Supporting Information

Stereoselective Synthesis of Spirooxindole Amides through Nitrile Hydrozirconation

Chunliang Lu, Qing Xiao, and Paul E. Floreancig*
Department of Chemistry
University of Pittsburgh
Pittsburgh, Pennsylvania, 15260

General Experimental:

Proton (${ }^{1} \mathrm{H}$ NMR) and carbon (${ }^{13} \mathrm{C}$ NMR) nuclear magnetic resonance spectra were recorded on a Bruker Avance 300 spectrometer at 300 MHz and 75 MHz , a Bruker Avance 400 spectrometer at 400 MHz and 100 MHz , a Bruker Avance 500 spectrometer at 500 MHz , a Bruker Avance 600 spectrometer at 600 MHz if specified. The chemical shifts are reported in parts per million (ppm) on the delta (δ) scale. The solvent peak was used as a reference value, for ${ }^{1} \mathrm{H}$ NMR: $\mathrm{CDCl}_{3}=7.27 \mathrm{ppm}, \mathrm{DMSO}=2.50$, for ${ }^{13} \mathrm{C}$ NMR: $\mathrm{CDCl}_{3}=77.23$, DMSO $=39.52$. Data are reported as follows: $(\mathrm{s}=$ singlet; $\mathrm{d}=$ doublet; t = triplet; q = quartet; sept = septet; dd = doublet of doublets; ddd = doublet of doublet of doublets; dddd = doublet of doublet of doublet of doublet; td = triplet of doublets; dtd = doublet of triplet of doublets; $\mathrm{br}=\mathrm{broad}$). High resolution and low resolution mass spectra were recorded on a VG 7070 spectrometer. Infrared (IR) spectra were collected on a Mattson Cygnus 100 spectrometer. Samples for IR were prepared as a thin film on a NaCl plate by dissolving the compound in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and then evaporating the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Tetrahydrofuran and diethyl ether were distilled from sodium and benzophenone. Methylene chloride was distilled under N_{2} from CaH_{2}. All acid chlorides were freshly distilled prior to use. Analytical TLC was performed on E. Merck pre-coated (25 mm) silica gel 60F-254 plates. Visualization was done under UV (254 nm). Flash chromatography was done using ICN SiliTech 32-63 $60 \AA$ silica gel. Reagent grade ethyl acetate, diethyl ether, toluene and hexanes (commercial mixture) were purchased from EM Science and used as is for chromatography. All reactions were performed in oven or flame-dried glassware under argon with magnetic stirring unless otherwise noted. All the reactions that use the Schwartz reagent were performed under argon unless otherwise specified. All products in this manuscript are racemic mixtures but are drawn and named as single enantiomers to indicate their relative stereochemistry.

2-(Benzyloxy)oct-7-enenitrile (5)
To a solution of 6-heptenal (4) ($168 \mathrm{mg}, 1.5 \mathrm{mmol}$) and BnOTMS (649 $\mathrm{mg}, 3.6 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{~mL})$ under argon was added $\mathrm{BiBr}_{3}(34$ $\mathrm{mg}, 0.075 \mathrm{mmol}$). The suspension was stirred overnight, and then TMSCN ($394 \mathrm{~mL}, 3.1$ mmol) and BiBr_{3} ($32 \mathrm{mg}, 0.075 \mathrm{mmol}$) were added. The suspension was stirred for another 4 h then was quenched with saturated NaHCO_{3}. The mixture was extracted with EtOAc (3x), and the combined organic layer was washed with brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated at reduced pressure, and purified by flash chromatography (5% to 10% EtOAc in hexane) to give 5 as a colorless oil (277 mg , $81 \%) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38-7.35(\mathrm{~m}, 5 \mathrm{H}), 5.79(\mathrm{ddt}, 1 \mathrm{H}, J=6.6,10.2,17.1$ $\mathrm{Hz}), 5.02(\mathrm{~d}, 1 \mathrm{H}, J=17.1 \mathrm{~Hz}), 4.97(\mathrm{~d}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}), 4.86(\mathrm{~d}, 1 \mathrm{H}, J=11.7 \mathrm{~Hz}), 4.53$ $(\mathrm{d}, 1 \mathrm{H}, J=11.7 \mathrm{~Hz}), 4.16(\mathrm{t}, 1 \mathrm{H}, J=6.6 \mathrm{~Hz}), 2.05(\mathrm{q}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}), 1.91-1.85(\mathrm{~m}, 2 \mathrm{H})$, 1.54-1.48 (m, 2H), 1.46-1.37 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.4,136.1,128.8$, 128.6, 128.3, 118.4, 115.0, 72.3, 67.7, 33.5, 33.4, 28.3, 24.3; IR (neat) 3068, 3033, 2930, 2864, 1640, 1456, 1100, 913, $740 \mathrm{~cm}^{-1}$; HRMS (EI) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}[\mathrm{M}]^{+}$ 229.1467 , found 229.1460 .

