, 2H), 2.15—2.00 (m, 2H), 1.64 (d, J = 1.7 Hz, 3H), 1.65—1.57 (m, 2H), 1.40—1.31 (m, 2H), 1.16 (m, 1H), 1.03 (s, 9H), 0.83 (d, J = 6.5 Hz, 3H), 0.30 (s, 6H); HRMS (FAB) calcd for $C_{33}H_{47}OSi_2 [(M + Na)^+] 515.3165$, found 515.3163.

To a solution of the above vinyl silane **22** in CH₃CN/THF (3:1, v/v, 24 mL) was added NIS (1.13 g, 5.04 mmol), and the resultant mixture was stirred at room temperature for 18 h. The reaction was quenched with a 1:1 mixture of saturated aqueous Na₂S₂O₃ solution and saturated aqueous NaHCO₃ solution at 0 °C, and the resultant mixture was stirred vigorously at room temperature until the layers became colorless. The resultant mixture was diluted with EtOAc, washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. Purification of the residue by flash chromatography on silica gel (0 to 0.5% diethyl ether/hexanes) gave an

inseparable mixture of vinyl iodide **23** and its isomers (1.207 g), which was used in the next reaction without further purification. ¹H NMR spectrum of the crude product indicated that E/Z = ca. 6:1 for the major regioisomer. Data for **23**: ¹H NMR (600 MHz, C₆D₆) δ 7.84—7.72 (m, 5H), 7.30—7.18 (m, 5H), 6.06 (m, 1H), 3.76—3.58 (m, 2H), 2.08 (s, 3H), 1.75—1.61 (m, 2H), 1.54—1.43 (m, 2H), 1.26 (m, 1H), 1.19 (s, 9H), 1.09 (m, 1H), 0.88 (dddd, J = 13.7, 9.2, 7.6, 6.2 Hz, 1H), 0.68 (d, J = 6.5 Hz, 3H); HRMS (FAB) calcd for C₂₅H₃₆IOSi [(M + Na)⁺] 507.1580, found 507.1582.

To a solution of the above vinyl iodide **23** in THF (15 mL) was added TBAF (1.0 M solution in THF, 11.6 mL, 11.6 mmol). The resultant solution was stirred at room temperature for 1 h 50 min and then concentrated under reduced pressure. Purification of the residue by flash chromatography on silica gel (1 to 3% EtOAc/benzene) followed by preparative HPLC gave alcohol **24** (0.372 g, 57% for the three steps) as a colorless oil: $[\alpha]_D^{26}$ –6.9 (*c* 1.00, C₆H₆); IR (film) 3345, 2923, 1458, 1377, 1373, 1057, 419 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 6.12 (ddq, *J* = 7.6, 7.6, 1.4 Hz, 1H), 3.71—3.61 (m, 2H), 2.35 (d, *J* = 1.4 Hz, 3H), 2.09—1.95 (m, 2H), 1.63—1.51 (m, 2H), 1.49—1.30 (m, 2H), 1.21 (dddd, *J* = 13.4, 9.3, 7.6, 5.8 Hz, 1H), 0.89 (d, *J* = 6.5 Hz, 3H) (one proton missing presumably due to H/D exchange); ¹³C NMR (150 MHz, C₆D₆) δ 141.6, 93.6, 60.6, 39.8, 36.2, 29.2, 28.3, 27.3, 19.4; HRMS (ESI) calcd for C₉H₁₈IO [(M + H)⁺] 269.0397, found 269.0398.

Vinyl iodide 6. To a solution of alcohol **24** (0.238 g, 0.888 mmol) in CH₂Cl₂ (9 mL) were added PhI(OAc)₂ (315 mg, 0.978 mmol) and TEMPO (14.0 mg, 89.6 μ mol), and the resultant solution was stirred at room temperature for 3.5 h. To the reaction mixture were added additional portions of PhI(OAc)₂ (86.0 mg, 0.263 mmol) and TEMPO (14 mg, 89.6 μ mol), and the resultant mixture was stirred at room temperature for 2 h. The reaction was quenched with a 1:1 mixture of saturated aqueous Na₂S₂O₃ solution and saturated aqueous NaHCO₃ solution at 0 °C, and the resultant solution was stirred at room temperature for Lac, and the organic layer was washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residual crude aldehyde was used in the next reaction without further purification.

To a solution of the above aldehyde, NaH_2PO_4 (120 mg, 1.00 mmol), and 2-methyl-2-butene (1.90 mL, 17.8 mmol) in *t*-BuOH/H₂O (5:1, v/v, 9 mL) cooled to 0 °C was added NaClO₂ (280 mg, 3.12 mmol), and the resultant mixture was stirred at room temperature for 50 min. The reaction mixture was cooled to 0 °C and carefully acidified with 1 M aqueous HCl solution (pH = ca. 4). The resultant mixture was extracted repeatedly with CHCl₃, and the organic layer was dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was passed through a pad of silica gel (5 to 10 % EtOAc/hexanes) to give a carboxylic acid (0.244 g, ca. 97%), which was used in the next reaction without further purification.

To a solution of the above carboxylic acid in methanol/benzene (1:1, v/v, 8 mL) cooled to 0 $^{\circ}$ C was added TMSCHN₂ (2.0 M solution in hexanes, 1.29 mL, 2.58 mmol). The reaction mixture was stirred at room temperature for 35 min and then concentrated under reduced pressure. Purification of the residue by flash

chromatography on silica gel (1% EtOAc/hexanes) to give vinyl iodide **6** (0.256 g, 97% for the three steps) as a colorless oil: $[\alpha]_D^{25}$ –5.4 (*c* 1.13, C₆H₆); IR (film) 2952, 1737, 1435, 1202, 1160, 1058 cm⁻¹; ¹H NMR (600 MHz, C₆D₆) δ 6.01 (dd, *J* = 7.6, 7.6 Hz, 1H), 3.33 (s, 3H), 2.06 (s, 3H), 2.00 (dd, *J* = 15.1, 5.8 Hz, 1H), 1.87 (dd, *J* = 15.1, 7.9 Hz, 1H), 1.78 (m, 1H), 1.70—1.55 (m, 2H), 1.05 (dddd, *J* = 13.4, 9.7, 6.2, 6.2 Hz, 1H), 0.86 (dddd, *J* = 13.4, 9.7, 7.9, 6.2 Hz, 1H), 0.73 (d, *J* = 6.9 Hz, 3H); ¹³C NMR (150 MHz, C₆D₆) δ 172.5, 141.1, 93.8, 50.9, 41.2, 35.6, 29.9, 28.2, 27.3, 19.5; HRMS (ESI) calcd for C₁₀H₁₇IO₂Na [(M + Na)⁺] 319.0165, found 319.0159.

Enol phosphate 10. To a solution of lactone **20** (0.947 g, 3.59 mmol) in THF (35 mL) were added HMPA (1.87 mL, 10.8 mmol) and (PhO)₂P(O)Cl (0.89 mL, 4.3 mmol), and the resultant solution was cooled to -78 °C. To this solution was added KHMDS (0.5 M solution in toluene, 9.30 mL, 4.65 mmol), and the resultant solution was stirred at -78 °C for 40 min. The reaction was quenched with 3% NH₄OH solution. The resultant mixture was diluted with diethyl ether and allowed to warm to room temperature over a period of 40 min. The resultant mixture was extracted with EtOAc, and the organic layer was washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was passed through a pad of silica gel (eluted with 15% EtOAc/hexanes) to give enol phosphate **10**, which was immediately used in the next reaction.

Endocyclic enol ether 25. To a solution of iodide 9 (1.086 g, 1.542 mmol) in diethyl ether (15 mL) was added B-MeO-9-BBN (1.0 M solution in hexanes, 4.0 mL, 4.0 mmol). To this solution cooled to -78 °C was added t-BuLi (1.59 M in pentane, 2.90 mL, 4.61 mmol) at once. The resultant mixture was stirred at -78 °C for 5 min and then THF (15 mL) was added. The resultant solution was allowed to warm to room temperature over a period of 3 h 25 min. To this solution was added 3 M aqueous Cs₂CO₃ solution (1.54 mL, 4.62 mmol), and the resultant mixture was stirred at room temperature for 20 min. To this mixture were added a solution of the above crude enol phosphate 10 in DMF (10 mL + 5 mL rinse) and PdCl₂(dppf)•CH₂Cl₂ (126 mg, 0.154 mmol). The resultant mixture was stirred at 50 °C for 16 h. The reaction mixture was diluted with H₂O and extracted with EtOAc. The organic layer was washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. Purification of the residue by flash chromatography on silica gel (0.5 to 1% EtOAc/hexanes) gave endocyclic enol ether 25 (1.021 g, 81%) as a colorless oil: $\left[\alpha\right]_{D}^{24}$ -5.5 (c 1.00, C₆H₆); IR (film) 2945, 2866, 1513, 1462, 1248, 1095, 882, 678 cm⁻¹; ¹H NMR (600 MHz, C₆D₆) δ 7.37-7.32 (m, 2H), 7.26-7.22 (m, 2H), 7.21-7.16 (m, 2H), 7.09 (m, 1H), 6.83-6.78 (m, 2H), 4.50 (d, J = 4.1 Hz, 1H), 4.49 (d, J = 12.0 Hz, 1H) 4.46 (d, J = 12.0 Hz, 1H),

4.42 (s, 2H), 4.21 (m, 1H), 4.17 (m, 1H), 4.15 (dd, J = 5.2, 3.8 Hz, 1H), 3.79 (dd, J = 8.9, 3.4 Hz, 1H), 3.66 (dd, J = 9.6, 5.2 Hz, 1H), 3.61 (dd, J = 7.9, 7.9 Hz, 1H), 3.51 (dd, J = 9.6, 6.2 Hz, 1H), 3.31 (s, 3H), 2.46 (m, 1H), 2.25 (m, 1H), 2.20—2.11 (m, 2H), 2.05 (m, 1H), 1.88 (ddd, J = 13.0, 10.0, 2.7 Hz, 1H), 1.79 (ddd, J = 13.4, 8.9, 5.8 Hz, 1H), 1.66 (br dd, J = 11.3, 11.3 Hz, 1H), 1.51 (ddd, J = 13.4, 2.8, 2.8 Hz, 1H), 1.47 (d, J = 6.8 Hz, 3H), 1.24—1.13 (m, 42H), 1.11 (d, J = 6.9 Hz, 3H), 0.97 (d, J = 6.9 Hz, 3H); 1³C NMR (150 MHz, C₆D₆) & 159.7, 152.1, 139.5, 131.0, 129.5 (2C), 128.4 (2C), 128.3 (2C), 127.5, 114.1 (2C), 103.4, 77.9, 75.1, 73.7, 73.31, 73.29, 72.2, 71.2, 54.7, 43.9, 39.2, 36.6, 32.1, 27.6, 24.5, 23.1, 20.0, 18.74 (3C), 18.71 (3C), 18.68 (3C), 18.6 (3C), 17.3, 13.6 (6C); HRMS (ESI) calcd for C₄₉H₈₄O₆Si₂Na [(M + Na)⁺] 847.5699, found 847.5676.

