Supporting Information

$\mathbf{C u}(\mathrm{II})$-Catalyzed Acylation by Thiol Esters Under Neutral Conditions: Tandem Acylation-Wittig Reaction Leading to One-Pot Synthesis of Butenolides

Kazumasa Matsuo and Mitsuru Shindo*
Institute for Materials Chemistry and Engineering, Kyushu University, 6-1, Kasugako-en, Kasuga 816-8580, Japan, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, shindo@cm.kyushu-u.ac.jp

Experimental Section

General

${ }^{1} \mathrm{H}-\mathrm{NMR},{ }^{13} \mathrm{C}-\mathrm{NMR}$ were measured in CDCl_{3} solution using JEOL JNM AL-400, (${ }^{1} \mathrm{H}-\mathrm{NMR}$ at $400 \mathrm{MHz},{ }^{13} \mathrm{C}-\mathrm{NMR}$ at $100 \mathrm{MHz},{ }^{31} \mathrm{P}-\mathrm{NMR}$ at 160 MHz$)$ and JNM ECA- 600 spectrometer $\left({ }^{1} \mathrm{H}\right.$ NMR at $600 \mathrm{MHz},{ }^{13} \mathrm{C}$ NMR at $150 \mathrm{MHz},{ }^{31} \mathrm{P}$ NMR at 243 MHz) as the referenced standard $\left({ }^{1} \mathrm{H}\right.$ NMR at $0.00 \mathrm{ppm}(\mathrm{TMS}),{ }^{13} \mathrm{CNMR}$ at $77.03 \mathrm{ppm}\left(\mathrm{CDCl}_{3}\right),{ }^{31} \mathrm{P}$ NMR at $\left.0.00 \mathrm{ppm}\left(85 \% \mathrm{H}_{3} \mathrm{PO}_{4}\right)\right)$ otherwise noted. Chemical shifts are reported in ppm. Peak multiplicities are used the following abbreviation: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br, broad. IR spectra were recorded on Shimazu FT/IR-8300 spectrometers. Mass spectra and high resolution mass spectra were obtained on a JEOL JMS-700. Elemental analyses were performed with YANACO 026 CHN analyzer. Melting points were measured with a SRS Opti Melt MPA 100 apparatus are uncorrected. Analytical TLC was performed on precoated plates (0.25 mm , silica gel Merck $60 \mathrm{~F}_{254}$). Column chromatography was performed on a silica gel (Kanto Chemical Co., Inc.). Preparative HPLC was performed on Kanto Mightysil Si60, and performed on a system utilizing a JAS.CO PU-2087 plus Intelligent Pump with Dynamic Mixer MX-2080.32, UV-2075 plus Intelligent UV/VIS Detector and RI-2031 plus Intelligent RI Detector. All reactions were performed under an air atmosphere unless otherwise noted, and dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, diethyl ether $\left(\mathrm{Et}_{2} \mathrm{O}\right)$ and tetrahydrofuran (THF) were purchased from Kanto Chemical Co., Inc., and other solvent was distilled. Unless otherwise noted, reagents were obtained from chemical sources and without further purification.

The known compounds (2-hydroxycyclopentanone (1b), 2-hydroxycyclohexanone (1c), 2-hydroxycycloheptaone (1d), 2-hydroxycyclooctanone (1e), 2-hydroxycyclododecanone (1f), 2-hydroxyindan-1-one (1i), 2-hydroxy-2-methyl 1-indanone (1j), 4-Methyl-5-vinyl-8-oxabicyclo [3,2,1] octane-1,2-diol (1k), cis-2-hydroxy-6-methoxy-4,7-dimethyltetral-1-one (11)) of structure were confirmed by the literatures.

The known compounds (2-hydroxyacetophenone (1a), 2-hydroxy- γ-butyrolactone (1h)) are commercially available reagents.

Preparation of acyloins.

1) General procedure for synthesis of $\mathbf{1 b}$ and $\mathbf{1 c}{ }^{1}$

Sodium ($0.45 \mathrm{~g}, 19.6 \mathrm{mmol}$) in refluxing toluene (11 mL) was stirred vigorously until sodium sand was obtained. Chlorotrimethylsilane ($2.6 \mathrm{~mL}, 20.1 \mathrm{mmol}$) and the dimethyl ester (4.9 mmol) were then added to the mixture at room temperature. After reflux for 1.5 h , the mixture was filtrated and evaporated. The residue was dissolved in THF (16 mL), and 6 M HCl aq. (2 mL) was added. After stirred for 0.5 h at rt , the resulting mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layer was washed with sat. NaHCO_{3} aq and brine, then dried over MgSO_{4}, and evaporated. The crude product was purified with silicagel column chromatography (10-30\% EtOAc-Hex) to give the acyloin.

2-Hydroxycyclopentanone (1b) ${ }^{\mathbf{2}}$:

Acyloin 1b (25\%) was obtained as a colorless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 1.62-1.73(\mathrm{~m}, 1 \mathrm{H})$, 1.76-1.89 (m, 1H), 2.01-2.09 (m, 1H), 2.15-2.25 (m, 1 H$), 2.37-2.47(\mathrm{~m}, 2 \mathrm{H}), 2.69(\mathrm{bs}, 1 \mathrm{H}), 4.07(\mathrm{t}$, $J=10.0 \mathrm{~Hz}, 1 \mathrm{H})$.

2-Hydroxycyclohexanone (1c) ${ }^{3}$:

Acyloin 1c (43\%) was obtained as a colorless needle. Colorless needle (EtOH): mp 106.5-106.9 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 1.44-1.78(\mathrm{~m}, 3 \mathrm{H}), 1.85-1.93(\mathrm{~m}, 1 \mathrm{H}), 2.08-2.15(\mathrm{~m}, 1 \mathrm{H})$, 2.32-2.41 (m, 1 H$), 2.43-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.54-2.60(\mathrm{~m}, 1 \mathrm{H}), 3.64(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.10-4.15(\mathrm{~m}$, 1H).
2) General procedure for synthesis of $\mathbf{1 i} \mathbf{i} \mathbf{1}$ and $\mathbf{1 1}^{4}$

1i: $R=H, n=1$

A solution of the ketone (10 mmol) and $\mathrm{KOH}(6.2 \mathrm{~g}, 111 \mathrm{mmol})$ in $\mathrm{MeOH}(50 \mathrm{~mL})$ was stirred for 10 min at $0^{\circ} \mathrm{C}$, and $\operatorname{PhI}(\mathrm{OAc})_{2}(3.9 \mathrm{~g}, 12 \mathrm{mmol})$ was added. The whole was stirred at the same
temperature for 1 h and at room temperature for 0.5 h . The reaction mixture was concentrated under reduced pressure to give a residue, which was dissolved in $\mathrm{Et}_{2} \mathrm{O}$, and the ethereal solution was washed with aqueous $3 \% \mathrm{NaHCO}_{3}$ aq. and $\mathrm{H}_{2} \mathrm{O}$, and evaporated. The residue was dissolved in THF $(25 \mathrm{~mL})$, and 6 M HCl aq. (3 mL) was added. After stirred for 0.5 h at rt , the resulting mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$, and the combined organic layer was washed with sat. NaHCO_{3} aq. and brine, then dried over MgSO_{4}. The crude product was purified with column chromatography (25% EtOAc-Hex) to give the acyloin.

2-Hydroxyindan-1-one (1i) ${ }^{5}$:

Acyloin 1i (66%) was obtained as a colorless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 3.02(\mathrm{dd}, J=16.8$ $\mathrm{Hz}, 5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.1(\mathrm{bs}, 1 \mathrm{H}), 3.59(\mathrm{dd}, J=16.8 \mathrm{~Hz}, 8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{dd}, J=8.0 \mathrm{~Hz}, 5.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.41(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{dt}, J=7.6 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=7.6$ Hz, 1H).