5-(1-Benzyl-1 H -indol-3-yl)-2-(benzyloxy)pentanenitrile (6)

To a solution of $\mathbf{5}(1.90 \mathrm{~g}, 8.3 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(84 \mathrm{~mL})$ was treated with O_{3} at $-78{ }^{\circ} \mathrm{C}$ until the blue color persisted. $\mathrm{PPh}_{3}(8.7 \mathrm{~g}, 33.1$ mmol) was then added and the solution was allowed to warm to rt. After stirring for 1 hour, the solvent was removed under reduced pressure, and the residue was purified by flash chromatography (5% to $40 \% \mathrm{EtOAc}$ in hexane) to give the aldehyde as colorless oil ($1.48 \mathrm{~g}, 78 \%$). To a solution of the aldehyde ($400 \mathrm{mg}, 1.73 \mathrm{mmol}$) in HOAc (9 mL), was added 1-benzyl-1phenylhydrazine hydrochloride ($406 \mathrm{mg}, 1.73 \mathrm{mmol}$). The solution was stirred at $100^{\circ} \mathrm{C}$ for 1 h under N_{2}. The solution was cooled to rt and the solvent was removed under reduced pressure. The residue was diluted with EtOAc and washed with saturated NaHCO_{3} solution (2x). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under reduced pressure, and purified by flash chromatography (5% to $10 \% \mathrm{EtOAc}$ in hexane) to give 6 as a slightly red oil ($610 \mathrm{mg}, 89 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.58(\mathrm{~d}, 1 \mathrm{H}, J=$ $7.5 \mathrm{~Hz}), 7.37-7.25(\mathrm{~m}, 9 \mathrm{H}), 7.18(\mathrm{t}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 7.13-7.08(\mathrm{~m}, 3 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H}), 5.28$ ($\mathrm{s}, 2 \mathrm{H}$), $4.83(\mathrm{~d}, 1 \mathrm{H}, J=11.4 \mathrm{~Hz}), 4.49(\mathrm{~d}, 1 \mathrm{H}, J=11.4 \mathrm{~Hz}), 4.17(\mathrm{t}, 1 \mathrm{H}, J=6.0 \mathrm{~Hz}), 2.80$ $(\mathrm{t}, 2 \mathrm{H}, J=6.3 \mathrm{~Hz}), 1.95-1.91(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.8,136.8,136.1$, $128.9,128.8,128.5,128.4,128.1,127.7,126.9,125.7,121.9,119.1,118.5,114.8,109.8$, $72.3,67.7,50.0,33.3,25.4,24.5$; IR (neat) $3030,2926,2866,1466,1454,1331,1101$, $739 \mathrm{~cm}^{-1}$; HRMS (EI) m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}]^{+} 394.2045$, found 394.2043.