Spiroacetal 26. To a solution of endocyclic enol ether **25** (1.275 g, 1.546 mmol) in THF (8 mL) was added TBAF (1.0 M solution in THF, 15.2 mL, 15.2 mmol). The resultant solution was stirred at room temperature for 3 h 10 min and then concentrated under reduced pressure. Purification of the residue by flash chromatography on silica gel (20 to 30% EtOAc/benzene) gave dihydroxy enol ether **7** (0.8194 g), which was used in the next reaction without further purification: $[\alpha]_D^{25}$ +43.5 (*c* 1.00, C₆H₆); IR (film) 3461,

2953, 2867, 1513, 1455, 1248, 1092, 420 cm⁻¹; ¹H NMR (600 MHz, C₆D₆) δ 7.28—7.22 (m, 2H), 7.21—7.11 (m, 4H), 7.06 (m, 1H), 6.84—6.79 (m, 2H), 4.50 (d, *J* = 4.1 Hz, 1H), 4.41 (d, *J* = 11.7 Hz, 1H) 4.38 (d, *J* = 11.7 Hz, 1H), 4.19 (s, 2H), 4.11 (m, 1H), 3.80 (br ddd, *J* = 9.6, 2.4, 2.4 Hz, 1H), 3.55 (dd, *J* = 10.0, 6.2 Hz, 1H), 3.41—3.35 (m, 3H), 3.34—3.27 (m, 2H), 3.30 (s, 3H), 2.80 (br s, 1H), 2.32 (m, 1H), 2.18—2.06 (m, 3H), 2.01 (m, 1H), 1.90 (ddd, *J* = 14.4, 10.0, 4.8 Hz, 1H), 1.66 (ddd, *J* = 13.4, 9.6, 6.2 Hz, 1H), 1.32 (m, 1H), 1.24 (ddd, *J* = 13.7, 8.9, 3.4 Hz, 1H), 1.03 (d, *J* = 6.5 Hz, 3H), 0.91 (d, *J* = 6.9 Hz, 3H), 0.90 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (150 MHz, C₆D₆) δ 159.7, 152.2, 138.4, 130.9, 129.6 (2C), 128.6 (2C), 128.5, 128.3 (2C), 114.1 (2C), 103.5, 78.6, 73.9, 73.4, 73.1, 72.4, 71.4, 70.1, 54.7, 42.5, 41.4, 36.5, 31.8, 28.0, 24.7, 23.2, 19.8, 15.0; HRMS (ESI) calcd for C₃₁H₄₄O₆Na [(M + Na)⁺] 535.3041, found 535.3042.

To a solution of the above dihydroxy enol ether **7** in CH₂Cl₂ (20 mL) cooled to 0 °C was added PPTS (79.0 mg, 0.314 mmol), and the resultant mixture was stirred at room temperature for 2 days. The reaction was quenched with saturated aqueous NaHCO₃ solution at 0 °C. The resultant mixture was diluted with EtOAc and washed with brine. The organic layer was dried over Na₂SO₄, filtered, and concentrated under reduced pressure. Purification of the residue by flash chromatography on silica gel (10 to 13% EtOAc/hexanes) gave spiroacetal **26** (0.6651 g, 84% for the two steps) as a colorless oil: $[\alpha]_D^{24}$ +25.1 (*c* 1.31, CHCl₃); IR (film) 3494, 2930, 1613, 1513, 1455, 1247, 1090, 982, 698 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.33—7.28 (m, 4H), 7.27—7.20 (m, 3H), 6.86—6.82 (m, 2H), 4.48 (d, *J* = 11.6 Hz, 1H), 4.46 (s, 2H) 4.45 (d, *J* = 11.6 Hz, 1H), 3.96 (m, 1H), 3.87 (ddd, *J* = 11.7, 3.4, 3.0 Hz, 1H), 3.77 (s, 3H), 3.60 (dd, *J* = 9.3, 5.8 Hz, 1H), 3.47 (dd, *J* = 9.3, 5.8 Hz, 1H), 3.41 (dd, *J* = 10.3, 6.2 Hz, 1H), 3.36 (dd, *J* = 10.3, 4.1 Hz, 1H), 3.26 (ddd, *J* = 7.5, 6.2, 3.4 Hz, 1H), 2.75 (d, *J* = 6.2 Hz,

1H), 2.11—2.00 (m, 2H), 1.97 (m, 1H), 1.65 (ddd, J = 13.0, 3.8, 1.4 Hz, 1H), 1.61 (dd, J = 14.1, 5.8 Hz, 1H), 1.53 (ddd, J = 13.0, 11.7, 5.8 Hz, 1H), 1.51—1.45 (m, 2H), 1.29 (br ddd, J = 13.0, 2.7, 2.4 Hz, 1H), 1.16 (m, 1H), 1.14 (d, J = 7.2 Hz, 3H), 0.99 (m, 1H), 0.98 (d, J = 6.8 Hz, 3H), 0.86 (d, J = 6.5 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 159.0, 138.5, 130.7, 129.0 (2C), 128.3 (2C), 127.5 (2C), 127.4, 113.6 (2C), 98.2, 77.2, 73.5, 73.3, 73.1, 72.9, 69.6, 64.7, 55.2, 44.4, 40.5, 35.74, 35.68, 33.0, 24.8, 24.6, 22.1, 21.1, 14.8; HRMS (ESI) calcd for C₃₁H₄₄O₆Na [(M + Na)⁺] 535.3041, found 535.3045.

Aldehyde 5. To a solution of spiroacetal 26 (645.3 mg, 1.260 mmol) in CH₂Cl₂ (12 mL) cooled to 0 °C were added 2,6-lutidine (0.30 mL, 2.5 mmol) and TBSOTF (0.50 mL, 1.9 mmol), and the resultant solution was stirred at room temperature for 3 h 50 min. The reaction was quenched with saturated aqueous NH₄Cl solution at 0 °C, and the resultant mixture was extracted with EtOAc. The organic layer was washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. Purification of the residue by flash chromatography on silica gel (3% EtOAc/hexanes) gave silyl ether **S3** (0.7592 g, 96%) as a colorless oil: $[\alpha]_D^{25}$ +0.6 (*c* 1.96, CHCl₃); IR (film) 2951, 2855, 1513,

1455, 1249, 1086, 1038, 984, 836, 775 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.33—7.28 (m, 4H), 7.26—7.20 (m, 3H), 6.86—6.82 (m, 2H), 4.50—4.42 (m, 4H), 3.94 (m, 1H), 3.78 (s, 3H), 3.73 (ddd, *J* = 12.0, 3.8, 2.1 Hz, 1H), 3.59 (dd, *J* = 8.9, 3.4 Hz, 1H), 3.49 (dd, *J* = 6.5, 3.8 Hz, 1H), 3.40 (dd, *J* = 10.0, 5.8 Hz, 1H), 3.35 (dd, *J* = 10.0, 5.2 Hz, 1H), 3.26 (dd, *J* = 8.9, 8.2 Hz, 1H), 2.04 (dddd, *J* = 14.8, 13.7, 6.9, 3.4 Hz, 1H), 1.98—1.88 (m, 2H), 1.64 (ddd, *J* = 13.1, 3.8, 1.4 Hz, 1H), 1.61—1.50 (m, 3H), 1.41 (dd, *J* = 13.7, 3.4 Hz, 1H), 1.32 (br ddd, *J* = 13.1, 2.8, 2.8 Hz, 1H), 1.13 (d, *J* = 7.2 Hz, 3H), 1.03 (d, *J* = 6.9 Hz, 3H), 0.99—0.89 (m, 2H), 0.85 (d, *J* = 6.5 Hz, 3H), 0.83 (s, 9H), 0.00 (s, 3H), -0.01 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 159.0, 139.0, 130.7, 129.2 (2C), 128.2 (2C), 127.5 (2C), 127.3, 113.6 (2C), 97.8, 76.1, 73.4, 73.3, 72.92, 72.88, 72.5, 64.4, 55.2, 44.7, 40.8, 35.9, 33.4, 33.2, 25.9 (3C), 25.2, 24.7, 22.3, 21.0, 18.1, 15.9, -4.3, -4.7; HRMS (ESI) calcd for C₃₇H₅₈O₆SiNa [(M + Na)⁺] 649.3895, found 649.3894.

To a solution of silyl ether **S3** (23.6 mg, 37.8 µmol) in CH₂Cl₂/pH 7 buffer (10:1, v/v, 0.77 mL) cooled to 0 °C was added DDQ (9.5 mg, 42 µmol), and the resultant solution was stirred at room temperature for 2.5 h. The reaction was quenched with saturated aqueous NaHCO₃ solution at 0 °C, and the resultant mixture was stirred at room temperature for 10 min. The resultant mixture was extracted with EtOAc. The organic layer was washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. Purification of the residue by flash chromatography on silica gel (5:1:25, CHCl₃/EtOAc/hexanes) gave alcohol **S4** (16.6 mg, 87%) as a colorless oil: $[\alpha]_D^{24}$ +7.5 (*c* 1.00, CHCl₃); IR (film) 3480, 2927, 1455, 1254, 1076, 981, 882, 836, 775 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.35—7.29 (m, 4H), 7.25 (m, 1H), 4.49 (d, *J* = 12.0 Hz, 1H), 4.45 (d, *J* = 12.0 Hz, 1H), 3.86 (dddd, *J* = 11.3, 6.9, 4.1, 3.4 Hz, 1H), 3.69

(ddd, J = 11.7, 3.8, 2.0 Hz, 1H), 3.59 (dd, J = 8.9, 3.5 Hz, 1H), 3.57 (m, 1H), 3.49 (dd, J = 6.5, 3.8 Hz, 1H), 3.47 (dd, J = 11.3, 6.9 Hz, 1H), 3.26 (dd, J = 8.9, 8.0 Hz, 1H), 2.04 (m, 1H), 1.98—1.83 (m, 2H), 1.63 (ddd, J = 13.1, 3.8, 1.7 Hz, 1H), 1.60—1.50 (m, 3H), 1.43 (ddd, J = 13.7, 4.1, 1.0 Hz, 1H), 1.21 (br ddd, J = 13.1, 3.4, 3.4 Hz, 1H), 1.14 (d, J = 7.2 Hz, 3H), 1.03 (d, J = 6.8 Hz, 3H), 1.01—0.89 (m, 2H), 0.86 (d, J = 6.5 Hz, 3H), 0.84 (s, 9H), 0.03 (s, 3H), 0.00 (s, 3H) (one proton missing presumably due to H/D exchange); ¹³C NMR (150 MHz, CDCl₃) δ 138.9, 128.2 (2C), 127.5 (2C), 127.3, 97.7, 76.1, 73.2, 72.9, 72.7, 66.4, 65.4, 44.6, 40.9, 35.9, 33.1, 32.2, 25.9 (3C), 25.3, 24.6, 22.3, 21.0, 18.1, 15.9, -4.3, -4.6; HRMS (ESI) calcd for C₂₉H₅₀O₅SiNa [(M + Na)⁺] 529.3320, found 529.3336.