2-Hydroxy-2-methyl 1-indanone ($\mathbf{1 j})^{6}$:

Acyloin $\mathbf{1 j} \mathbf{~ (6 6 \%)}$) was obtained as a colorless prism. Colorless prism ($\mathrm{Et}_{2} \mathrm{O}-\mathrm{Petroleum}$ benzine): mp $56-57{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 1.45(\mathrm{~s}, 3 \mathrm{H}), 2.59(\mathrm{bs}, 1 \mathrm{H}), 3.23(\mathrm{~d}, J=23.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.28(\mathrm{~d}, J=23.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.63-7.67(\mathrm{~m}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$.
cis-2-Hydroxy-6-methoxy-4,7-dimethyltetral-1-one (11) ${ }^{4}$:
Acyloin $1 \mathbf{1 l}$ (71\%) was obtained as a colorless prism. Colorless prisms ($\mathrm{Et}_{2} \mathrm{O}-\mathrm{Hex}$): mp 105.5-106.5 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 1.46(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.76(\mathrm{ddd}, J=12.8 \mathrm{~Hz}, 12.8 \mathrm{~Hz}, 12.8$ Hz, 1H), 2.22 (s, 3H), 2.49 (ddd, $J=12.8 \mathrm{~Hz}, 5.2 \mathrm{~Hz}, 5.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.12-3.19 (m, 1H), 3.91 (s, 3H), 3.90-3.93 (m, 1H), $4.34(\mathrm{ddd}, J=12.8 \mathrm{~Hz}, 5.2 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{~s}, 1 \mathrm{H})$.

3) 2-Hydroxycycloheptaone (1d) ${ }^{7,8}$

To a solution of cycloheptanone ($1.0 \mathrm{~g}, 8.9 \mathrm{mmol}$) in $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}(1.4 \mathrm{~mL}, 17.8 \mathrm{mmol})$, water (8.9 $\mathrm{mL})$ and $\mathrm{CH}_{3} \mathrm{CN}(45 \mathrm{~mL})$ was added $\mathrm{PhI}\left(\mathrm{OCOCF}_{3}\right)_{2}(7.7 \mathrm{~g}, 17.8 \mathrm{mmol})$. The resulting mixture was stirred under reflux for 3 h . The reaction mixture was concentrated under reduced pressure to remove $\mathrm{CH}_{3} \mathrm{CN}$. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were then washed with a sat. NaHCO_{3} aq., dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The crude product was purified with silica gel column chromatography ($25 \% \mathrm{EtOAc}-\mathrm{Hex}$) to give the acyloin $\mathbf{1 d}(411 \mathrm{mg}, 36 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 1.32-1.38(\mathrm{~m}$, $1 \mathrm{H}), 1.57-1.72(\mathrm{~m}, 3 \mathrm{H}), 1.78-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.91(\mathrm{~m}, 1 \mathrm{H}), 2.03-2.08(\mathrm{~m}, 1 \mathrm{H}), 2.47(\mathrm{ddd}, J=$ $17.4 \mathrm{~Hz}, 11.4 \mathrm{~Hz}, 3.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.70 (dddd, $J=17.4 \mathrm{~Hz}, 6.6 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 0.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.83$ (bs, 1H),
$4.30(\mathrm{dd}, J=9.6 \mathrm{~Hz}, 3.6 \mathrm{~Hz}, 1 \mathrm{H})$.

4) 2-Hydroxycyclooctanone (1e) ${ }^{9}$

To a solution of diisopropilamine ($2.73 \mathrm{~mL}, 19.5 \mathrm{mmol}$) in THF $(30 \mathrm{~mL})$, cooled to $-78{ }^{\circ} \mathrm{C}$ under Ar, was added dropwise a solution of n-butyllithium ($8.01 \mathrm{~mL}, 19.5 \mathrm{mmol}, 2.42 \mathrm{M}$ in hexane). The solution was stirred for 20 min at $-78^{\circ} \mathrm{C}$ and then chlorotrimethylsilane (freshly distilled from CaH , $3.8 \mathrm{~mL}, 30 \mathrm{mmol})$ and a solution of cyclooctanone $(1.89 \mathrm{~g}, 15.0 \mathrm{mmol})$ in THF $(7.5 \mathrm{~mL})$ were added. After 1 h , to the resulting mixture was added triethylamine ($6.3 \mathrm{~mL}, 45 \mathrm{mmol}$) and sat. $\mathrm{NaHCO}_{3} \mathrm{aq}$., and the mixture was allowed to warm to room temperature. After separation of the two phases, the aqueous phase was extracted with hexane. The organic phase was washed with water, sat. NaHCO_{3} aq. and brine. The combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to afford a silyl enol ether as a pale yellow oil.

To a solution of the silyl enol ether in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ was added $m \mathrm{CPBA}(3.36 \mathrm{~g}, 18.0 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. After a few hours, the resulting mixture was filtered and washed with sat. NaHCO_{3} aq., brine, dried over MgSO_{4}, filtered and concentrated in vacuo. The residue was treated with AcOH in THF- $\mathrm{H}_{2} \mathrm{O}(4: 1,45 \mathrm{~mL})$ at room temperature for 1 h . The reaction mixture was quenched with sat. NaHCO_{3} aq. and extracted with $\mathrm{Et}_{2} \mathrm{O}$. Organic phase was washed with brine, dried over MgSO_{4}, filtered and concentrated to give a residue, which was purified by silica gel column chromatography (20% EtOAc-Hex) to give the acyloin $1 \mathbf{e}\left(0.68 \mathrm{~g}, 32 \%\right.$) as a pale yellow oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta: 0.87-0.97(\mathrm{~m}, 1 \mathrm{H}), 1.33-1.44(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.86(\mathrm{~m}, 4 \mathrm{H}), 1.94-2.07(\mathrm{~m}, 2 \mathrm{H}), 2.31-2.42(\mathrm{~m}$, $2 \mathrm{H}), 2.71(\mathrm{dt}, J=12.0 \mathrm{~Hz}, 4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{dd}, J=6.4 \mathrm{~Hz}, 2.8 \mathrm{~Hz}, 1 \mathrm{H})$.

5) 2-Hydroxycyclododecanone (1f) ${ }^{10}$

To a solution of diisopropylamine ($1.82 \mathrm{~mL}, 13.0 \mathrm{mmol}$) in THF $(20 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ under Ar was added dropwise a solution of n-butyllithium ($4.8 \mathrm{~mL}, 12.5 \mathrm{mmol}, 2.6 \mathrm{M}$ in hexane). The solution was stirred for 20 min at $-78{ }^{\circ} \mathrm{C}$ and then chlorotrimethylsilane (freshly distilled from $\mathrm{CaH}, 3.81 \mathrm{~mL}$, $30 \mathrm{mmol})$ and a solution of cyclododecanone $(1.82 \mathrm{~g}, 10.0 \mathrm{mmol})$ in THF (5 mL) was added. After 1 h , to the resulting mixture was added triethylamine $(4.2 \mathrm{~mL}, 30 \mathrm{mmol})$ and sat. NaHCO_{3} aq., and the mixture was allowed to warm to room temperature. The resulting mixture was filtered and separated. The water phase was extracted with hexane. The organic phase was washed with water, sat. NaHCO_{3}
aq. and brine. The combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to afford a silyl enol ether as a pale yellow oil.

To a solution of the silyl enol ether in $\mathrm{CHCl}_{3} / 50 \% \mathrm{NaHCO}_{3}$ aq. ($1: 1,60 \mathrm{~mL}$) was added MMPP- $6 \mathrm{H}_{2} \mathrm{O}(2.97 \mathrm{~g}, 6.0 \mathrm{mmol})$ and TBAC (tetrabutylammonium chloride, $417 \mathrm{mg}, 1.5 \mathrm{mmol}$), and then the reaction mixture was warmed to $50{ }^{\circ} \mathrm{C}$. After 10 h , MMPP- $6 \mathrm{H}_{2} \mathrm{O}(2.97 \mathrm{~g}, 6.0 \mathrm{mmol})$ was added. After 4.5 h , the resulting mixture was separated, and the aqueous phase was washed with CHCl_{3}. The organic phase was washed with a sat. NaHCO_{3} aq., and the combined organic phase was dried over MgSO_{4}, filtered and concentrated in vacuo to affored a yellow solid, which was purified by column chromatography ($20 \% \mathrm{EtOAc}-\mathrm{Hex}$) to give the acyloin $\mathbf{1 e}$ as a colorless plate. Colorless plate (Hex): mp 77-78 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 0.82(\mathrm{tq}, J=10.8 \mathrm{~Hz}, 3.6 \mathrm{~Hz}, 1 \mathrm{H}$), $1.13-1.41(\mathrm{~m}, 13 \mathrm{H}), 1.49-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.98(\mathrm{~m}, 2 \mathrm{H}), 2.12(\mathrm{dt}, J=17.6 \mathrm{~Hz}, 4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{t}$, $J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{ddd}, J=17.6 \mathrm{~Hz}, 12.0 \mathrm{~Hz}, 3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{dd}, J$ $=8.0 \mathrm{~Hz}, 5.2 \mathrm{~Hz}, 1 \mathrm{H})$.