5-(1-Benzyl-2-chloro-1H-indol-3-yl)-2-(benzyloxy)pentanenitrile (7)
To a solution of $\mathbf{6}(250 \mathrm{mg}, 0.63 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.3 \mathrm{~mL})$ was added NCS ($85 \mathrm{mg}, 0.63 \mathrm{mmol}$) at room temperature under argon atmosphere. The solution was stirred for 1 h , and then the solvent was removed under reduced pressure. The residue was purified by flash chromatography (5% to 10% EtOAc in hexane) to give 7 as slightly yellow oil ($217 \mathrm{mg}, 80 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.51(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}$), $7.37-$ $7.33(\mathrm{~m}, 4 \mathrm{H}), 7.29-7.22(\mathrm{~m}, 5 \mathrm{H}), 7.17(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.12(\mathrm{t}, 1 \mathrm{H}, J=7.0 \mathrm{~Hz}), 7.08(\mathrm{~d}$,
$2 \mathrm{H}, J=7.0 \mathrm{~Hz}), 5.38(\mathrm{~s}, 2 \mathrm{H}), 4.83(\mathrm{~d}, 1 \mathrm{H}, J=11.5 \mathrm{~Hz}), 4.49(\mathrm{~d}, 1 \mathrm{H}, J=11.5 \mathrm{~Hz}), 4.17(\mathrm{t}$, $1 \mathrm{H}, J=5.5 \mathrm{~Hz}), 2.84(\operatorname{apps}, 2 \mathrm{H}), 1.95-1.91(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 137.3$, $136.1,135.6,128.9,128.8,128.6,128.4,127.6,126.9,126.5,123.6,122.3,120.2,118.4$, $118.4,111.0,109.9,72.4,67.6,47.0,33.0,25.0,23.5$; IR (neat) $3060,3031,2928,2865$, $1456,1334,1102,739,697 \mathrm{~cm}^{-1}$; HRMS (EI) m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{OCl}[\mathrm{M}]^{+} 428.1655$, found 428.1647 .

5-(1-Benzyl-2-((triisopropylsilyl)oxy)-1H-indol-3-yl)-2-

 (benzyloxy)pentanenitrile (8)To a solution of $6(135 \mathrm{mg}, 0.34 \mathrm{mmol})$ in $\mathrm{AcOH} /$ concentrated HCl $(16.3 \mathrm{~mL}, 4: 1)$ was added DMSO $(468 \mu \mathrm{~L}, 6.8 \mathrm{mmol})$ dropwise at room temperature. The solution was stirred for 1.5 hours, and then poured into saturated NaHCO_{3} solution. The mixture was extracted with EtOAc $(2 x)$, and the combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent under reduced pressure, the residue was purified by chromatography (10% to $30 \% \mathrm{EtOAc}$ in hexane) to give the oxindole as yellow oil ($84 \mathrm{mg}, 60 \%$). To a solution of the oxindole ($838 \mathrm{mg}, 2.04 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(17 \mathrm{~mL})$ under argon at $0{ }^{\circ} \mathrm{C}$ were added $\mathrm{Et}_{3} \mathrm{~N}(566 \mu \mathrm{~L}, 4.08 \mathrm{mmol})$ and $\operatorname{TIPSOTf}(553 \mu \mathrm{~L}, 2.04 \mathrm{mmol})$. The ice bath was removed and the solution was stirred at rt for 1.5 h . The reaction was quenched with saturated NaHCO_{3} solution. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{x})$, and then the combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The mixture was filtered and concentrated, then the resulting residue was purified by flash chromatography (4% to $10 \% \mathrm{EtOAc}$ in hexane with $0.5 \% \mathrm{Et}_{3} \mathrm{~N}$) to give 8 as a slightly yellow oil ($1.09 \mathrm{~g}, 95 \%$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40(\mathrm{~d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 7.38-7.32(\mathrm{~m}, 5 \mathrm{H}), 7.24(\mathrm{app} \mathrm{d}$, $2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.20(\mathrm{~d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 7.06-6.98(\mathrm{~m}, 5 \mathrm{H}), 5.22(\mathrm{~s}, 2 \mathrm{H}), 4.80(\mathrm{~d}, 1 \mathrm{H}, J$ $=11.6 \mathrm{~Hz}), 4.46(\mathrm{~d}, 1 \mathrm{H}, J=11.6 \mathrm{~Hz}), 4.15(\mathrm{t}, 1 \mathrm{H}, J=6.0 \mathrm{~Hz}), 2.73(\mathrm{t}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz})$, 1.99-1.85 (m, 4H), 1.27 (septet, $3 \mathrm{H}, J=7.6 \mathrm{~Hz}), 1.08(\mathrm{~d}, 18 \mathrm{H}, J=7.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 145.2,137.8,136.1,131.6,128.6,128.6,128.2,127.4,127.1,126.3$, $119.7,119.4,118.4,117.5,109.2,93.1,72.2,67.8,45.1,33.5,25.5,23.2,17.9,13.8$; IR (neat) $3061,3031,2946,2867,1620,1578,1469,1414,1339,1008,769,737 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{36} \mathrm{H}_{47} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$567.3407, found 567.3363.