To a solution of alcohol S4 (21.4 mg, 42.3 µmol) in CH₂Cl₂/t-BuOH (10:1, v/v, 0.88 mL) cooled to 0 °C was added Dess—Martin periodinane (90 mg, 0.21 mmol), and the resultant solution was stirred at room temperature for 1 h. The reaction was quenched with a 1:1 mixture of saturated aqueous Na₂S₂O₃ solution and saturated aqueous NaHCO₃ solution at 0 °C, and the resultant solution was stirred at room temperature for 15 min. The resultant mixture was extracted with diethyl ether, and the organic layer was washed with brine, dried over MgSO₄, filtered, and concentrated under reduced pressure. Purification of the residue by flash chromatography on silica gel (7% EtOAc/hexanes) gave aldehyde **5** (21.2 mg, 99%) as a colorless oil: $[\alpha]_D^{26}$ –10.8 (*c* 0.50, CHCl₃); IR (film) 2952, 2927, 2855, 1739, 1456, 1076, 978, 836, 774 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 9.65 (s, 1H), 7.33—7.29 (m, 4H), 7.25 (m, 1H), 4.49 (d, *J* = 12.0 Hz, 1H), 4.43 (d, *J* = 12.0 Hz, 1H), 4.16 (dd, *J* = 11.7, 3.8 Hz, 1H), 3.69 (ddd, *J* = 11.7, 3.4, 2.0 Hz, 1H), 3.56 (dd, *J* = 8.9, 3.4 Hz, 1H), 3.48 (dd, *J* = 6.8, 3.4 Hz, 1H), 3.26 (dd, *J* = 8.9, 7.9 Hz, 1H), 2.06—1.93 (m, 3H), 1.72 (ddd, *J* = 13.4, 3.8,

1.7 Hz, 1H), 1.65 (ddd, J = 13.4, 11.7, 5.5 Hz, 1H), 1.64—1.59 (m, 2H), 1.55 (m, 1H), 1.44 (dd, J = 14.1, 4.1 Hz, 1H), 1.16 (d, J = 7.3 Hz, 3H), 1.05—0.92 (m, 2H), 1.01 (d, J = 6.9 Hz, 3H), 0.88 (d, J = 6.5 Hz, 3H), 0.83 (s, 9H), -0.02 (s, 3H), -0.03 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 202.8, 138.9, 128.2 (2C), 127.5 (2C), 127.3, 98.3, 75.9, 73.3, 73.1, 72.9, 70.9, 44.2, 40.6, 36.0, 32.9, 30.9, 25.9 (3C), 25.2, 24.4, 22.2, 20.5, 18.1, 15.7, -4.3, -4.6; HRMS (ESI) calcd for C₂₉H₄₈O₅SiNa [(M + Na)⁺] 527.3163, found 527.3173.

C9—C28 Subunit 4 and 21*-epi-***4.** To a mixture of NiCl₂/CrCl₂ (1%, w/w, 38.1 mg, weighted in a glove box) was added a mixture of aldehyde **5** (15.6 mg, 30.9 μ mol) and vinyl iodide **6** (20.5 mg, 69.3 μ mol) in degassed DMF (0.5 mL + 0.4 mL rinse twice). The resultant mixture was stirred at room temperature for 13 h. The reaction was quenched with D/L-serine (1.0 M solution in saturated aqueous NaHCO₃ solution) at 0 °C. The resultant solution was stirred at room temperature for 15 min. The resultant mixture was extracted with diethyl ether, and the organic layer was washed with brine, dried over MgSO₄, filtered, and concentrated under reduced pressure. Purification of the residue by flash chromatography on silica gel (3 to 10% EtOAc/hexanes) gave a 1.4:1 mixture of C9—C28 subunit **4** and **21***-epi***-4** (16.9 mg, 81%) as a colorless oil. Separation of the two diasteromeric alcohols by preparative TLC (13% EtOAc/hexanes,

developed thrice) gave C9—C28 subunit **4** (8.5 mg, 41%) and **21**-*epi*-**4** (5.0 mg, 24%). Data for **4**: $[\alpha]_D^{27}$ +25.1 (*c* 0.37, CHCl₃); IR (film) 3574, 2952, 2931, 1739, 1455, 1254, 1078, 1025, 837, 776 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.33—7.29 (m, 4H), 7.25 (m, 1H), 5.40 (ddq, *J* = 7.2, 7.2, 1.4 Hz, 1H), 4.48 (d, *J* = 12.0 Hz, 1H), 4.45 (d, *J* = 12.0 Hz, 1H), 3.75 (m, 1H), 3.73 (dd, *J* = 10.7, 3.1 Hz, 1H), 3.69 (m, 1H), 3.64 (s, 3H), 3.59 (dd, *J* = 8.9, 3.8 Hz, 1H), 3.51 (dd, *J* = 6.5, 3.8 Hz, 1H), 3.27 (dd, *J* = 8.9, 8.2 Hz, 1H), 2.70 (br s, 1H), 2.29 (dd, *J* = 14.8, 5.8 Hz, 1H), 2.11 (dd, *J* = 14.8, 7.9 Hz, 1H), 2.09—1.80 (m, 6H), 1.64 (m, 1H), 1.59 (d, *J* = 1.4 Hz, 3H), 1.61—1.50 (m, 3H), 1.42 (dd, *J* = 14.1, 3.8 Hz, 1H), 1.39—1.20 (m, 3H), 1.11 (m, 1H), 1.10 (d, *J* = 7.2 Hz, 3H), 1.04 (d, *J* = 6.9 Hz, 3H), 0.98 (m, 1H), 0.92 (d, *J* = 6.8 Hz, 3H), 0.87 (d, *J* = 6.8 Hz, 3H), 0.84 (s, 9H), 0.07 (s, 3H), 0.01 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 173.6, 138.9, 133.2, 130.1, 128.2 (2C), 127.5 (2C), 127.3, 97.8, 81.9, 76.1, 73.2, 72.9, 72.8, 66.9, 51.4, 44.7, 41.6, 40.9, 36.2, 35.8, 33.2, 32.7, 30.1, 25.9 (3C), 25.3, 25.0, 24.5, 22.3, 20.9, 19.5, 18.2, 16.0, 11.5, -4.1, -4.5; HRMS (ESI) calcd for C₃₉H₆₆O₇SiNa [(M + Na)⁺] 697.4470, found 697.4482.

Data for **21**-*epi*-**4**: $[\alpha]_D^{28}$ +15.3 (*c* 1.54, CHCl₃); IR (film) 3481, 2952, 2928, 2856, 1740, 1455, 1254, 1076, 982, 837, 775 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.33—7.30 (m, 4H), 7.25 (m, 1H), 5.46 (dd, *J* = 7.2, 7.2 Hz, 1H), 4.48 (d, *J* = 12.0 Hz, 1H), 4.44 (d, *J* = 12.0 Hz, 1H), 4.08 (br s, 1H), 3.86 (ddd, *J* = 11.0, 3.8, 3.8 Hz, 1H), 3.70 (ddd, *J* = 12.1, 4.1, 2.1 Hz, 1H), 3.64 (s, 3H), 3.58 (dd, *J* = 8.9, 3.8 Hz, 1H), 3.49 (dd, *J* = 6.2, 4.1 Hz, 1H), 3.27 (dd, *J* = 8.9, 7.8 Hz, 1H), 2.37 (br s, 1H), 2.30 (dd, *J* = 14.8, 5.9 Hz, 1H), 2.11 (dd, *J* = 14.8, 8.2 Hz, 1H), 2.08—1.80 (m, 6H), 1.68—1.49 (m, 4H), 1.55 (s, 3H), 1.43—1.33 (m, 2H), 1.30—1.20 (m, 2H), 1.07 (d, *J* = 7.2 Hz, 3H), 1.02 (d, *J* = 6.8 Hz, 3H), 0.99 (m, 1H), 0.95 (m, 1H), 0.92 (d, *J* = 6.5 Hz, 3H), 0.85 (d, *J* = 6.9 Hz, 3H), 0.84

(s, 9H), 0.04 (s, 3H), 0.00 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 173.6, 138.9, 132.5, 128.2 (2C), 127.5 (2C), 127.3, 125.7, 98.3, 77.2, 76.3, 73.1, 72.9, 72.7, 66.4, 51.3, 44.7, 41.6, 41.1, 36.4, 35.9, 33.4, 30.1, 29.3, 26.0 (3C), 25.1, 24.9, 24.6, 22.3, 20.9, 19.6, 18.2, 15.9, 13.6, -3.9, -4.5; HRMS (ESI) calcd for C₃₉H₆₆O₇SiNa [(M + Na)⁺] 697.4470, found 697.4476.

Conversion of 21-*epi*-4 to 4. To a solution of a 1.4:1 mixture of C9—C28 subunit 4 and 21-*epi*-4 (24.5 mg, 36.3 µmol) in CH₂Cl₂/*t*-BuOH (10:1, v/v, 0.99 mL) cooled to 0 °C was added Dess—Martin periodinane (76 mg, 0.18 mmol), and the resultant solution was stirred at room temperature for 1 h. The reaction was quenched with a 1:1 mixture of saturated aqueous Na₂S₂O₃ solution and saturated aqueous NaHCO₃ solution at 0 °C, and the resultant solution was stirred at room temperature for a room temperature for 15 min. The resultant mixture was extracted with diethyl ether, and the organic layer was washed with brine, dried over MgSO₄, filtered, and concentrated under reduced pressure. Purification of the residue by flash chromatography on silica gel (7% EtOAc/hexanes) gave enone **S5** (24.7 mg, 100%) as a colorless oil: $[\alpha]_D^{26}$ +15.7 (*c* 1.15, CHCl₃); IR

(film) 2952, 2926, 2857, 1739, 1683, 1455, 1255, 1074, 1025, 836 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.35—7.27 (m, 4H), 7.25 (m, 1H), 6.57 (ddq, J = 7.2, 7.2, 1.0 Hz, 1H), 4.97 (dd, J = 11.0, 3.8 Hz, 1H), 4.47 (d, J = 12.0 Hz, 1H), 4.43 (d, J = 12.0 Hz, 1H), 3.64 (s, 3H), 3.61 (ddd, J = 11.7, 3.8, 2.4 Hz, 1H), 3.56 (dd, J = 8.9, 3.4 Hz, 1H), 3.47 (dd, J = 6.5, 3.8 Hz, 1H), 3.27 (dd, J = 8.9, 7.9 Hz, 1H), 2.29 (dd, J = 14.8, 5.9 Hz, 1H), 2.21 (m, 1H), 2.14 (dd, J = 14.8, 8.3 Hz, 1H), 2.03 (ddd, J = 14.5, 6.9, 3.4 Hz, 1H), 2.00—1.91 (m, 4H), 1.81 (ddd, J = 13.1, 3.8, 1.4 Hz, 1H), 1.77 (s, 3H), 1.71 (ddd, J = 13.1, 11.0, 5.5 Hz, 1H), 1.64 (dd, J = 13.7, 5.9 Hz, 1H), 1.57—1.49 (m, 2H), 1.48—1.39 (m, 2H), 1.31 (dddd, J = 13.4, 10.0, 7.6, 5.9 Hz, 1H), 1.18 (d, J = 6.9 Hz, 3H), 1.00—0.88 (m, 2H), 0.96 (d, J = 6.8 Hz, 3H), 0.84 (d, J = 6.5 Hz, 3H), 0.82 (s, 9H), -0.03 (s, 3H), -0.06 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 199.9, 173.2, 142.2, 138.9, 135.4, 128.2 (2C), 127.5 (2C), 127.3, 98.4, 76.2, 73.1, 73.0, 72.9, 67.4, 51.4, 44.3, 41.3, 40.7, 36.0, 35.42, 33.36, 33.3, 30.2, 26.5, 25.9 (3C), 25.00, 24.95, 22.2, 20.7, 19.6, 18.1, 15.8, 11.7, -4.1, -4.6; HRMS (ESI) calcd for C₃₉H₆₄O₇SiNa [(M + Na)⁺] 695.4314, found 695.4331.