6) 3-Hydroxydihydro-2H-pyran-4(3H)-one (1g) ${ }^{11}$

To a solution of tetrahydro- $4 H$-pyran-4-one $(0.45 \mathrm{~mL}, 5 \mathrm{mmol})$ and L-proline ($34.5 \mathrm{mg}, 0.3$ $\mathrm{mmol})$ in DMF (13 mL) was added a solution of nitrosobenzene ($321 \mathrm{mg}, 3 \mathrm{mmol}$) in DMF (4.5 mL) over 24 h at $0{ }^{\circ} \mathrm{C}$ by syringe pump, and the mixture was stirred for 30 min at that temperature. The reaction was quenched with phosphate buffer solution (pH 7.0), and the organic materials were extracted with ethyl acetate three times. The combined organic extracts were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The crude product was purified with column chromatography ($5-30 \% \mathrm{EtOAc} / \mathrm{Hex}$) to give α-aminoxy ketone $(0.30 \mathrm{~g}, 48 \%$) as a yellow powder.

To a solution of the α-aminoxy ketone ($350 \mathrm{mg}, 1.68 \mathrm{mmol}$) in THF (17 mL) was added Pd / C $(5 \%)(54 \mathrm{mg})$ at rt . The mixture was stirred for 1 h under hydrogen atmosphere. The resulting mixture was filtered with pad on celite, and the solvent was evaporated under reduced pressure. The resister was purified by silica gel column chromatography ($20-50 \% \mathrm{EtOAc}-\mathrm{Hex}$) to give the acyloin $\mathbf{1 g}(0.16 \mathrm{~g}, 81 \%)$ as a colorless oil. , ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 2.54-2.58(\mathrm{~m}, 1 \mathrm{H}), 2.75-2.83(\mathrm{~m}$, $1 \mathrm{H}), 3.24(\mathrm{t}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{dt}, J=12.0 \mathrm{~Hz}, 2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.27-4.34$ (m, 2H), 4.44 (ddd, $10.8 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 1.6 \mathrm{~Hz} \mathrm{1H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.4$ (q), 28.5 (t), $67.8(\mathrm{t}), 72.9(\mathrm{t}), 75.8(\mathrm{t}), 120.4(\mathrm{~s}), 158.8(\mathrm{~s}), 174.2(\mathrm{~s}) ;$ IR (neat): 2866, 1728, $1645 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{EI})$
$\mathrm{m} / \mathrm{z}: 116\left(\mathrm{M}^{+}\right), 73(100 \%)$; HRMS (EI) calcd for $\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}_{3}: 116.0473$, found: 116.0469.

7) 4-Methyl-5-vinyl-8-oxabicyclo[3.2.1]octane-1,2-diol (1k) ${ }^{12}$

Colorless needle (EtOAc-Hex): mp 63-64 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}-50.98$ (c = 1.02, CHCl3); ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta: 1.11(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.56-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.84-2.01(\mathrm{~m}, 4 \mathrm{H}), 2.09(\mathrm{~d}$, $J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{ddd}, J=4.4 \mathrm{~Hz}, 6.8 \mathrm{~Hz}, 15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 3.6 \mathrm{~Hz}, 9.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.88(\mathrm{bs}, 1 \mathrm{H}), 5.08(\mathrm{dd}, J=1.2 \mathrm{~Hz}, 11.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{dd}, J=1.2 \mathrm{~Hz}, 18.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{dd}$, $J=11.2 \mathrm{~Hz}, 18.0 \mathrm{~Hz}, 1 \mathrm{H})$.

General procedure for one-pot synthesis of butenolides using stoichiometric amount of metal salts

 (Table 1).

To solution of the 2-hydroxycyclopentanone $\mathbf{1 b}(0.1 \mathrm{mmol})$ in toluene $(1 \mathrm{~mL})$, was added metal salt ($150 \mathrm{~mol} \%$) and the Wittig reagent $\mathbf{2 a}(0.15 \mathrm{mmol})$, and the mixture was refluxed under air. The resulting mixture was filtered with pad on celite, and the solvent was evaporated under reduced pressure. The residue was purified with column chromatography (5-10-30\% EtOAc-Hex) to give the butenolide 3b as a colorless oil.

Procedure for one-pot synthesis of butenolides via a copper(II)-catalyzed acylation. (Table 3).

3-Methyl-4-phenylfuran-2(5H)-one (3a) ${ }^{13}$:

To a solution of the acyloine $1 \mathbf{1 a}(27.2 \mathrm{mg}, 0.2 \mathrm{mmol})$ in toluene $(2 \mathrm{~mL})$ was added $\mathrm{Cu}(\mathrm{II})$ catalyst

6 ($2 \mathrm{~mol} \%$), Wittig reagent $\mathbf{2 b}(136 \mathrm{mg}, 0.3 \mathrm{mmol})$, molecular sieves $4 \AA(100 \mathrm{mg}, 500 \mathrm{mg} / \mathrm{mmol})$ and $\mathrm{OXONE}^{\circledR}(184 \mathrm{mg}, 0.6 \mathrm{mmol})$. The whole was stirred at $60{ }^{\circ} \mathrm{C}$ for 9 h . The resulting mixture was filtered with pad on celite, and the solvent was evaporated under reduced pressure. The residue was purified with column chromatography ($5-10 \% \mathrm{EtOAc}-\mathrm{Hex}$) to give the butenolide $3 \mathrm{a}(31.7 \mathrm{mg}$, 91%) as a colorless needle. Colorless needle (EtOAc-Hex): mp 121.8-122.3 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta: 2.14(\mathrm{t}, J=2.0 \mathrm{~Hz}, 3 \mathrm{H}), 5.06(\mathrm{q}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.52(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, CDCl_{3}) $\delta: 10.4$ (q), 70.5 (t$), 123.1$ (s$), 127.3$ (d), 129.2 (d), 130.2 (d), 131.5 (s$), 154.9$ (s$), 175.5$ (s$) ;$ IR (KBr): 2960, 1735, 1651, 1454, 1344, 1091, 1045, $977 \mathrm{~cm}^{-1}$; MS (EI) m/z: $174\left(\mathrm{M}^{+}\right), 174$ (100\%); HRMS (EI) calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{O}_{2}$: 174.0681, found: 174.0680; Anal. calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{O}_{2}$: C, 75.84; H, 5.79. Found: C, 75.66; H, 5.83.