Reagents and conditions
a) $\mathrm{PhNHNH}_{2}, \mathrm{HOAc}, 105{ }^{\circ} \mathrm{C}, 61 \%$. b) $\mathrm{NCS}, \mathrm{CCl}_{4}$. c) $\mathrm{NaH}, \mathrm{THF}$, then MOMCI, 63\% (two steps).
Scheme 1. Synthesis of N-methoxymethyl indole substrate.

2-(Benzyloxy)-5-(2-chloro-1-(methoxymethyl)-1H-indol-3yl)pentanenitrile (16)
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.49(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.43(\mathrm{~d}, 1 \mathrm{H}, J=$ $8.0 \mathrm{~Hz}), 7.36-7.35(\mathrm{~m}, 4 \mathrm{H}), 7.24(\mathrm{~d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 7.17(\mathrm{t}, 1 \mathrm{H}, J=7.2$ $\mathrm{Hz}), 5.52(\mathrm{~s}, 2 \mathrm{H}), 4.83(\mathrm{~d}, 1 \mathrm{H}, J=11.4 \mathrm{~Hz}), 4.50(\mathrm{~d}, 1 \mathrm{H}, J=11.4 \mathrm{~Hz})$, $4.17(\mathrm{t}, 1 \mathrm{H}, J=6.0 \mathrm{~Hz}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 2.80(\mathrm{t}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}), 1.92-1.88$ $(\mathrm{m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 136.0,135.9,128.7,128.5,128.3,127.1,123.3$, 122.7, 120.8, 118.4, 118.3, 112.0, 109.9, 73.9, 72.3, 67.5, 56.1, 32.9, 24.8, 23.3; IR (neat) 3032, 2935, 2360, 2340, 1455, 1322, 1099, 742, $698 \mathrm{~cm}^{-1}$; HRMS (EI) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Cl}[\mathrm{M}]^{+} 382.1448$, found 382.1449.

Reagents and conditions
a) $m-\mathrm{CIPhNHNH} 2 \cdot \mathrm{HCl}, \mathrm{HOAc}$, reflux, $45 \%, 5: 4$ mixture of products. b) $\mathrm{NCS}, \mathrm{CCl}_{4}$. c) NaH , THF, then MOMCI, 43\% for 21, 47\% for 23 (two steps).
Scheme 2. Preparation of chloroindole substrates.