To a solution of enone **S5** (7.0 mg, 10 μ mol) in THF (0.5 mL) cooled to -78 °C was added dropwise L-selectride (1.0 M solution in THF, 0.04 mL, 0.04 mmol), and the resultant solution was stirred at -78 °C for 1 h. The reaction was quenched with saturated aqueous NaHCO₃ solution, and the resultant mixture was allowed to warm to 0 °C and treated with 30% aqueous H₂O₂ solution (0.2 mL). After being stirred at room temperature for 1 h, the resultant mixture was extracted with EtOAc. The organic layer was washed successively with H₂O, saturated aqueous Na₂S₂O₃ solution, and brine. The organic layer was dried over Na₂SO₄, filtered, and concentrated under reduced pressure. Purification of the residue by flash chromatography on silica gel (5 to 10%)

EtOAc/hexanes) gave C9—C28 subunit 4 (5.8 mg, 82%, dr > 20:1 by 600 MHz 1 H NMR analysis) as a colorless oil.

Figure S1. Stereochemical confirmation of compound 15 by conformational analysis on compound A.

Figure S2. Assignment of the absolute configuration of the C21 stereogenic center of compound **4** by modified Mosher method.

<pre>Filename = C:\Users\delta\Documents\J Author = delta = delta Experiment = carbon.jxp Sample_Id = SN-II-112 Solvent = cNLOROFORM-D Solvent = 11-SEP-2010 15:34:55 Revision_Time = 11-SEP-2010 15:37:31 Current_Time = 11-SEP-2010 15:33:08</pre>	Comment = single pulse decoupled gat Data_Format = 1D CONFLEX Dim_Size = 26214 Dim_Title = 26214 Dim_Units = [apm] Dim_Units = [apm] Sinensions = Z Site = ECA600 Spectrometer = DELTAA_NMR	<pre>Field_Strength = 14.09636928[T] (600[WHz]) X_Acq_Duration = 0.69206016[s] X_Freq = 150.91343039[MHz] X_Fresten = 150.91343039[MHz] X_Points = 100[ppm] X_Points = 32768 X_Prestens = 4.44464109[Hz] X_Sweep_clipped = 37.878789[KHz] Irr_Offset = 47.3484485[KHz] Irr_Offset = 77.33046[MHz] Irr_Offset = 70.1723046[MHz] Irr_Offset = 51ppm] Mod_Return = 1 Mod_Return = 1 Mod_Return = 20[us] Scans = 256 Total_Scans = 256</pre>	<pre>X_90_Width = 8.4[us] X_acq_rime = 0.69206016[s] X_angle = 0.69206016[s] X_angle = 30(deg] X_Pulse = 30(deg] X_Pulse = 18[dB] Irr_Ath_Dec = 18[dB] Irr_Ath_Noe = 18[dB] Irr_Ath_Noe = 18[dB] Irr_Pwidth = 76[us] Decoupling = TsUE Noe_rime = 2[s]</pre>	Recvr_Gain = 56 Relaxation_Delay = 2[8] Repetition_Time = 2.69206016[8] Temp_Get = 23.3[dC] Mo Dh		S1 (150 MHz, CDCI ₃)
					70.0 60.0 50.0 40.0 30.0 20.0 10.0 0	6742.91 6742.91 2703.55 8641.75
					150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0	77.2106 77.2106 77.2106 123.8493 123.8453 123.8493 123.84
			331		190.0 180.0 170.0 160.0	X : parts per Million : Carbon13 : p

.

<pre>= C:\Users\delta\Documents\J = delta = carbbn.jxp = SN-IT-115 = SN-IT-115 = CHLOROFORM-D = CHLOROFORM-D = 16-SEP-2010 14:11:51 = 16-SEP-2010 14:11:51 = 16-SEP-2010 14:12:52</pre>	<pre>= single pulse decoupled gat = 1D COMPLEX = 26214 = 26214 = Carbon13 = [ppm] = [ppm] = X = ZA600 = DELTA2_NMR</pre>	<pre>th = 14.09636928[r] (600[MHz]) on = 0.69206016[s] = 13C = 150.91343039[MHz] = 100[ppm] = 32768 = 4.4466109[Hz] = 4.7.34846485[KHz] ped = 37.878788[KHz] ped = 37.878788[KHz] = 4.7.34846485[KHz] = 4.7.34846485[KHz] = 4.7.34846485[KHz] = 1. ry = 20[us] = 219</pre>	<pre>= 8.4 [us] = 0.69206016[s] = 0.69206016[s] = 6.4 [dB] = 18 [dB] = 2.69206016[s] ime = 2.3.1[dC]</pre>	Me Q, O Ph S N N N-N S0 MHz, CDCl ₃)
Filename Author Experiment Sauwple_Id Solvent Creation_Tim Revision_Time Current_Time	Comment Data_Format Dim_size Dim_Title Dim_Units Dim_Units Site Site	Field Streng X_Acq_Duration X_Pomain X_Freq X_Fred X_Fred X_Fred X_Resolution X_Sweep_Clip X_Sweep_Clip Irr_Domain Irr_Offset Clipped Irr_Offset Clipped Prob_Recovel Scans Total_Scans	x_90_width X_Arg1e X_Arg1e X_Arg1e X_Pulse Irr_Atr_Noe Irr_Noise Irr_Noise Irr_Noise Irr_Noise Irr_Noise Irr_Noise Irr_Noise Irr_Noise Irr_Noise Irr_Noise Irr_Noise Irr_Noise Irr_Noise Irr_Noise Irr_Noise Irr_Puidth Noe Time Recoupling Relaxation_T Repetition_T	Bn0 12 (15
				190.0 180.0 17.1194 17.1194 190.0 180.0 17.1194 10.0 10.0 190.0 130.0 130.0 100.0 10.0 10.0 10.0 190.0 180.0 17.1194 10.0 10.0 10.0 10.0 10.0 10.0 190.0 130.0 130.0 130.0 100.0 80.0 70.0 10.0

<pre>filename = C:\Users\delta\Documents\J Author = delta Experiment = delta Experiment = carbon.jxp Sample_Id = SN-II-167-1 Sample_Id = SN-II-167-1 Sample_Id = CHLORFORM-D Creation_Time = 15-SEP-2010 13:24:56 Current_Time = 15-SEP-2010 13:35:11 Comment = 15-SEP-2010 13 Comment = 15-SEP-2010 13 Comment = 15-S</pre>	<pre>field_Strength = 14.09636928[T] (600[MHz]) X_Acq_Duration = 0.69206016[s] X_Domain = 13C X_Doffset = 15C X_Doffset = 150.91343039[MHz] X_Doffset = 150.91343039[MHz] X_Doffset = 100[ppm] X_Points = 32768 X_Prescans = 4.446109[Hz] X_Sweep_clipped = 1.4446109[Hz] X_SWEEp_clipped = 1.</pre>	<pre>x_90_width = 8.4[us] x_Acc_Time = 0.69206016[s] x_Acc_Time = 0.69206016[s] x_Artn = 0.4[db] x_hus = 0.4[db] x_pulse = 0.4[db] recurling = 0.4</pre>	Bno Me Me OMPM 14 (150 MHz, CDCl ₃)
			160.0 150.0 140.0 130.0 150.0 140.0 100.0
			190.0 180.0 170.0 X : parts per Million : Carl

•

<pre>rilename = C:\Users\delta\Documents\J Author = delta Author = delta Experiment = carbon.jxp Sample Id = SN-II-168-2-1 Solvent = HLCN0PORN-D Creation_Time = 15-SEP-2010 15:41:04 Revision_Time = 15-SEP-2010 15:45:50 Current_Time = 15-SEP-2010 15:46:08</pre>	Comment = single pulse decoupled gat Data_Format = 1D CONFLEX Dim_Size = 26214 Dim_Title = 2arbon13 Dim_Units = [ppm] Dim_Units = X Site = ZCA600 Spectrometer = DELTA2_NWR	<pre>Field_Strength = 14.09636928[T] (600[MHz]) X_Acq_Duration = 0.69206016[s] X_Domain = 13C X_Freq = 1.3C X_Freq = 150.91343039[MHz] X_Pfield = 150.91343039[MHz] X_Pointe = 100[ppm] X_Pointe = 32768 X_Prescans = 4.14496109[Hz] X_Sweep_Clipped = 1.44496109[Hz] X_Sweep_Clipped = 37.878788[KHz] Irr_Domain = 27.639 X_Sweep_Clipped = 37.878788[KHz] Irr_Domain = 20.1723046[MHz] Irr_Orfleet = 5[ppm] Clipped = FALSE Mod_Return = 1 Mod_Return = 1 Probe_Recovery = 80 Total_Scans = 80</pre>	<pre>x_90_width = 8.4[us] X_Acq_Time = 0.69206016[s] X_Angle = 0.69206016[s] X_Ant x_Ath = 6.4[db] Trr_Ath_Dec = 18[db] Trr_Ath_Noe = 18[db] Trr_Noise = 18[db] Trr_Noise = 18[db] Trr_Noise = 18[db] Trr_Noise = 18[db] Moe = 76[us] Moe = 77(Us] Moe = 1[s] Noe = 1[s] Noe = 2[s] Recuping = 2[s] Recur_dain = 2[s] Reptation_Time = 2.69206016[s] Temp_Get = 23.1[dc]</pre>	Bno in Me OH Me OH 15 (150 MHz, CDCl ₃)
				X: parts per Million : Carbon 13: parts per Million : Carbon 14: parts per Million : Carbon 15: parts per Million : Carbon 1