3-Methyl-4,5,6,6a-tetrahydro-2H-cyclopenta[b]furan-2-one (3b) ${ }^{14}$:

To a solution of the acyloine $\mathbf{1 a}(20.0 \mathrm{mg}, 0.2 \mathrm{mmol})$ in toluene $(2 \mathrm{~mL})$ was added $\mathrm{Cu}(\mathrm{II})$ catalyst 6 ($2 \mathrm{~mol} \%$), Wittig reagent $\mathbf{2 b}(136 \mathrm{mg}, 0.3 \mathrm{mmol})$, molecular sieves $4 \AA(100 \mathrm{mg}, 500 \mathrm{mg} / \mathrm{mmol})$ and $\mathrm{OXONE}^{\circledR}$ ($184 \mathrm{mg}, 0.6 \mathrm{mmol}$). The whole was stirred at $60{ }^{\circ} \mathrm{C}$ for 12 h . The resulting mixture was filtered with pad on celite, and the solvent was evaporated under reduced pressure. The residue was purified with column chromatography ($5-20 \% \mathrm{EtOAc}-\mathrm{Hex}$) to give the butenolide $\mathbf{3 b}(24.9 \mathrm{mg}$, 90%) as a colorless oil., ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 1.28$ (dddd, $J=11.2 \mathrm{~Hz}, 11.2 \mathrm{~Hz}, 11.2 \mathrm{~Hz}$, $8.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.83(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.06-2.29(\mathrm{~m}, 3 \mathrm{H}), 2.48(\mathrm{bt}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.91$ (bt, $J=8.8$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 9.1(\mathrm{q}), 21.2(\mathrm{t}), 23.8(\mathrm{t}), 29.3(\mathrm{t}), 83.5(\mathrm{~d}), 120.5(\mathrm{~s}), 169.8$ (s), 176.6 (s); IR (neat): 2974, 1751, $1699 \mathrm{~cm}^{-1}$; MS (EI) m/z: 138 (M^{+}), 82 (100\%); HRMS (EI) calcd for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{2}$: 138.0681, found: 138.0684 .

3-Methyl-5,6,7,7a-tetrahydrobenzofuran-2(4H)-one (3c) ${ }^{15}$:

To a solution of the acyloine $\mathbf{1 c}(22.8 \mathrm{mg}, 0.2 \mathrm{mmol})$ in toluene (2 ml) was added $\mathrm{Cu}(\mathrm{II})$ catalyst $\mathbf{6}$ ($5 \mathrm{~mol} \%$), Wittig reagent $\mathbf{2 b}(136 \mathrm{mg}, 0.3 \mathrm{mmol})$, molecular sieves $4 \AA(100 \mathrm{mg}, 500 \mathrm{mg} / \mathrm{mmol})$ and $\mathrm{OXONE}^{\circledR}(184 \mathrm{mg}, 0.6 \mathrm{mmol})$. The whole was stirred at $60{ }^{\circ} \mathrm{C}$ for 8 h . The resulting mixture was filtered with pad on celite, and the solvent was evaporated under reduced pressure. The residue was purified with column chromatography ($5-20 \% \mathrm{EtOAc}-\mathrm{Hex}$) to give the butenolide $3 \mathrm{c}(28.3 \mathrm{mg}$, 93%) as a colorless oil., ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 1.15-1.33(\mathrm{~m}, 2 \mathrm{H}), 1.46$ (ddddd, $J=14.0 \mathrm{~Hz}$,
$14.0 \mathrm{~Hz}, 14.0 \mathrm{~Hz}, 3.2 \mathrm{~Hz}, 3.2 \mathrm{~Hz}, 1 \mathrm{H}$), 1.81 (d, $J=1.6 \mathrm{~Hz}, 3 \mathrm{H}$), 1.89-2.02 (m, 2H), 2.11-2.15 (ddd, J $=14.0 \mathrm{~Hz}, 6.0 \mathrm{~Hz}, 6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.19-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.82(\mathrm{ddd}, J=14.0 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.58$ (dd, $J=11.2 \mathrm{~Hz}, 6.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.1$ (q), 22.7 (t), 26.2 (t x 2), 34.2 (t), 80.1 (d), 119.4 (s), 162.5 (s), 174.8 (s); IR (neat): 2945, 2864, 1747, 1681, $1637 \mathrm{~cm}^{-1} ; \mathrm{MS}(E I) \mathrm{m} / \mathrm{z}$: $152\left(\mathrm{M}^{+}\right), 152(100 \%)$; HRMS (EI) calcd for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{2}: 152.0837$, found: 152.0837.

3-Methyl-4,5,6,7,8,8a-hexahydro-2H-cyclohepta[b]furan-2-one (3d) ${ }^{16}$:

To a solution of the acyloine $\mathbf{1 d}(25.7 \mathrm{mg}, 0.2 \mathrm{mmol})$ in toluene $(2 \mathrm{~mL})$ was added $\mathrm{Cu}(\mathrm{II})$ catalyst 6 ($5 \mathrm{~mol} \%$), Wittig reagent $\mathbf{2 b}(136 \mathrm{mg}, 0.3 \mathrm{mmol})$, molecular sieves $4 \AA(100 \mathrm{mg}, 500 \mathrm{mg} / \mathrm{mmol})$ and $\mathrm{OXONE}^{\circledR}(184 \mathrm{mg}, 0.6 \mathrm{mmol})$. The whole was stirred at $60{ }^{\circ} \mathrm{C}$ for 9 h . The resulting mixture was filtered with pad on celite, and the solvent was evaporated under reduced pressure. The residue was purified with column chromatography ($5-25 \% \mathrm{EtOAc}-\mathrm{Hex}$) to give the butenolide $3 \mathbf{d}(33.2 \mathrm{mg}$, $>99 \%$) as a colorless oil., ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 1.23-1.32(\mathrm{~m}, 1 \mathrm{H}), 1.38-1.56(\mathrm{~m}, 3 \mathrm{H}), 1.78$ $(\mathrm{d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.83-1.94(\mathrm{~m}, 3 \mathrm{H}), 2.31-2.35(\mathrm{~m}, 1 \mathrm{H}), 2.48-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.63-2.68(\mathrm{~m}, 1 \mathrm{H})$, 4.85 (bd, $J=10.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.1$ (q), $25.6(\mathrm{t}), 26.2(\mathrm{t}), 27.6(\mathrm{t}), 29.9$ (t), 33.8 (t), 83.5 (d), 122.4 (s), 165.5 (s), 174.6 (s$) ;$ IR (neat): 2929, 2858, 1747, $1668 \mathrm{~cm}^{-1}$; MS (EI) $\mathrm{m} / \mathrm{z}: 166\left(\mathrm{M}^{+}\right), 166(100 \%)$; HRMS (EI) calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2}: 166.0994$, found: 166.0995.

3-Methyl-5,6,7,8,9,9a-hexahydrocycloocta[b]furan-2(4H)-one (3e) ${ }^{17}$:

To a solution of the acyloine $\mathbf{1 e}(28.4 \mathrm{mg}, 0.2 \mathrm{mmol})$ in toluene $(2 \mathrm{~mL})$ was added $\mathrm{Cu}(\mathrm{II})$ catalyst 6 ($8.5 \mathrm{~mol} \%$), Wittig reagent $\mathbf{2 b}(136 \mathrm{mg}, 0.3 \mathrm{mmol})$, molecular sieves $4 \AA(100 \mathrm{mg}, 500 \mathrm{mg} / \mathrm{mmol})$ and $\mathrm{OXONE}^{\circledR}$ ($184 \mathrm{mg}, 0.6 \mathrm{mmol}$). The whole was stirred at $60{ }^{\circ} \mathrm{C}$ for 12 h . The resulting mixture was filtered with pad on celite, and the solvent was evaporated under reduced pressure. The residue was purified with column chromatography ($5-20 \% \mathrm{EtOAc}-\mathrm{Hex}$) to give the butenolide $\mathbf{3 e}(34.6 \mathrm{mg}$, 96%) as a colorless oil., ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 1.34-1.56(\mathrm{~m}, 6 \mathrm{H}), 1.74-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.83$ $(\mathrm{d}, J=1.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.99-2.05(\mathrm{~m}, 1 \mathrm{H}), 2.10-2.18(\mathrm{~m}, 1 \mathrm{H}), 2.28(\mathrm{ddd}, J=14.4 \mathrm{~Hz}, 8.8 \mathrm{~Hz}, 6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.71$ (ddd, $J=14.4 \mathrm{~Hz}, 6.0 \mathrm{~Hz}, 6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{bs}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.5$ (q), 20.7 (t), 25.0 (t), 25.9 (t), 26.7 (t), 27.0 (t), 28.6 (t), 82.7 (d), 124.3 (s$), 164.1$ (s$), 174.7$ (s); IR (neat): 2928, 2858, 1747, 1672, 1454, 1315, 1093, $1026 \mathrm{~cm}^{-1}$; MS (EI) m/z: $180\left(\mathrm{M}^{+}\right), 95(100 \%)$;

HRMS (EI) calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{2}$: 180.1150, found: 180.1148 .