2-(Benzyloxy)-5-(2,6-dichloro-1-(methoxymethyl)-1H-indol-3yl)pentanenitrile (21)
${ }^{1} H$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.43(\mathrm{~d}, 1 \mathrm{H}, J=1.5 \mathrm{~Hz}), 7.40-7.35(\mathrm{~m}$, $6 \mathrm{H}), 7.13(\mathrm{dd}, 1 \mathrm{H}, J=1.5,8.4 \mathrm{~Hz}), 5.47(\mathrm{~s}, 2 \mathrm{H}), 4.83(\mathrm{~d}, 1 \mathrm{H}, J=11.7$ $\mathrm{Hz}), 4.50(\mathrm{~d}, 1 \mathrm{H}, J=11.4 \mathrm{~Hz}), 4.16(\mathrm{t}, 1 \mathrm{H}, J=5.7 \mathrm{~Hz}), 3.29(\mathrm{~s}, 3 \mathrm{H})$, $2.77(\mathrm{t}, 2 \mathrm{H}, J=6.3 \mathrm{~Hz}), 1.89-1.88(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.2,136.0,128.8,128.6,128.4,125.7,123.9,121.6,119.4,118.3,112.2,110.2,74.1$, $72.4,67.5,56.2,33.0,24.8,23.4$; IR (neat) 3064, 3032, 2935, 2868, 1465, 1394, 1334, 1099, 913, 807, $741 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Cl}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$ 439.0956 , found 439.0959 .

2-(Benzyloxy)-5-(2,4-dichloro-1-(methoxymethyl)-1H-indol-3yl)pentanenitrile (23)
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.32(\mathrm{~m}, 6 \mathrm{H}), 7.14(\mathrm{app} \mathrm{d}, 1 \mathrm{H}, J$ $=1.5 \mathrm{~Hz}), 7.13(\mathrm{app} \mathrm{s}, 1 \mathrm{H}), 5.51(\mathrm{~s}, 2 \mathrm{H}), 4.84(\mathrm{~d}, 1 \mathrm{H}, J=11.7 \mathrm{~Hz})$, $4.52(\mathrm{~d}, 1 \mathrm{H}, J=11.4 \mathrm{~Hz}), 4.20(\mathrm{t}, 1 \mathrm{H}, J=6.3 \mathrm{~Hz}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 3.02$ $(\mathrm{t}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}), 2.03-1.87(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 137.2, 136.1, 128.7, 128.4, 128.3, 125.6, 125.0, 123.9, 123.1, 122.0, 118.4, 112.4, 108.7, $74.2,72.3,67.7,56.1,32.9,26.5,24.0$; IR (neat) 3062, 3031, 2939, 2867, 1457, 1430, 1323, 1187, 1102, 914, $739 \mathrm{~cm}^{-1}$; HRMS (EI) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Cl}_{2}[\mathrm{M}]^{+}$ 416.1058, found 416.1054.

N-((1S,2R,3R)-1'-Benzyl-3-(benzyloxy)-2'-oxospiro[cyclohexane-1,3'-indolin]-2-yl)-3-phenylpropanamide (11)
To a solution of $7(98 \mathrm{mg}, 0.23 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.3 \mathrm{~mL})$ was added $\mathrm{Cp}_{2} \mathrm{Zr}(\mathrm{H}) \mathrm{Cl}(74 \mathrm{mg}, 0.29 \mathrm{mmol})$. The reaction mixture was stirred for 15 min . Hydrocinnamoyl chloride ($43 \mu \mathrm{~L}, 0.29 \mathrm{mmol}$) was added and the mixture was stirred overnight. The mixture was quenched with saturated NaHCO_{3} solution, and extracted with EtOAc (3x). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by column chromatography (15% EtOAc in hexane to 100% $\mathrm{EtOAc})$ to give product as two diastereomers ($103 \mathrm{mg}, 83 \%, 7.3: 1$). The faster eluting product 11 was the major diastereomer and was isolated as a white solid (mp $138.7^{\circ} \mathrm{C}$ $140.8{ }^{\circ} \mathrm{C}$): ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $7.39(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}$), 7.32-7.06 (m, 15H), $6.90(\mathrm{~d}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}), 6.70(\mathrm{~d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 4.92(\mathrm{~d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz}), 4.86(\mathrm{~d}, 1 \mathrm{H}$, $J=9.9 \mathrm{~Hz}), 4.79(\mathrm{~d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz}), 4.67(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 4.62(\mathrm{t}, 1 \mathrm{H}, J=9.9 \mathrm{~Hz})$, $4.45(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 4.24(\mathrm{dt}, 1 \mathrm{H}, J=4.5,10.8 \mathrm{~Hz}), 2.58-2.37(\mathrm{~m}, 3 \mathrm{H}), 2.19(\mathrm{qt}, 1 \mathrm{H}$, $J=3.9,13.2 \mathrm{~Hz}), 2.07-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.53(\mathrm{~m}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.7,171.9,142.0,141.1,139.2,136.3,131.8,129.0,128.5,128.5$, 128.2, 127.9, 127.7, 127.4, 126.1, 123.9, 123.3, 108.6, 76.3, 90.9, 55.4, 54.4, 43.6, 38.1, $35.2,31.3,31.0,19.0$; IR (neat) 3323, 3060, 3029, 2931, 2864, 1699, 1655, 1611, 1543, 1492, 1366, 1027, 1100, 1028, $741 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{36} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+} 567.2624$, found 567.2648.