÷

Filename = C:\Users\delta\Documents\. Author = delta Experiment = carbon.jxp Exporiment = SN-III-45 Sample_Id = SN-III-45 Solvent = GHLOROFORM-D Creation_Time = 14-SEP-2010 15:37:59 Revision_Time = 14-SEP-2010 15:49:40 Current_Time = 14-SEP-2010 15:50:15	Comment = single pulse decoupled gat Data_Format = 1D COMPLEX Dim_Size = 26214 Dim_Title = Carbon13 Dim_Units = [ppm] Dim_Units = K Site = ZC600 Site = DELTA2_NMR	<pre>Field_Strength = 14.09636928[T] (600[MHz]) X_Acq_Duration = 0.69206016[s] X_Pomain = 13C X_Offset = 13C X_Offset = 100[ppm] X_Prescans = 100[ppm] X_Prescans = 100[ppm] X_Prescans = 4 4495109[Hz] X_Sweep_Clipped = 1.4445109[Hz] X_Sweep_Clipped = 7.87878788[KHz] Irr_Domain = 47.3484485[KHz] X_Sweep_Clipped = 37.87878788[KHz] Irr_Offset = 5[ppm] Irr_Offset = 5[ppm] Irr_Offset = 5[ppm] Irr_Offset = 5[ppm] Irr_Offset = 20[us] Scans = 238 Total_Scans = 238</pre>	<pre>X_90_Width = 8.4[us] X_Acq_Time = 0.69206016[s] X_Angle = 0.69206016[s] X_Angle = 30(deg] X_Ann = 6.4[dB] Irr_Atn_Dec = 18[dB] Irr_Atn_Dec = 18[dB] Irr_Atn_Noe = 18[dB] Irr_Moise = MALTZ Irr_Pwidth = 76[us] Deccupling = 76[us] Noe = TRUE Initial_Wait = 1[s] Noe = TRUE Noe-Time = 2[s] Relaxation_Delay = 2[s] Repetition_Time = 2.69016[s] Temp_Get = 23[dC]</pre>	SdIT,	Bno Othe O Me OTiPS S2 (150 MHz, CDCl ₃)
					190.0 180.0 170.0 160.0 135.8381 35.8381 77.9766 77.3779 77.37461 77.37461 77.37461 77.3746 77.3779 77.37461 77.37461 77.3746 77.3779 77.37461 77.3746 77.3779 75.3546 77.3779 75.3546 76.0 10.0 0 70.0 10.0 0 72.3546 72.3555 72.3546 72.35556 72.5555757575757575757575757575757575757

C:\Users\delta\Documents\J delta proton.jxp pw-rr1-46 CHLOROFORM-D 26-MMY-2010 17:55:49 26-MMY-2010 17:55:49 27-MMY-2010 17:55:49 26-MMY-2010 17:55:49 27-MMY-2010 17:55 26-MMY-2010 17:55 27-MMY-2010 17:55 27-MMY-2010 17:55 27-MMY-2010	<pre>14.09636928[T] (600[MHz]) 1H 2.9007984[a] 1H 2.9001723046[MHz] 5[Epm] 32768 1 32768 1 33766642[Hz] 11.26126136[KHz] 0.34366642[Hz] 11.26126136[KHz] 60.1723046[MHz] 7 5[Epm] 7 5[Epm] 7 5[Epm] 7 5[Um] 8 8</pre>	<pre>12.4[us] 2.9097984[s] 45[deg] 45[deg] 3[dB] 3[dB] 6.2[us] 0ff 0ff 1[s] 1[s] 1[s] 1[s] 1[s] 1[s] 1[s] 1[s]</pre>	16 (600 MHz, CDCl ₃)
Filename Author Experiment Sample Sample Sevent Time Creentor Comment Data Data Dia Dia Dia Dia Dia Dia Dia Dia Dia Di	Field_Strength X_Acq_Duration X_Preq X_Offset X_Offset X_Prescans X_Prescans X_Sweep_ X_Sweep_ X_Sweep_ Irr_Domain Tri_Freq Tri_Domain Tri_Freq Tri_Offset Clipped Wod_Return Prodal_Scover Scans Total_Scans	X_90_Width X_Acq_Time X_Angle X_Angle X_Ath X_Ath X_Puise IrriMode TriMode TriMode TriMode Tritial_Mait Recvr_Gain Relaxation_Fa Relaxation_Fa Repetition_Tim	
08.84		00'E 1955 51'5 EI'I II'I 60'T FUI 97'7	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
		<u>17.65.1</u>	9.0 8.0 7.2460 9.0 8.0 7.0 6.0 6.0 7.2463 7.2463 7.2958 7.2958 X : parts per Million

<pre>ilename = C:\Users\delta\Documents\J uthor = delta xperiment = carbon.jxp auple_Id = SN-III-46 olvent = CHLOROFORM-D olvent = 14-SFP-2010 16:36:31 evision_Time = 14-SFP-2010 16:45:04 urrent_Time = 14-SFP-2010 16:45:04</pre>	omment = single pulse decoupled gat atFormat = 1D COMPLEX im_Size = 26214 im_Title = 26214 im_Units = [ppm] im_Units = [ppm] im_Onits = x ite = ECA600 ite = DELTA2_NTR	<pre>ield_Strength = 14.09636928[T] (600[MHz]) _Acq_Duration = 0.69206016[s] _Domain = 150.91343039[MHz] _freq = 150.91343039[MHz] _freq = 100[ppm] _points = 3768 _range= 1.4486405[Hz] _range= 1.4486405[Hz] _range= 1.4486405[Hz] _range= 1.4486405[Hz] _range= 1.4486405[Hz] _range= 1.4486405[Hz] rr_Offset = 5[ppm] rr_Offset = 5[ppm] rr_Offset = 5[ppm] lipped = FALSE od_Recovery = 20[us] coms = 85 otal_Scans = 85 otal_Scans = 85</pre>	<pre>90_Width = 8.4[us] Acq_Time = 0.69206016[s] Augle = 30[deg] Augle = 30[deg] Augle = 30[deg] Augle = 10[db] Fr_Atn_Dec = 18[db] Fr_Atn_Dec = 18[db] Fr_Nte = 18[db] Fr_Nte = 18[db] Fr_Nte = 16] eccupiing = 1[s] offus = 1[s] offus = 2[s] ecr_ane = 2[s] ecr_an</pre>	Bno TIPS Bno TIPS OTIPS 16 (150 MHz, CDCl ₃)
				X: parts per Million : Carbon13 : parts per Million : Carbon13

<pre>Filename = C:\Users\delta\Documents\J Author = delta Experiment = proton.jxp Sample_Id = SN-III-63 Solvent = CSILOROFORM-D Creation_Time = 12-JUN-2010 22:08:15 Revision_Time = 12-JUN-2010 22:15:15 Current_Time = 12-JUN-2010 22:15:15</pre>	Comment = single_pulse Data_Format = 1D COMFLEX Dim_Size = 26214 Dim_Title = Proton Dim_Units = [ppm] Dimensions = X Site = ECA600 Spectrometer = DELTA2_NMR	<pre>Field_Strength = 14.09636928[T] (600[MHz]) X_Acq_Duration = 14 X_Domain = 14 X_Domain = 14 X_Orfset = 2.9097984[s] X_Orfset = 2.9097984[s] X_Pred = 5[ppm] X_Prise = 32768 X_Prise = 35768 X_Prise = 35768 X_Prise = 35768 X_Prise = 35768 X_Prise = 37768 X_Prise = 3776</pre>	<pre>X_90_Width = 12.4[us] X_Acg_Time = 2.9097984[s] X_Angle = 45[deg] X_Angle = 45[deg] X_Pulse = 3[dB] X_Pulse = 5.2[us] Irr_Mode = 6.2[us] Irr_Mode = 6.2[us] Irr_Mode = 0ff Trilial_Wait = 1[s] Recvr_Gain = 28 Relation_Delay = 1[s] Repetition_Time = 3.9097984[s] Temp_Get = 22.4[dC]</pre>	Bno in Me o Me oTIPS 9 (600 MHz, CDCl ₃)
9	0.11		5.07 5.07 5.07 5.02 5.02 5.02 5.07	0.0000 0.00000 0.00000 0.000000 0.00000000
			16'5	9.0 8.0 7.0 6.0 6.0 7.2 8.0 7.2 6.0 7.0 7.2 8.0 7.2 7.2 8.0 7.2 7.2 8.0 7.2 8.0 7.2 8.0 7.2 8.0 7.2 8.0 7.2 8.0 7.2 8.0 7.2 8.0 7.2 8.0 7.2 8.0 7.2 8.0 7.2 8.0 7.2 8.0 7.2 8.0 7.2 8.0 7.2 8.0 7.2 7.2 8.0 7.2 7.2 8.0 7.2 7.2 7.2 8.0 7.2 7.2 7.2 8.0 7.2 7.2 7.2 8.0 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2

٠

<pre>rilename = C:\Users\delta\Documents\J ruthor = delta Superiment = delta Superiment = carbon.jxp sample_Id = SN-III-63 2 Solvent = SN-III-63 2 Solvent = 12-JUN-2010 22:14:07 reation_Time = 12-JUN-2010 22:13:6 'urrent_Time = 12-JUN-2010 22:21:24 'urrent_Time = single pulse decoupled gat ata_Format = ID CONFLEX</pre>	<pre>jim_Size = 26214 jim_Tite = 26214 jim_Title = Carbon13 jim_Units = [ppm] jimensions = X ite = X Strength = 14.09636928[T] (600[MHz]) field_Strength = 14.09636928[T] (600[MHz]) [Acc_Duration = 0.69206016[s] [Domain = 130 [Freq = 150.91343039[MHz]] [offiet = 100[ppm]</pre>	<pre></pre>	<pre>C_90_Width = 8.4[us] (_Acc_Time = 0.6926016[s] (_Angle = 0.6926016[s] (_Angle = 0.6926016[s] (_Angle = 0.6926016[s] (_Tr_An_Dec = 18[db] [rr_An_Dec = 18[db] [rr_An_Noe = 18[db] [rr_Noise = 18[db] [rr_Pidth = 76[us] noise = 78UE nitial_Wait = 1[s] nitial_Wait = 1[s] nitial_Wait = 1[s] nitial_Wait = 2[s] eccvr_Gain = 2[s] elecvr_Gain = 2.6 elecvr_Time = 2.6926016[s]</pre>	Bno is (150 MHz, CDCl ₃)
				X: parts per Million : Carbon13 : parts per Million : Carbon30

<pre>Filename = C:\Users\delta\Documents\J Author = delta Experiment = delta Experiment = carbon.jxp Supule_1d = SH-ITI-198 Solvent = SH-ORV-D8 Creation_Time = 15-SEP-2010 18:46:29 Revision_Time = 15-SEP-2010 18:53:40 Current_Time = 15-SEP-2010 18:54:07</pre>	Comment = single pulse decoupled gat Data_Format = 1D COMFLEX Dim_Title = 26214 Dim_Title = Carbon13 Dim_Units = [ppm] Dimensions = X Site = DELTA2_NMR	<pre>Field_Strength = 14.09636928[T] (600[MHz]) X_Acq_Duration = 0.69206016[s] X_Domain = 13C X_Freq = 1.3C X_Freq = 150.91343039[WHz] X_Points = 32768 X_Points = 32768 X_Points = 32768 X_Points = 32768 X_Sweep_Clipped = 1.44496109[Hz] X_Sweep_Clipped = 37.878788[KHz] Irr_Domain = 47.3484845[KHz] Irr_Domain = 47.3484845[KHz] Irr_Domain = 5[ppm] Irr_Doffeet = 5[ppm] Clipped = FALSE Mod_Return = 1 Kod_Return =</pre>	<pre>x 90_Width = 8.4[us] X_Acq_Time = 0.69206016[s] X_Angle = 0.69206016[s] X_Angle = 30[deg] X_Ant = 5.4[dB] X_Ant = 2.8[us] Irr_Atn_Dec = 18[dB] Irr_Atn_Noe = 18[dB] Irr_Atn_Noe = 18[dB] Irr_Atn_Noe = 18[dB] Irr_Evidth = 76[us] Noe = 1[s] Noe = 1[s] Noe = 2[s] Revr_Gain = 2[s] Revr_Gain = 2[s] Revr_Gain = 2[s] Revr_Gain = 2[s] Repetition_Time = 2.8[dC] Temp_Get = 23[dC]</pre>	18 (150 MHz, CDCl ₃)
	• •			$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $
				X: parts per Million : Carbon13 : parts per Million