3-Methyl-5,6,7,8,9,10,11,12,13,13a-decahydrocyclododeca[b]furan-2(4H)-one (3f):

To a solution of the acyloine $1 f(39.7 \mathrm{mg}, 0.2 \mathrm{mmol})$ in toluene $(2 \mathrm{~mL})$ was added $\mathrm{Cu}(\mathrm{II})$ catalyst 6 ($8.5 \mathrm{~mol} \%$), Wittig reagent $\mathbf{2 b}(136 \mathrm{mg}, 0.3 \mathrm{mmol})$, molecular sieves $4 \AA(100 \mathrm{mg}, 500 \mathrm{mg} / \mathrm{mmol})$ and $\mathrm{OXONE}^{\circledR}(184 \mathrm{mg}, 0.6 \mathrm{mmol})$. The whole was stirred at $60^{\circ} \mathrm{C}$ for 7 h until disappearance of the starting material. After disappearance of the starting material, the whole was stirred at $110{ }^{\circ} \mathrm{C}$ for 1 h . The resulting mixture was filtered with pad on celite, and the solvent was evaporated under reduced pressure. The residue was purified with column chromatography ($5-20 \% \mathrm{EtOAc}-\mathrm{Hex}$) to give the butenolide $3 \mathrm{f}\left(40.2 \mathrm{mg}, 85 \%\right.$) as a colorless needle. Colorless needle (EtOAc-Hex): mp 71-71.5 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 1.06-1.16(\mathrm{~m}, 1 \mathrm{H}), 1.25-1.52(\mathrm{~m}, 14 \mathrm{H}), 1.58-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.85(\mathrm{~d}, \mathrm{~J}$ $=0.8 \mathrm{~Hz}, 3 \mathrm{H}), 2.06-2.15(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.44(\mathrm{~m}, 2 \mathrm{H}), 4.90(\mathrm{bs}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$: $9.0(\mathrm{q}), 19.3(\mathrm{t}), 22.2(\mathrm{t}), 22.8(\mathrm{t}), 23.3(\mathrm{t}), 24.16(\mathrm{t}), 24.19(\mathrm{t}), 24.3(\mathrm{t}), 25.1(\mathrm{t}), 25.2(\mathrm{t}), 29.9(\mathrm{t}), 82.6$ (d), 124.9 (s), 162.1 (s), 174.9 (s); IR (KBr): 2937, 2747, 1737, 1668, $1469 \mathrm{~cm}^{-1}$; MS (EI) m/z: 236 $\left(\mathrm{M}^{+}\right), 236$ (100\%); HRMS (EI) calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{2}: 236.1776$, found: 234.1774; Anal. calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{2}$: C, 76.23; H, 10.24. Found: C, 75.96; H, 10.16.

3-Methyl-4,5,7,7a-tetrahydro-2H-furo[2,3-c]pyran-2-one (3g):

To a solution of the acyloine $1 \mathrm{~g}(17.4 \mathrm{mg}, 0.15 \mathrm{mmol})$ in toluene $(1.5 \mathrm{~mL})$ was added $\mathrm{Cu}(\mathrm{II})$ catalyst $6(5 \mathrm{~mol} \%)$, Wittig reagent $\mathbf{2 b}(101.9 \mathrm{mg}, 0.22 \mathrm{mmol})$, molecular sieves $4 \AA(75 \mathrm{mg}, 500$ $\mathrm{mg} / \mathrm{mmol})$ and $\mathrm{OXONE}^{\circledR}(138.3 \mathrm{mg}, 0.45 \mathrm{mmol})$. The whole was stirred at $60{ }^{\circ} \mathrm{C}$ for 4 h . The resulting mixture was filtered with pad on celite, and the solvent was evaporated under reduced pressure. The residue was purified with column chromatography ($5-30-50 \% \mathrm{EtOAc}-\mathrm{Hex}$) to give the butenolide 3 g ($19.4 \mathrm{mg}, 84 \%$) as a colorless prism. Colorless prism ($\mathrm{Et}_{2} \mathrm{O}-\mathrm{Hex}$): mp $76-77{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 1.87(\mathrm{t}, J=1.62 .56-2.64(\mathrm{~m}, 1 \mathrm{H}), 2.78(\mathrm{dd}, J=14.0 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.99(\mathrm{dd}, J=11.2 \mathrm{~Hz}, 11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{ddd}, J=11.2 \mathrm{~Hz}, 11.2 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.21 \mathrm{~Hz}, 3 \mathrm{H})$, (dd, $J=10.4 \mathrm{~Hz}, 6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{dd}, J=10.4 \mathrm{~Hz}, 6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.67-4.71(\mathrm{~m}, 1 \mathrm{H}){ }^{13}{ }^{13} \mathrm{C}-\mathrm{NMR}(100$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 8.4(\mathrm{q}), 28.5(\mathrm{t}), 67.8(\mathrm{t}), 72.9(\mathrm{t}), 75.8(\mathrm{~d}), 120.4(\mathrm{~s}), 158.8(\mathrm{~s}), 174.2(\mathrm{~s}) . \mathrm{IR}(\mathrm{KBr}):$

2970, 2926, 2858, 1741, 1687, 1097, 1085, $1037 \mathrm{~cm}^{-1}$; MS (EI) m/z: $154\left(\mathrm{M}^{+}\right), 58$ (100\%); HRMS (EI) calcd for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{3}: 154.0630$, found: 154.0631 .

3-Methyl-6,6a-dihydrofuro[3,2-b]furan-2(5H)-one (1h):

To a solution of the acyloine $\mathbf{1 h}(20.4 \mathrm{mg}, 0.2 \mathrm{mmol})$ in toluene (2 mL) was added $\mathrm{Cu}(\mathrm{II})$ catalyst 6 ($2 \mathrm{~mol} \%$), Wittig reagent $\mathbf{2 b}$ ($136 \mathrm{mg}, 0.3 \mathrm{mmol}$), molecular sieves $4 \AA(100 \mathrm{mg}, 500 \mathrm{mg} / \mathrm{mmol})$ and $\mathrm{OXONE}^{\circledR}(184 \mathrm{mg}, 0.6 \mathrm{mmol})$. The whole was stirred at $60^{\circ} \mathrm{C}$ for 10 h until disappearance of the starting material. After disappearance of the starting material, the whole was stirred at $110{ }^{\circ} \mathrm{C}$ for 1 h . The resulting mixture was filtered with pad on celite, and the solvent was evaporated under reduced pressure. The residue was purified with column chromatography (5-20-30-40\% EtOAc-Hex) to give the butenolide $\mathbf{3 h}(18.4 \mathrm{mg}, 66 \%)$ and Michael adducts $\mathbf{3 h}$ ' $(3.8 \mathrm{mg}, 7 \%)$ as a colorless oil. The major product $3 \mathrm{~h}:{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 1.75(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.04$ (dddd, $J=12.0 \mathrm{~Hz}, 12.0 \mathrm{~Hz}, 12.0 \mathrm{~Hz}, 8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.52$ (ddd, $J=12.0 \mathrm{~Hz}, 6.8 \mathrm{~Hz}, 4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.64$ (ddd, $J=12.0 \mathrm{~Hz}, 8.8 \mathrm{~Hz}, 4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{dd}, J=8.8 \mathrm{~Hz}, 8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{ddd}, J=12.0 \mathrm{~Hz}, 6.8$ $\mathrm{Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 6.6(\mathrm{q}), 30.7(\mathrm{t}), 76.2(\mathrm{~d}), 77.0(\mathrm{t}), 94.7(\mathrm{t}), 176.5$ (s), $179.1(\mathrm{~s}) ; \operatorname{IR}\left(0.1 \mathrm{~mm} \mathrm{NaCl}, \mathrm{CHCl}_{3}\right): 3030,3003,1764,1701 \mathrm{~cm}^{-1} ; \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}: 140\left(\mathrm{M}^{+}\right), 83$ (100\%); HRMS (EI) calcd for $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}_{3}$: 140.0473, found: 140.0472 .