The slower eluting product was repurified by preparative TLC (10% EtOAc in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give minor diastereomer $\mathbf{1 2}$ as a white solid (mp $\left.171.2{ }^{\circ} \mathrm{C}-175.0^{\circ} \mathrm{C}\right):$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 7.60(\mathrm{~d}, 1 \mathrm{H}, J=$ $7.2 \mathrm{~Hz}), 7.29-7.19(\mathrm{~m}, 13 \mathrm{H}), 7.14-7.11(\mathrm{~m}, 1 \mathrm{H}), 7.08-7.03(\mathrm{~m}, 3 \mathrm{H})$, $6.88(\mathrm{~d}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}), 6.86(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 4.97(\mathrm{~d}, 1 \mathrm{H}, J=$ $15.6 \mathrm{~Hz}), 4.68(\mathrm{~d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz}), 4.62(\mathrm{~d}, 1 \mathrm{H}, J=11.6 \mathrm{~Hz}), 4.47$ $(\mathrm{t}, 1 \mathrm{H}, J=10.4 \mathrm{~Hz}), 4.45(\mathrm{~d}, 1 \mathrm{H}, J=11.6 \mathrm{~Hz}), 3.84(\mathrm{dt}, 1 \mathrm{H}, J=4.4,10.8 \mathrm{~Hz}), 2.55(\mathrm{t}, 2 \mathrm{H}$, $J=8.4 \mathrm{~Hz}), 2.36(\operatorname{app~d}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}), 2.21-2.13(\mathrm{~m}, 1 \mathrm{H}), 2.06-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.94-$ $1.85(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.50-1.42(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO) $\delta 177.2$, $171.2,142.9,141.4,139.3,136.6,130.0,128.4,128.2,128.0,127.9,127.2,125.9,125.7$, $121.9,108.9,77.4,70.6,54.8,54.0,42.6,36.9,33.7,31.1,30.9,19.7$; IR (neat) 3272 , 3061, 3028, 2925, 2854, 1712, 1650, 1609, 1546, 1464, $1363 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{36} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 567.2624$, found 567.2604.