S48

ename = C:\USers\delta\Documents\J hor = delta = Gelta pje_Id = NrII-97-3 vent = NrII-97-3 vent = CHLORFORM-D ation_Time = 7-0CT-2010 10:41:30 ation_Time = 7-0CT-2010 10:49:09 ision_Time = 7-0CT-2010 10:49:09 rent_Time = 7-0CT-2010 10:49:09 ment = single_Dulse = 26214 _Title = Proton _Title = Proton _Title = roton	<pre>e = ECA600 ctrometer = DELTA2_NWR ctrometer = DELTA2_NWR id_Strength = 14.09636928[T] (600[WHz]) cq_Duration = 2.9097984[s] cq_Duration = 2.9097984[s] cq_Duration = 2.9097984[s] ffset = 5[Dpm] ffset = 5[Dpm] ffset = 11.26126[KHz] weep ints = 1.26126[KHz] weep ints = 2.0090901[KHz] weep ints = 2.0090901[KHz] momin = 2.0090901[KHz] momin = 2.0000001[KHz] coffset = 5[Dpm] coffse</pre>	<pre>be_Recovery = 5[us] ns = 8 ns = 8 al_Scans = 8 0 width = 12.4[us] cq_rime = 12.909984[s] ngle = 2.909984[s] ngle = 45[deg] tn = 3[dB] tn = 3[dB] cd = 0ff mode = 0ff land = 0ff te_Presat = 1[s] vr_gain = 48 axation_belay = 1[s] vr_gain = 3.9097984[s] p_det = 22.2[dC] </pre>	HO	I —∕√ Me 24 (600 MHz, CDCI₃)
	2.14 2.14	<u>00.1</u>		0.0457 0.0457 0.08806 0.08806 0.807 0.8

2.1		Filename Author Experiment Sample_Id	= C:\Users\delta\Documents\J = delta = carbon.jxp = SN-III-97 - PENTENE_F
I.I		Creation Revision_1 Current_ri	ше = 23-JUL-2010 12:11:46 ime = 23-JUL-2010 12:11:45 ime = 23-JUL-2010 12:14:23 ae = 23-JUL-2010 12:14:35
0°I 6°0		Comment Data_Forme Data_Forme Dim_Title Dim_Title Dimensione Spectromet	<pre>= single pulse decoupled gat = 1D COMPLEX = 26214 = 26214 = 262013 = [ppm] = x = DELTA2 NMR </pre>
8.0		Field_Stre X_Acq_Durs X_Domain X_Freq X_Offset	<pre>sgth = 14.09636928[T] (600[MHz]) .ion = 0.69206016[s] = 13C = 15C = 150.91343039[MHz] = 100[Toum]</pre>
<i>L</i> [.] 0		x_Points X_Prescans X_Resoluti X_Sweep X_Sweep_C1	= 32768 = 4 20 = 4 = 47.34496109[Hz] = 47.34848615[HHz] [pped = 37.878788[KHz]
9.0		Irr_Domair Irr_Freq Irr_Offset Clipped Mod_Return	= Protom = 600.1723046[WHz] = 5[ppm] = FALSE = 1
<i>s</i> .0		Probe_Recc Scans Total_Scar	/ery = 20[us] = 46 = 46
•••••		X_90_Widt X_Acq_Time X_Angle X_Ath X_Ath	= 8.4 [us] = 0.69266016[s] = 30[deg] = 5.4 [dB] = 2.8 [ns]
£.0		ITT ATD De ITT ATD NO ITT NOI86	= 18(dB) = 18(dB) = WALTZ = 76[us]
 0.2		Initial_Wa Noe_Time Recvr_Gain Ralaxation	.t = 1.105 = TRUE = 2.[s] Delav = 2.15 Delav = 2.15
I.0 Son		Repetition Temp_Get	Time = 2.69206016[s] = 22.9[dC]
0 repunqe		a substantia de la constantia de la constan La constantia de la constanti La constantia de la consta	P
	0.0210.0200.0190.0180.0170.0160.0150.0140.0130.0120.0110.0100.090.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10	0 -10.0 -20.0	Me
	<pre>8886 1206 9657 9657 9282 0000 8291 0225 0000 8291 0225 0255 0</pre>		.(150 MHz, C ₆ D ₆)
×	422222719 93 33222719 93 33222719 94 50 50 50 50 50 50 50 50 50 50 50 50 50		

<pre>= C:\Users\delta\Documents\J = delta = delta = carbon.jxp = SN-TII-93 = BNZZNE-D6 = 13-SEP-2010 13:37:46 = 13-SEP-2010 13:37:59 = 13-SEP-2010 13:37 = 13-SEP-2010 13:37</pre>	<pre>ch = 14.09636928[r] (600[MHz]) cn = 0.69206016[s] = 13C = 13C = 13C = 13C = 13C = 13C = 100[ppm] = 37438039[MHz] = 37488485[KHz] e 4 = 1.44496109[Hz] e 47.34048485[KHz] ped = 37.878788[kHz] ped = 37.878788[kHz] e 47.34048485[KHz] e 47.34048485[KHz] e 57.878788[kHz] e 600.1723046[MHz] e 77.820[mHz] e 77.820[mHz] e 178 e 178 e 178 e 178</pre>	= 8.4[us] = 0.69206016[s] = 30[deg] = 4(dB] = 2.4[dB] = 18[dB] = 18[dB] = 18[dB] = 18[dB] = 16] = 1[s] = 76[us] = 76[us] = 1[s] = 1[s] = 2[s] = 2[s] = 2[s] = 2[s] = 2[dC]	MeO ₂ C Me Me 6 (150 MHz, C ₆ D ₆)
Filename Author Experiment Sample_Id Sample_Id Solvent Coornent Current_Time Comment Data_Format Dim_Units Dim_Units Dim_Units Site Spectrometer Spectrometer	Field_Strengt X_Acq_Duration X_Freq X_Freq X_Frescans X_Points X_Sweep_Clipt ITY_Freq TIX_Freq TIX_Freq Clipped Clipped Rode_Return Probe_Recovel Scans Total_Scans	X_90_Width X_Acd_Time X_Angle X_Angle X_Aulse X_Fulse ITT_Atn_Dec ITT_Atn_Noe ITT_Noise ITT_Noise ITT_Noise ITT_Noise ITT_Noise ITT_Noise ITT_Noise ITT_Noise ITT_Noise ITT_Noise ITT_Noise ITT_Noise ITT_Noise ITT_Noise ITT_Noise ITT_ITT_ITT_ITT_ITT_ITT_ITT_ITT_ITT_ITT	,
			$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $
			Iz 28,0000 128,1628 128,1628 128,1628 128,1628 128,0000 120,1228 128,0000 120,1228 128,0000 120,0
		-	200.0 190.0 180.0 170.0 160.0

<pre>Filename = C:\Users\delta\Documents\J Author = delta Author = delta Experiment = proton.jxp Sample_Id = SN-III-149 Sample_Id = BENZENE-D6 Color_Time = 21-SEP-2010 14:45:46 Current_Time = 21-SEP-2010 14:45:56 Current_Time = 21-SEP-2010 14:45:56</pre>	Comment = single_pulse Data_Format = 1D COMFLEX Dim_Size = 26214 Dim_Title = Proton Dim_Title = Proton Dim_Units = [ppm] Dimensions = X Site = ECA600 Spectrometer = DELTA2_NUR	<pre>Field_Strength = 14.09636928[T] (600[WHz]) X_Acq_Duration = 2.9097984[s] X_Domain = 1H X_Domain = 1H X_Freq = 600.1723046[WHz] X_offset = 5[ppm] X_offset = 32768 X_Presens = 1</pre>	X_Resolution = 0.3436642[Hz] X_Sweep = 11.26126126[HHz] X_sweep_clipped = 9.0090901[HHz] Irr_Domain = Proton Irr_Pred = 600.1723046[NHz] Irr_Offset = 5[ppm]	Tri_Domain = Froton Tri_Freq = 600.1723046[MHz] Tri_Offset = 5[ppm] Clipped = FALSE Mod_Return = 1 Frobe_Recovery = 5[us] Scams = 8 Total_Scams = 8	X_90_Width = 12.4[us] X_Acq_Time = 2.9097984[s] X_Angle = 45[deg] X_Ath = 3[dB] X_Pulse = 6.2[us] Irr_Mode = 0ff Tri_Mode = 0ff	Dantereat = rALSE Initial_Wait = 1[s] Recvr_Gain = 40 Relaxation_Delay = 1[s] Repetition_Time = 3.99994[s] Remp_Get = 22.3[dC]	Me TIPS		0TIPS 25 (600 MHz, C ₆ D ₆)	
<u>t</u>	0.84					50 50 50 50 50 50 50 50 50 50	I A THE CHANNEL THE BEEN IN THE CASE OF TH	5.0 4.0 3.0 2.0 1.0 0	6856.0 6151.1 8294.1 0274.1 2457.2 1124.2 1124.2 1124.2 1124.2 1124.2 2025.2	
						00 86 91	2.0	9.0 8.0 7.0 6.0	0745.7 8555.7 0118.6 2518.6 2518.7 25	<pre>< : parts per Million : Proton : parts per Million</pre>

<pre>Filename = C:\Users\delta\Documents\J Author = delta Author = delta Experiment = carbon.jxp Sample_Id = SN_TIT-149 Solvent = SN_TIT-149 Solvent = 21-SEP-2010 14:59:08 Creation_Time = 21-SEP-2010 14:59:08 Current_Time = 21-SEP-2010 14:59:08 Current_Time = 21-SEP-2010 14:59:08 Current_Time = 21-SEP-2010 14:59:08 Dim_Title = 1D REAL Dim_Title = 26214 Dim_Title = Carbon13 Dim_Units = Kpm] Dim_Units = Kpm]</pre>	<pre>Site = ECA600 Spectrometer = DELTA2_NMR Field_Strength = 14.0963928[T] (600[MHz]) X_Acq_Duration = 0.69206016[s] X_Domain = 130 X_Domain = 130 X_Diffset = 150.91343039[MHz] X_Diffset = 100[Dpm] X_Offset = 100[Dpm] X_Offset = 100[Dpm] X_Prescans = 4 X_Resolution = 47.3484485[KHz] X_Sweep = 51Dpm] Trr_Domain = Proton ITr_Pomain = 1 Trr_Domain = 1 Proba_Recovery = 20[us] Scans = 372 Scans = 372 Scans = 372</pre>	<pre>X_90_Width = 8.4[us] X_Acc_Time = 0.65206016[s] X_Angle = 0.65206016[s] X_Angle = 0.65206016[s] X_Ath = 0.6510[s] X_Pulse = 0.64(db] X_Pulse = 2.64(db] ITT_Ath_Dec = 18[dB] ITT_Ath_Nee = 2.65206016[s] Temp_Get = 2.65206016[s] </pre>	Bno in the mean of the office office of the office
			Министрикции и примикати продукти и примикати и примик
		المانية المانية المانية المانية المانية والمانية المانية	Reprint provide the pro