3-Methyl-8,8a-dihydro-2H-indeno[2,1-b]furan-2-one (3i):

To a solution of the acyloine $\mathbf{1 i}(29.6 \mathrm{mg}, 0.2 \mathrm{mmol})$ in toluene (2 mL) was added $\mathrm{Cu}(\mathrm{II})$ catalyst 6 ($1 \mathrm{~mol} \%$), Wittig reagent $\mathbf{2 b}(136 \mathrm{mg}, 0.3 \mathrm{mmol})$, molecular sieves $4 \AA(100 \mathrm{mg}, 500 \mathrm{mg} / \mathrm{mmol})$ and $\mathrm{OXONE}^{\circledR}(184 \mathrm{mg}, 0.6 \mathrm{mmol})$. The whole was stirred at $60{ }^{\circ} \mathrm{C}$ for 7 h . The resulting mixture was filtered with pad on celite, and the solvent was evaporated under reduced pressure. The residue was purified with column chromatography ($5-25 \% \mathrm{EtOAc}-\mathrm{Hex}$) to give the butenolide $\mathbf{3 i}(33.5 \mathrm{mg}$, 90%) as colorless needles (EtOAc-Hex): mp 133.8-134.8 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 2.07(\mathrm{~d}$, $J=2.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.80(\mathrm{dd}, J=14.8 \mathrm{~Hz}, 8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{dd}, J=14.8 \mathrm{~Hz}, 7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.36-5.41(\mathrm{~m}$, $1 \mathrm{H}), 7.36-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.59-7.61(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 9.3(\mathrm{q}), 36.5(\mathrm{t}), 84.1$ (d), 118.6 (t), 124.1 (d), 126.7 (d), 128.2 (d), 131.1 (d), 132.7 (s), 145.3 (s$), 165.3$ (s), 176.3 (s); IR (KBr): 1735, $1685 \mathrm{~cm}^{-1}$; MS (EI) m/z: $186\left(\mathrm{M}^{+}\right), 158$ (100\%); HRMS (EI) calcd for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}_{2}$: 186.0681, found: 186.0683; Anal. calcd for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}_{2}$: C, 77.40; H, 5.41. Found: C, 77.23; H, 5.36.

3,8a-Dimethyl-8,8a-dihydro-2H-indeno[2,1-b]furan-2-one (3j):

To a solution of the acyloine $\mathbf{1 j}$ ($32.4 \mathrm{mg}, 0.2 \mathrm{mmol}$) in toluene $(2 \mathrm{~mL})$ was added $\mathrm{Cu}(\mathrm{II})$ catalyst 6 ($1 \mathrm{~mol} \%$), Wittig reagent $\mathbf{2 b}$ ($136 \mathrm{mg}, 0.3 \mathrm{mmol}$), molecular sieves $4 \AA(100 \mathrm{mg}, 500 \mathrm{mg} / \mathrm{mmol}$) and $\mathrm{OXONE}^{\circledR}(184 \mathrm{mg}, 0.6 \mathrm{mmol})$. The whole was stirred at $60{ }^{\circ} \mathrm{C}$ for 8 h . The resulting mixture was filtered with pad on celite, and the solvent was evaporated under reduced pressure. The residue was purified with column chromatography ($5-20 \%$ EtOAc-Hex) to give the butenolide $\mathbf{3 j}$ (37.4 mg , 93%) as colorless needle. Colorless needle (EtOAc-Hex): mp 76.9-77.4 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta: 1.49(\mathrm{~s}, 3 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 2.97(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.42$ $(\mathrm{m}, 3 \mathrm{H}), 7.59-7.61(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 8: 9.4 (q), 25.7 (q), 42.5 (t), 91.1 (s$)$, 118.0 (s), 124.5 (d), 126.6 (d), 128.0 (d), 130.8 (d), 132.6 (s), 145.8 (s), 169.4 (s), 175.3 (s); IR (KBr): 1755, $1687 \mathrm{~cm}^{-1}$; MS (EI) m/z: $200\left(\mathrm{M}^{+}\right), 129$ (100\%); HRMS (EI) calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{2}$: 200.0837, found: 200.0840 .

4,5,6,7,8,8a-Hexahydro-6-hydroxy-3,7-dimethyl-6-vinylcyclohepta[b]furan-2-one (3k):

To a solution of the acyloine $\mathbf{1 k}(36.8 \mathrm{mg}, 0.2 \mathrm{mmol})$ in toluene $(2 \mathrm{~mL})$ was added $\mathrm{Cu}(\mathrm{II})$ catalyst $6(10 \mathrm{~mol} \%)$, Wittig reagent $\mathbf{2 b}(136 \mathrm{mg}, 0.3 \mathrm{mmol})$, molecular sieves $4 \AA(100 \mathrm{mg}, 500 \mathrm{mg} / \mathrm{mmol})$ and $\mathrm{OXONE}^{\circledR}(184 \mathrm{mg}, 0.6 \mathrm{mmol})$. The whole was stirred at $60{ }^{\circ} \mathrm{C}$ for 9 h until disappearance of the starting material. After disappearance of the starting material, the whole was stirred at $110{ }^{\circ} \mathrm{C}$ for 1 h . The resulting mixture was filtered with pad on celite, and the solvent was evaporated under reduced pressure. The residue was purified with column chromatography ($5-40 \% \mathrm{EtOAc}-\mathrm{Hex}$) to give the butenolide $3 \mathbf{k}$ ($31.1 \mathrm{mg}, 70 \%$) as a colorless prism. Colorless prism (EtOAc-Hex): mp $151{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}$ $-140.27\left(\mathrm{c} 1.08, \mathrm{CHCl}_{3}\right),{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 0.93(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 1 \mathrm{H})$, 1.56-1.65 (m, 1H), 1.74-1.81 (m, 1H), $1.78(\mathrm{~s}, 3 \mathrm{H}), 1.84-1.88(\mathrm{~m}, 2 \mathrm{H}), 2.12(\mathrm{ddd}, J=13.6 \mathrm{~Hz}, 2.4$ $\mathrm{Hz}, 2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{bd}, J=20.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.87-2.96(\mathrm{~m}, 1 \mathrm{H}), 4.87(\mathrm{bd}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~d}$, $J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{dd}, J=10.8 \mathrm{~Hz}, 17.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(150$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 8.2$ (q), 17.1 (q), 20.8 (t$), 36.0$ (t$), 36.3$ (t), 39.9 (d), 75.3 (s), 82.1 (d), 110.4 (t), 120.8 (d), 146.3 (d), 164.8 (s), 174.5 (s). IR ($0.1 \mathrm{~mm} \mathrm{NaCl}, \mathrm{CHCl}_{3}$): $3471,1741,1672 \mathrm{~cm}^{-1} ; \mathrm{MS}(\mathrm{EI})$ $\mathrm{m} / \mathrm{z}: 222\left(\mathrm{M}^{+}\right), 204(100 \%)$; Anal. calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{3}$: C, 70.24; H, 8.16. Found: C, 70.05; H, 8.12.
(\pm)-Heritonin (31) ${ }^{4,17}$:

To a solution of the acyloine $11(44.0 \mathrm{mg}, 0.2 \mathrm{mmol})$ in toluene $(2 \mathrm{~mL})$ was added $\mathrm{Cu}(\mathrm{II})$ catalyst 6 ($5 \mathrm{~mol} \%$), Wittig reagent $\mathbf{2 b}$ ($136 \mathrm{mg}, 0.3 \mathrm{mmol}$), molecular sieves $4 \AA(100 \mathrm{mg}, 500 \mathrm{mg} / \mathrm{mmol}$) and $\mathrm{OXONE}^{\circledR}(184 \mathrm{mg}, 0.6 \mathrm{mmol})$. The whole was stirred at $60^{\circ} \mathrm{C}$ for 10 h until disappearance of the starting material. After disappearance of the starting material, the mixture was added xylene (3 ml), and then the whole was stirred at $138^{\circ} \mathrm{C}$ for 1 h . The resulting mixture was filtered with pad on celite, and the solvent was evaporated under reduced pressure. The residue was purified with column chromatography ($5-10 \%$ EtOAc-Hex) to give the butenolide $3 \mathbf{1}$ ($81 \%, 6: 1$ mixture of diastereomers) as a colorless prism and C 8 -isomer (14%) as a white solid. The major product 31: Colorless prisms (Et ${ }_{2} \mathrm{O}-\mathrm{Hex}$): mp 107.5-109 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 1.45$ (d, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$), 1.47 (ddd, J $=12.0 \mathrm{~Hz}, 12.0 \mathrm{~Hz}, 12.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.13(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 3 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 2.63(\mathrm{ddd}, J=12.0 \mathrm{~Hz}, 4.8$ $\mathrm{Hz}, 4.8 \mathrm{~Hz} 1 \mathrm{H}), 3.13(\mathrm{ddq}, J=12.0 \mathrm{H}, 4.8 \mathrm{~Hz}, 1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 4.89-4.92(\mathrm{~m}, 1 \mathrm{H}), 6.86(\mathrm{~s}$, $1 \mathrm{H}), 7.42(\mathrm{~s}, 1 \mathrm{H}){ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 8: 9.9 (q), $16.0(\mathrm{q}), 21.8(\mathrm{q}), 32.0(\mathrm{~d}), 38.7(\mathrm{t}), 55.4$
 (s); IR (KBr): 1739, 1654, 1610, 1319, $1049 \mathrm{~cm}^{-1}$; MS (EI) m/z: $258\left(\mathrm{M}^{+}\right), 258(100 \%) ;$ HRMS (EI) calcd for $\mathrm{C}_{13} \mathrm{H}_{26} \mathrm{O}_{3}: 258.1256$, found: 258.1254 .

General procedure for synthesis of phosphorous ylides.

To a solution of 2-bromopropionyl bromide ($3.0 \mathrm{~g}, 13.9 \mathrm{mmol}$) and thiol (14.6 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(14 \mathrm{ml})$ was added dropwise a $\mathrm{Et}_{3} \mathrm{~N}(2.9 \mathrm{~mL}, 20.9 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. The resulting mixture was stirred for 0.5 h at rt . The mixture was quenched with 1 M HCl aq , extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, combined organic layer was washed with sat. NaHCO_{3} aq. and brine, then dried over MgSO_{4}. The crude product was purified with silica gel column chromatography ($10 \% \mathrm{EtOAc}-\mathrm{Hex}$) to give the thiol ester as a colorless oil.

A solution of the thiol ester $(13.1 \mathrm{mmol})$ and $\mathrm{PPh}_{3}(5.1 \mathrm{~g}, 19.6 \mathrm{mmol})$ in benzene $(4.4 \mathrm{~mL})$ was refluxed for 3 h . The reaction mixture was concentrated under reduced pressure to remove benzene. The residue was dissolved in hot water, and then the aqueous phase was washed with EtOAc. The
aqueous phase was added a solution of $10 \% \mathrm{NaOH}$ aq., then extracted with CHCl_{3}. The organic layer was washed with water, dried over MgSO_{4}, concentrated to give a residue, which was recrystalized from EtOAc-Hex to give the phosphorous ylide.

S-phenyl 2-bromopropanethioate (11a):

According to the General procedure for synthesis of phosphorous ylides, the thiol ester ($>99 \%$) was obtained as a colorless oil., ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 1.90(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 4.61(\mathrm{q}, J=$ $6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~s}, 5 \mathrm{H}){ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 22.1$ (q), 47.6 (d), 126.9 (s), 129.4 (d), 129.8 (d), 134.6 (d), 194.7 (s); IR (neat): 1699, 1440, $935 \mathrm{~cm}^{-1}$; MS (EI) m/z: 246 ([M+H] ${ }^{+}$), 244 ([M-1] ${ }^{+}$), 109 (100\%); HRMS (EI) calcd for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrOS}$ 243.9557, found: 243.9561 .

S-2,6-dimethylphenyl 2-bromopropanethioate (11b):

According to the General procedure for synthesis of phosphorous ylides, the thiol ester (>99\%) was obtained as a colorless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 1.90(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.37(\mathrm{~s}, 6 \mathrm{H})$, $4.65(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.27(\mathrm{~m}, 3 \mathrm{H}){ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 21.5(\mathrm{q}), 21.9(\mathrm{t}), 47.5$ (d), 128.4 (d), 130.2 (d), 143.0 (s), 193.4 (s); IR (neat): 2976, 1695, 1464, 1440, $935 \mathrm{~cm}^{-1}$; MS (EI) m/z: $274\left([\mathrm{M}+\mathrm{H}]^{+}\right), 272\left([\mathrm{M}-1]^{+}\right), 137$ (100\%); HRMS (EI) calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{BrOS}$ 271.9870, found: 271.9868.
$\mathbf{P P h}_{3}=(\mathrm{Me}) \mathrm{COSPh}$ (propanethioic acid, 2-(triphenylphosphoranylidene)-, S-phenyl ester) 2a:

According to the General procedure for synthesis of phosphorous ylides, the phosphorous ylide 2a (46%) was obtained as a colorless prism. Colorless prism (EtOAc-Hex): mp 153-174 ${ }^{\circ} \mathrm{C}$ (decomp); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 1.76(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.17-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.27(\mathrm{~m}, 2 \mathrm{H})$, 7.44-7.48 (m, 8H), 7.52-7.55 (m, 3H), 7.58-7.61 (m, 6H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 13.0(\mathrm{~d}$, $\left.J_{\mathrm{CP}}=12.9 \mathrm{~Hz}\right), 49.8\left(\mathrm{~d}, J_{\mathrm{CP}}=106.2 \mathrm{~Hz}\right), 126.3\left(\mathrm{~d}, J_{\mathrm{CP}}=89.0 \mathrm{~Hz}\right), 127.0(\mathrm{~s}), 128.2(\mathrm{~s}), 128.7\left(\mathrm{~d}, J_{\mathrm{CP}}\right.$ $=11.6 \mathrm{~Hz}), 131.9\left(\mathrm{~d}, J_{\mathrm{CP}}=2.9 \mathrm{~Hz}\right), 132.4(\mathrm{~s}), 133.7\left(\mathrm{~d}, J_{\mathrm{CP}}=8.9 \mathrm{~Hz}\right), 134.6(\mathrm{~s}), 177.2\left(\mathrm{~d}, J_{\mathrm{CP}}=10.1\right.$ Hz); ${ }^{31} \mathrm{P}-\mathrm{NMR}\left(243 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 21.3$ (s); IR (KBr): 3057, 2854, 1581, 1568, 1481, 1437, 1311, 1276, 1168, 1101, $974 \mathrm{~cm}^{-1}$; MS (FAB) m/z: $427\left([\mathrm{M}+\mathrm{H}]^{+}\right)$; HRMS (FAB) calcd for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{OPS}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right): 427.1285$, found: 427.1285; Anal. calcd for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{OPS}: \mathrm{C}, 76.03$; H, 5.44. Found: C,

Propanethioic acid, 2-(triphenylphosphoranylidene)-, S-(2,6-dimethylphenyl) ester (2b):

According to the General procedure for synthesis of phosphorous ylides, the the phosphorous ylide $\mathbf{2 b}$ (16%) was obtained as a colorless prism. Colorless prisms (EtOAc-Hex): mp $166-186{ }^{\circ} \mathrm{C}$ (decomp without melt); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 1.83(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.43(\mathrm{~s}, 6 \mathrm{H}), 7.03$ $(\mathrm{s}, 3 \mathrm{H}), 7.41-7.44(\mathrm{~m}, 6 \mathrm{H}), 7.51-7.59(\mathrm{~m}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 13.19\left(\mathrm{~d}, J_{\mathrm{CP}}=11.6\right.$ $\mathrm{Hz}), 22.3(\mathrm{~s}), 49.9\left(\mathrm{~d}, J_{\mathrm{CP}}=106.4 \mathrm{~Hz}\right), 126.7\left(\mathrm{~d}, J_{\mathrm{CP}}=89.1 \mathrm{~Hz}\right), 127.5(\mathrm{~s}), 128.1(\mathrm{~s}), 128.6\left(\mathrm{~d}, J_{\mathrm{CP}}=\right.$ $12.9 \mathrm{~Hz}), 133.1(\mathrm{~s}), 131.7\left(\mathrm{~d}, J_{\mathrm{CP}}=2.9 \mathrm{~Hz}\right), 133.7\left(\mathrm{~d}, J_{\mathrm{CP}}=10.1 \mathrm{~Hz}\right), 143.5(\mathrm{~s}), 177.8\left(\mathrm{~d}, J_{\mathrm{CP}}=10.1\right.$ $\mathrm{Hz}) ;{ }^{31} \mathrm{P}-\mathrm{NMR}\left(160 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 20.1$ (s); IR (KBr): 3057, 2912, 2854, 1579, 1562, 1437, 1267, 1161, 1105, $972 \mathrm{~cm}^{-1}$; MS (FAB) m/z: $455\left([\mathrm{M}+\mathrm{H}]^{+}\right)$; HRMS (FAB) calcd for $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{OPS}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 454.1598, found: 454.1597; Anal. calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{3}$: C, 76.63; H, 5.99. Found: C, 76.41; H, 5.99.