<pre>rilename = C:\Users\delta\Documents\J Author = delta = delta Experiment = carbon.jxp Sample_Id = SN-III-73-1 Solvent = SN-III-73-1 Solvent = 19-UUN-2010 20:11:34 Evision_Time = 19-UUN-2010 20:21:45 Current_Time = 19-UUN-2010 20:21:45</pre>	Comment = single pulse decoupled gat Data_permat = 1D COMPLEX Dim_Size = 26214 Dim_Title = 26214 Dim_Title = Carbon13 Dim_Units = [ppm] Simensions = X Spectrometer = DELTA2_NWR	<pre>Field_Strength = 14.0963628[T] (600[MHz]) X_Acq_Duration = 0.69206016[s] X_Freq = 150.91343039[MHz] X_Freq = 150.91343039[MHz] X_Frescans = 100[ppm] X_Frescans = 44.4496109[Hz] X_Frescans = 44.4496109[Hz] X_Sweep_clipped = 37.87878788[KHz] Irr_Domain = 1.44496109[Hz] Y_Sweep_clipped = 37.87878788[KHz] Irr_Domain = 1.44496109[Hz] Y_Sweep_clipped = 20[us] Scans = 128 Total_Scans = 128</pre>	<pre>X_90_Width = 8.4[us] X_Acq_Time = 0.69206016[s] X_Attn = 0.69206016[s] X_Lulse = 30[deg] X_Lulse = 30[deg] X_Lulse = 2.8[us] ITT_Atn_Noe = 18[dB] ITT_Atn_Noe = 18[dB] ITT_Noise = 4.8.7 ITT_Noise = 18[dB] ITT_Noise = 76[us] Decoupling = TRUE ITT_Pwidth = 1[s] Noe = 1[s] Noe = 1[s] Noe = 2[s] Recvr_Oain = 2[s] Repetition_Time = 2[s] Repetition_Time = 2[d] Temp_Get = 23[dC]</pre>	Bno in the off me off m
				100.0 90.0 80.0 10.0 90.0 100.0 90.0 80.0 70.0 60.0 10.0 100.0 90.0 80.0 70.0 60.0 20.0 10.0 100.0 90.0 80.0 70.0 60.0 20.0 10.0 101.3579 14.3579 14.3579 14.3579 14.3579 773.1643 13.3643 10.0 20.0 10.0 71.35579 14.3579 14.3579 14.3579 73.1641 71.3557 14.3579 14.3579 73.1643 17.355643 10.0 10.0 73.1643 14.3579 12.56603 10.0 73.1643 14.35579 10.0 10.0 73.56603 14.35579 12.56603 10.0 73.56603 14.35579 10.0 10.0 73.56603 14.35579 14.35579 10.0 73.56603 14.356603 14.356603 14.356603 73.56603 14.356603 10.0 10.0 74.55579 14.356603 10.0 10.0<
				parts per Million : Carbon13 : parts per Million

S58

<pre>Filename = C:\Users\delta\Documents\J Author = delta Author = delta Exporiment = carbon.jxp Sample_Id = SN-III-74 Solvent = 17-SEP-2010 1159:45 Creation_Time = 17-SEP-2010 12:03:22 Current_Time = 17-SEP-2010 12:03:46</pre>	Comment = single pulse decoupled gat Data_Format = 1D COMPLEX Dim_Size = 26214 Dim_Title = 26214 Dim_Units = [ppm] Dim_Units = [ppm] Dim_Bions = X Site = ECA600 Spectrometer = DELTA2_NWR	<pre>Field_Strength = 14.0963628[T] (600[MHz]) X_Acq_Duration = 0.69206016[s] X_Domain = 13C X_Freq = 150.91343039[MHz] X_Freq = 150.91343039[MHz] X_Points = 32768 X_Prescans = 44496109[Hz] X_Prescans = 4 X_Sweep_clipped = 1.44496109[Hz] X_Sweep_clipped = 5[Dpm] Clipped = 5[Dpm] Clipped = 1. Mod_Return = 1 Mod_Return = 1 Scans = 58 Total_Scans = 58</pre>	<pre>X_90_Width = 8.4[us] X_Acq_Time = 0.69206016[s] X_Atn = 0.69206016[s] X_Atn = 6.4[db] X_Pulse = 3.0[ds] Trr_Atn_Nos = 18[db] Trr_Anden = 18[db] Trr_Noise = 18[db] Trr_Noise = 18[db] Trr_Noise = 76[us] Trr_Noise = WALTZ Trr_Noise = WALTZ Trr_Noise = 18[db] Trr_Andth = 76[us] Nos = 12[s] Nos = 12[s] Nos = 2.69206016[s] Retration_Time = 2.69206016[s] Temp_Get = 2.1[dC]</pre>	Me Me Me MPM Ho Me OBn 26 (150 MHz, CDCl ₃)
				190.0 190.0 100.0 100.0 100.0 100.0 190.0 190.0 100.0 100.0 100.0 100.0 100.0 190.0 180.0 17.102 100.0 100.0 100.0 100.0 190.0 190.0 190.0 100.0 100.0 100.0 100.0 190.0 130.0 120.0 100.0 100.0 100.0 100.0 100.0 190.0 130.0 100.0
		\$59		

	<pre>= C:\Vsers\delta\Documents\J t = delta = delta = carbon.jxp t = carbon.jxp = cHLORORM-D Time = 13-SEP-2010 19:46:07 Time = 13-SEP-2010 20:00:56 ime = 13-SEP-2010 20:00:56</pre>	at = single pulse decoupled gat = 1D COMPLEX = 2 ComPLEX = 2 Carbon13 = Carbon13 = 2 Carbon = 2 Car600 ter = DELTA2_NWR	<pre>ength = 14.09636928[T] (600[WHz]) ation = 0.69206016[s] = 130.91343039[MHz] = 150.91343039[MHz] = 100[ppm] = 104496109[Hz] = 32768 ion = 47.34846485[HHz] n = 47.34846485[HHz] n = 47.34846485[HHz] n = 71.878788[KHz] n = 27.000 t = 510pm] n = 261 n n = 261</pre>	h = $0.69206016[s]$ = $0.69206016[s]$ = $0.69206016[s]$ = $0.69206016[s]$ = $0.69206016[s]$ = $0.69206016[s]$ = $0.69206016[s]$ = $1.[s]$ = $2.6[us]$ = $2.6[us]$ = $2.69206016[s]$ = $2.69206016[s]$	TBSO S3 (150 MHz, CDCl ₃)
	Filename Author Experimer Sample_Id Solvent Solvent Revision Current_1	Comment Data_rorr Dim_sire_ Dim_Title Dim_Units Dimension Stectrome	Field_Str X_Acq_Dur X_Creet X_Offset X_Offset X_Prescants X_Sweep X_Sweep X_Sweep X_Sweep X_Sweep Clipped IITY_Offse IITY_Offset Frod_stetur Prod_stetur Prod_stetur Prod_stetur	X_90_widt X_Acq_Tim X_Atn X_Atn X_Atn X_Pulse X_Pulse X_Pulse ITT_Atn ITT_Atn ITT_Atn ITT_Atn ITT_Atn ITT_Atn Noe Tan Robertico Repetitio	6169.4-
,			-		70.0 15.8934 70.0 70.
,					A Milling 138.0775 - 2170.0 100.0 90.0 86.0 90.0 80.0 113.6331 - 1
					210200.0 190.0 180.0 170.0 160.0 150.(210200.0 190.0 180.0 170.0 160.0 150.(59.0366 X : parts per Million : Carbon13 : parts p

1900 1800 1700 200 200 100 0 1900 1800 1700 200 200 200 200 200 172 172 255 255 255 255 255 1900 1800 1700 200 200 200 255 255 1900 1800 1700 200 200 200 255 255 1900 1800 1900 1900 1900 100 000 000 000 000 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 16 15 15 15 15 15 15	<pre>= C:\Users\delta\Documents\J = delta = carbon.jxp = sN-III-40 = SN-III-40 = CHLOROFORM-D = 17-SEP-2010 17:40:09 = 17-SEP-2010 11:36:00 = 17-SEP-2010 11:36:34</pre>	<pre>= single pulse decoupled gat = 1D CONFLEX = 262141 = Carbon13 = [ppm] = [ppm] = ECA600 = DELTAA_NWR</pre>	<pre>th = 14.09636928[T] (600[WHz]) on = 0.69206016[s] = 130 = 130.91343039[MHz] = 100[ppm] = 100[ppm] = 32768 = 47.348488[NHz] e 47.34848485[NHz] ped = 77.000 = 77.000 = 600.1723046[MHz]</pre>	= 7100 = TRUE = 1 = 20[us] = 720 = 720	= 8.4[us] = 0.69206016[s] = 30[deg] = 2.8[us] = 2.8[us] = 18[dB] = 18[dB] = MALTZ = 76[us] = 1[s]	$ = \frac{1000}{2[6]} = \frac{2[6]}{2[6]} = 56$ $ = 2.69206016[6]$ $ = 22.3[dC]$	Me Me OH TBSO [,] Me OBn S4 (150 MHz, CDCl ₃)
4.1613	Filename Author Experiment Sample_Id Solvent Creation_Tim Revision_Time	Comment Data_Format Dim_Size Dim_Tritle Dim_Units Dimensions Site Spectrometer	Field Streng X_Acq Duration X_Dumain X_Freq X_Freq X_Freq X_Freq X_Resolution X_Sweep X_Sweep Clip X_Sweep Clip X_Sweep Clip X_Sweep Clip X_Sweep Clip	LILLOLISEC Clipped Mod_Return Probe_Recove: Scans Total_Scans	X_90_width X_Acq_Time X_Angle X_Atn X_Pulse Irr_Atn_Dec Irr_Noise Irr_Pwidth Deccupling Initial_wait	NOC Time Recvr_Gain Relaxation_D Repetition_T Temp_Get	
							X: parts per Million : Carbon13 : parts per Million : Carbon13