Cu (salicylate) $\mathbf{5}^{18}$:

A mixture of $\mathrm{Cu}(\mathrm{OH})_{2}(0.49 \mathrm{~g}, 5 \mathrm{mmol})$ and 4-methoxysalicylic acid $(1.38 \mathrm{~g}, 10 \mathrm{mmol})$ in ethanol $(25 \mathrm{~mL})$ was refluxed for 4 h to give a brown suspension. On cooling to room temperature, the mixture was filtered off, washed with two portions of water and ethanol, and then air-dried to give the Cu complex 5 as brown powder ($0.59 \mathrm{~g}, 59 \%$). mp 349-394 ${ }^{\circ} \mathrm{C}$ (decomp.); Anal. Calc. for $\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{CuO}_{3}$: C, 42.11; H, 2.02. Found: C, 41.66; H, 2.05.; IR (KBr): 1602, 1568, 1529, 1456, 1410, $1232,1149 \mathrm{~cm}^{-1}$.

$\mathrm{Cu}\left(4\right.$-methoxysalicylate) $\mathbf{6}^{18}$:

A mixture of $\mathrm{Cu}(\mathrm{OH})_{2}(0.49 \mathrm{~g}, 5 \mathrm{mmol})$ and 4-methoxysalicylic acid $(1.68 \mathrm{~g}, 10 \mathrm{mmol})$ in ethanol $(25 \mathrm{~mL})$ was refluxed for 4 h to give a yellow green suspension. On cooling to room temperature, the mixture was filtered off, washed with two portions of water and ethanol, and then air-dried to give the Cu complex 6 as a yellow green powder (1.11g, 97\%). mp 210-258 ${ }^{\circ} \mathrm{C}$ (decomp.); Anal. Calc. for $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{CuO}_{4}$: C, 41.84; H, 2.63. Found: C, 41.95; H, 2.71.; IR (KBr): 1604, 1579, 1533, 1502, 1450,

1390, 1242, 1203, 1172, 1099, 1030, $972 \mathrm{~cm}^{-1}$.
The catalyst was recrystallized from DMSO to give green platelet crystal. The catalyst structure was determined by X-ray crystal structure analysis: CCDC773455 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge.

Crystallographic Data Centre.

EXPERIMENTAL DETAILS

A. Crystal Data

Empirical Formula
C 10 H 12 O 5 CuS
Formula Weight 307.81
Crystal Color, Habit green, platelet
Crystal Dimensions $\quad 0.10 \times 0.06$ X 0.02 mm
Crystal System monoclinic
Lattice Type Primitive
Indexing Images 6 images @ 64.0 seconds
Detector Position 45.05 mm
Pixel Size $\quad 0.137 \mathrm{~mm}$
Lattice Parameters $\quad a=12.191(3) \AA$
$b=7.1808(17) \AA$
$\mathrm{c}=13.680(3) \AA$
$\mathrm{b}=103.631(4) \mathrm{o}$
$\mathrm{V}=1163.8(5) \AA 3$
Space Group P21/a (\#14)
Z value $\quad 4$
Dcalc $1.757 \mathrm{~g} / \mathrm{cm} 3$
F000 628.00
m (MoKa) $\quad 20.611 \mathrm{~cm}-1$

B. Intensity Measurements

Detector Rigaku Saturn
Goniometer Rigaku AFC10
Radiation $\quad \operatorname{MoKa}(1=0.71070 \AA)$
graphite monochromated
Detector Aperture $\quad 70 \mathrm{~mm} \times 70 \mathrm{~mm}$
Data Images 720 exposures
w oscillation Range ($\mathrm{c}=45.0, \mathrm{f}=0.0$) -110.0-70.0o

Figure. Crystal structure of 6.

References

[1] Bloomfield, J. J.; Nelke, J. M. Organic Syntheses; Wiley: New York, 1988; Collect. Vol. VI, p. 167.
[2] Tanyeli, C.; Turkut, E.; Akhmedov, I. M. Tetrahedron: Asymmetry 2004, 15, 1729-1733.
[3] Morales, M. R.; Momiyama, N.; Yamamoto, H. Synlett 2006, 705-708.
[4] Irie, H.; Matsumoto, R.; Nishimura, M.; Zhang, Y. Chem. Pharm. Bull. 1990, 38, 1852-1856.
[5] Estrada, A. C.; Simões, M. M. Q.; Santos, I. C. M. S.; Neves, M. G. P. M. S.; Silva, A. M. S.;
Cavaleiro, J. A. S.; Cavaleiro, A. M. V. Catalysis Letters 2009, 128, 281-289.
[6] Koprowski, M.; Luczak, J.; Krawczyk, E. Tetrahedron 2006, 62, 12363-12374.
[7] Moriarty, R. M., Berglund, B. A., Penmasta, R. Tetrahedron Lett. 1992, 33, 6065-6068.
[8] Plietker, B. J. Org. Chem. 2004, 69, 8287-8296.
[9] Utsukihara, T.; Nakamura, H.; Watanabe, M.; Horiuchi, A. Tetrahedron Lett. 2006, 47, 9359-9364.
[10] Abad, A.; Arnó, M.; Pedro, J. R.; Seoane, E. Tetrahedron Lett. 1981, 22, 1733-1736.
[11] Hayashi, Y.; Yamaguchi, J.; Sumiya, T,; Shoji, M. Angew. Chem. Int. Ed. 2004, 43, 1112-1115.
[12] Ohtsuki, K.; Matsuo, K.; Yoshikawa, T.; Moriya, C.; Tomita-Yokotani, K.; Shishido, K.; Shindo, M. Org. Lett. 2008, 10, 1247-1250.
[13] (a) Huang, Q.; Hua, R. Catalysis Communications 2007, 8, 1031-1035. (b) Delaunay, J.; Orliac-Lemoing, A.; Simonet, J. Tetrahedron 1991, 44, 7089-7094.
[14] Murray, T. F.; Samsel, E. G.; Varma, V.; Norton, J. R. J. Am. Chem. Soc. 1981, 103,

7520-7528.
[15] Kurihara, T.; Masuo, M.; Yoneda, R. Chem. Pharm. Bull. 1986, 34, 2747-2753.
[16] Higuchi, Y.; Shimoma, F.; Ando, M. J. Nat. Prod. 2003, 66, 810-817.
[17] Zubaidha, P. K.; Chavan, S. P.; Racherla, U. S.; Ayyangar, N. R. Tetrahedron 1991, 47, 5759-5768.
[18] (a) Devereux, D.; O’Shea, D.; O’Connor, M.; Grehan, H.; Connor, G.; McCann, M.; Rosair, G.; Lyng, F.; Kellett, A.; Walsh, M.; Egan, D.; Thati, B. Polyhedron 2007, 26, 4073-4084. (b) Geraghty, M.;Sheridan, V.; McCann, M.; Devereux, M.; McKee, V. Polyhedron 1999, 18, 2931-2939.

002

01%

$80^{\circ} 1$

$\stackrel{n}{n}[-0$

$00^{\circ} 1$

00°