÷

	<pre>= C:\Users\delta\Documents\J = delta = carbon.jxp = SN-III-113 = SN-III-113 = CHLCROFORM-D = 4-AUG-2010 17:42:28 = 4-AUG-2010 17:42:28 = 4-AUG-2010 17:42:49</pre>	<pre>= single pulse decoupled gat = 1D COMPLEX = 26214 = 26214 = Carbon13 = [ppm] = X = ECA600 = DELTA2_NUR</pre>	<pre>h = 14.0963628[T] (600[MHZ]) n = 0.69206016[s] = 13C = 150.91343039[MHZ] = 100[ppm] = 100[ppm] = 3768 = 4 = 47.3484846[yHz] = 47.3484846[yHz] = 47.3484846[xHZ] ad = 37.87878788[kHZ] = 600.1723046[MHZ] = 5[ppm] = 71 r = 20[us] r = 97</pre>	<pre>= 8.4[us] = 0.69206016[s] = 0.69206016[s] = 3.0[dag] = 3.4[db] = 18[db] = 16[db] = 2163[dc] = 23.5[dc]</pre>	Mile OBn 50 MHz, CDCI ₃)
	Filename Author Experiment Sample_Id Solvent Creation_Time Revision_Time Current_Time	Comment Data_Format Dim_Title Dim_Title Dim_Units Dimensions Site Spectrometer	Field_Strengt X_Acq_Duration X_Dommin X_Offset X_Points X_Prescans X_Prescans X_Sweep_Clipp X_Sweep_Clipp X_Sweep_Clipp Irr_Pred Irr_Pred Irr_Offset Clipped Scans Probe_Recover Scans Total_Scans	X_90_Width X_Acq_Time X_Atq16 X_Atg16 X_Atg16 X_Pulse Irr_Atg106 Irr_Noise Irr_Noise Irr_Noise Irr_Noise Irr_Noise Irr_Noise Irr_Noise Recoupling Noe time Relaxation_De Repetition_De	
1					
					72.9403 73.1764 73.1764 73.1764 73.1764 73.1764 73.1764 73.1764 75.784 75.784 75.784 75.784 75.784 75.784 76.786 70.0 80.0 90.0 70.0 90.0 90.0 90.0 90.0 90.0 9
					Million Millio
					210.0 200.0 190.0 180.0 170.0 160.0 1. 210.1 200.2 190.0 190.0 180.0 170.0 160.0 1.

					the second s	
			61		Filename Author Experiment Sample Id Solvent Creation_Time Revision_Time Current_Time	<pre>C:\Users\delta\Documents\J = dalta = proton.jxp = srl.r1r=82-5 = St-JTL-2010 14:53:37 = 24-JUL-2010 14:57:49 = 24-JUL-2010 14:57:49</pre>
			0.21	<u>19.11</u>	Comment Data_Format Dim_Size Dim_Title Dim_Units Dimensions Site Spectrometer	<pre># single_pulse ID COMPLEX ID COMPLEX</pre>
				<u> </u>	Field Strength X_Acq_Duration X_Preq X_Offset X_Offset X_Prescans X_Prescans X_Sweep X_Sweep X_Sweep X_Sweep X_Sweep X_Sweep X_Sweep X_Sweep TryDomain TryDomain TryDomain TryDoffset TryDoffse	<pre>= 14.09636928[T] (600[MHz]) = 2.9097984[s] = 14.09636928[T] (600[MHz]) = 1.1512046[MHz] = 5.5ppm] = 0.3436642[Hz] = 0.3436642[Hz] = 0.3436642[Hz] = 1.26126126[EHz] = 9.00900901[EHz] = 9.00900901[HHz] = 1.261213046[MHz] = 5.5pm] = 5.</pre>
<u>00'1</u>	70.2	17.2 12.1 27.0 89.0 89.0 84.0	L6.2 <u>74.10</u> <u>74.10</u> <u>74.10</u> <u>74.10</u> <u>76.0</u>	<u>10.4</u>	X_90_Width X_Acq_Time X_Angle X_Angle X_Angle X_Puble X_Puble Tri_Mode Tri_Tri_Mode Tri_Tri_Tri_Tri_Tri_Tri_Tri_Tri_Tri_Tri_	= 12.4 [us] = 2.9097984 [s] = 45 [deg] = 3 [dB] = 612 [us] = 615 = 015 = 015 = 1[s] = 1[s] = 1[s] = 3.9097984 [s] = 22.6 [dC]
6. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	0. 4. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7	3.6406 3.2724 3.2724 3.2855 3.27003 3.270000000 3.2700000 3.270000	0.9269 1.5568 2.1180 2.1180 2.1314 2.1314 2.1314800 2.131480 2.131480 2.1314800 2.1314800 2.131	SZ10.0 SZ10.0	TBSO' Me	Me Co ₂ Me D MHz, CDCI ₃)
X : parts per Million : Proton : parts per Million						

<pre>C:\Users\delta\Documents\J = delta = carbon.jxp = carbon.jxp = SN-III-121-1-3 = CHLOR0FORM-D = 18-AUG-2010 21:18:25 = 18-AUG-2010 21:18:42 = sincle vulse decompled cat</pre>	= 1D COMPLEX = 26214 = 26214 = Carboni3 = [ppm] = X = ZCA600 = DELTA2_NHR	h = 14.09636928[T] (600[WHz]) = 13C = 13C = 100[Dpm] = 100[Dpm] = 27688 = 4 = 4 = 4 = 4 = 4 = 1.44496109[Hz] = 4 = 4 = 4 = 4 = 4 = 1.44496109[Hz] = 327688[KHz] = 4 = 7.3484865[KHz] = 4 = 7.3484865[KHz] = 6 = 1.44496109[Hz] = 2.7120 = 6 = 1.220 = 1.2200 = 1.20	<pre>= 8.4[us] = 0.6206016[s] = 0.6206016[s] = 30(deg] = 30(deg] = 30(deg] = 18[db] = 28] = 28] = 23.4[dC]</pre>	Me CO ₂ Me	Me OBn 4 (150 MHz, CDCl ₃)
Filename Author Experiment Sample_Id Solvent Creation_Time Revision_Time Current_Time	Dim_file Dim_file Dim_file Dim_file Dim_file Dimensions Site Spectrometer	Field_Strengtl X_Acq_Duration X_Domain X_Prend X_Offset X_Preseams X_Preseams X_Preseams X_Preseams X_Preseams X_Preseams Trr_Domain Trr_Freq Trr_Domain Trr_Freq Trr_Offset Clipped Mod_Return Probe_Return Probe_Return Probe_Return Probe_Return Probe_Return Probe_Return Probe_Return Probe_Return	X_90_width X_Acq_Time X_Augle X_Augle X_Aulse X_Pulse Trr_Aunoe Trr_Aunoe Trr_Aunoe Trr_Noise Trr_Noise Trr_Pwidth Decoupling Initial wait Noe Time Recvr_Gain Relaxation_Tin Tepetition_Tin Tepedition_Tin	Me Me	TBSO
					$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$
					X : parts per Million : Carbon13 : parts per Million

•

S68

	,	
	Filename Author Experiment Sample Id Solvent Creation_Time Revision_Time Current_Time	<pre>= C:\Users\delta\Documents\J = delta = carbon.jxp = SN-III-121-1-6 = SN-III-121-1-6 = I7-ANG-2010 19:17:48 = 17-AUG-2010 19:35:56 = 17-AUG-2010 19:37:12</pre>
	Comment Data_Format Dim_Size Dim_Title Dim_Units Dimensions Site Spectrometer	<pre>= single pulse decoupled gat = 1D COMPLEX = 26214 = Carbon13 = [ppm] = [ppm] = ECA600 = DELTA2_NMR</pre>
·	Field_Strength X_Acq_Duration X_Domain X_Peeq X_Offset X_Pescens X_Pescens X_Sweep X_Sweep_Clipped Irr_Peq Irr_Peq	= 14.09636928[T] (600[MHz]) = 0.69206016[s] = 13C = 150.91343039[MHz] = 100[ppm] = 32768 = 47.34848485[KHz] = 47.34848485[KHz] = 47.34848485[KHz] = 500.1723046[MHz]
	Irr_Offset Clipped Mod_Return Probe_Recovery Scans Total_Scans	= 5 [ppm] = FALSE = 1 = 1 = 20[us] = 452.0 = 452.0
	X_90_Width X_Acq_Time X_Angle X_Aun X_Pulse Irr_Atn_Dec Irr_Atn_Nee Irr_Poise Irr_Width Decoupling	= 8.4[us] = 0.69206016[s] = 30[dec] = 6.4[db] = 2.8[us] = 18[db] = 18[db] = 18[db] = 16[db] = 76[us] = 76[us]
	Initial_Wait Noe_Time Noe_Time Recvr_Gain Reperition_Delay Reperition_Time Temp_Get	= 1[s] = TRUE = 2[s] = 56 = 2[s] = 2.69206016[s] = 2.69206016[s]
		Б .
$190.0 \ 180.0 \ 170.0 \ 160.0 \ 150.0 \ 140.0 \ 130.0 \ 120.0 \ 100.0 \ 90.0 \ 80.0 \ 70.0 \ 60.0 \ 50.0 \ 40.0 \ 30.0 \ 20.0 \ 10.0 $		Me Me CO ₂ Me
: parts per Million : Carbon13 : parts per Million	51- 	<i>∋pi-</i> 4 (150 MHz, CDCl ₃)

<pre>Filename = C:\Users\delta\Documents\J Author = dalta = SN-TII-135 Sumple_Id = NN-TII-135 Sumple_Id = NN-TII-135 Sumple_Id = NN-TII-135 Sumple_Id = Proton_135 Coleantion_Time = 25-MUG-2010 16:12:16 Current_Time = 25-MUG-2010 16:12 Current_Time = 25-MUG-2010 16:12 Current = 14.09535928[T] Current = 14 Current = 14.09535928[T] Current = 14.0953594[HHZ] Current = 14.</pre>	Tri_Offset = 5[ppm] Clipped = FALSE Mod_Return = 1 Probe_Recovery = 5[us] Scans = 8 Scans = 8 Total_Scans = 8 X_acq_rime = 12.4[us] X_ard_rime = 12.4[us] X_ard_rime = 2.9097984[s] X_ard_rime = 2.9097984[s] X_ard_rime = 2.9097984[s] X_ard_rime = 2.9097984[s] Tri_Mode = 0ff Tri_Mode = 0ff Tri_Mode = 0ff Tri_Mat = 1[s] Recvr_dim = 3.6 Renetition_rime = 3.909784[s]	Temp det = 22.5 [dc] Me Me Me Me Me Me Co ₂ Me TBSO ¹¹¹ Me Me Co ₂ Me SS (600 MHz, CDCI ₃)
£0'11	<u>98547</u> 04:4 04:4 <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u> <u>04:4</u>	0 0

i

Z.I I.I 0.I 0.0 8.0 7.			<pre>Filename = C:\USers\delta\Documents\J Author = delta = C:\USers\delta\Documents\J Experiment = carbon.jxp Salvent = SN-III-136 Salvent = SN-III-136 Salvent = C=HLOROFORM-D Creation_Time = 2-SEP-2010 20:12:44 Current_Time = 2-SEP-2010 20:20:440 Current_Time = 2-SEP-2010 20:20:440 Current_Time = 2-SEP-2010 20:20:440 Current_Time = 2-SEP-2010 20:20:440 Comment = 2-SEP-2010 20:20:440 Field_Strength = 10.0505628[F] (600[MHz]) X_Preq = 100(Ppm] X_Preq = 100(Ppm] X_Offset = 100(Ppm] X_Prescans = 4</pre>
0 9.0 2.0 4.0 £.0 2.0 I.0			$ \begin{array}{llllllllllllllllllllllllllllllllllll$
	arts per Million : Carbon 13 : parts per Million : Carbon 13 :	00000000000000000000000000000000000000	Me Me Me Me Me Me Co ₂ Me TBSO ¹¹¹ Me Me CO ₂ Me S5 (150 MHz, CDCl ₃)

.