N-((1S,2R,3R)-1'-Benzyl-3-(benzyloxy)-2'-oxospiro[cyclohexane-1,3'-indolin]-2-yl)isobutyramide (13)
To a solution of $7(104 \mathrm{mg}, 0.24 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.4 \mathrm{~mL})$ was added $\mathrm{Cp}_{2} \mathrm{Zr}(\mathrm{H}) \mathrm{Cl}(78 \mathrm{mg}, 0.30 \mathrm{mmol})$. The reaction mixture was stirred for 15 min . Isobutyryl chloride ($31 \mu \mathrm{~L}, 0.30 \mathrm{mmol}$) was added and the mixture was stirred overnight. The reaction was quenched with saturated NaHCO_{3} solution, and extracted with EtOAc (3x). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by column chromatography (15% EtOAc in hexane to $100 \% \mathrm{EtOAc}$) to give product as two diastereomers ($100 \mathrm{mg}, 87 \%$, 3.6:1). The faster eluting product was the major diatereomer $\mathbf{1 3}$ and was isolated as a pale yellow oil: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}$), 7.30-7.27 (m, $10 \mathrm{H}), 7.13(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.05(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 6.70(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 4.98(\mathrm{~d}$, $1 \mathrm{H}, J=15.5 \mathrm{~Hz}), 4.83(\mathrm{~d}, 1 \mathrm{H}, J=9.5 \mathrm{~Hz}), 4.78(\mathrm{~d}, 1 \mathrm{H}, J=15.5 \mathrm{~Hz}), 4.70(\mathrm{~d}, 1 \mathrm{H}, J=$ $12.0 \mathrm{~Hz}), 4.60(\mathrm{t}, 1 \mathrm{H}, J=10.0 \mathrm{~Hz}), 4.49(\mathrm{t}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 4.28(\mathrm{dt}, 1 \mathrm{H}, J=4.0,10.5$ $\mathrm{Hz}), 2.40(\mathrm{~d}, 1 \mathrm{H}, J=11.5 \mathrm{~Hz}), 2.23(\mathrm{app} \mathrm{q}, 1 \mathrm{H}, J=13.5 \mathrm{~Hz}), 1.90(\mathrm{t}, 1 \mathrm{H}, J=13.5 \mathrm{~Hz})$, $1.81(\operatorname{app~d}, 1 \mathrm{H}, J=13.5 \mathrm{~Hz}), 1.74-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.57(\mathrm{~m}, 1 \mathrm{H}), 0.78(\mathrm{~d}, 3 \mathrm{H}, J=6.5$ $\mathrm{Hz}), 0.42(\mathrm{~d}, 3 \mathrm{H}, J=6.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.8,176.5,142.0,139.2$, 136.4, 131.6, 129.0, 128.4, 128.0, 127.7, 127.6, 127.5, 124.0, 123.3, 108.4, 76.2, 71.0, $55.0,54.6,43.7,35.9,34.9,31.2,19.6,19.1,18.9$; IR (neat) 3337, 3060, 3030, 2867, 1694, 1611, 1491, 1466, 1365, 1208, 1173, 1098, 740, $698 \mathrm{~cm}^{-1}$; HRMS (EI) m / z calcd for $\mathrm{C}_{31} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}]^{+} 482.2569$, found 482.2569 .

The slower eluting product was minor diastereomer 25 and was
 isolated as a white solid (mp $\left.158.1^{\circ} \mathrm{C}-161.2{ }^{\circ} \mathrm{C}\right):{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, DMSO) $\delta 7.59(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.27-7.22(\mathrm{~m}, 11 \mathrm{H}), 7.07(\mathrm{t}, 1 \mathrm{H}, J$ $=7.2 \mathrm{~Hz}), 6.84(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 6.70(\mathrm{~d}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}), 4.86(\mathrm{~d}$, $1 \mathrm{H}, J=15.9 \mathrm{~Hz}), 4.78(\mathrm{~d}, 1 \mathrm{H}, J=15.9 \mathrm{~Hz}), 4.62(\mathrm{~d}, 1 \mathrm{H}, J=11.4 \mathrm{~Hz})$, $4.47(\mathrm{~d}, 1 \mathrm{H}, J=11.4 \mathrm{~Hz}), 4.40(\mathrm{t}, 1 \mathrm{H}, J=10.2 \mathrm{~Hz}), 3.86(\mathrm{dt}, 1 \mathrm{H}, J=4.5,10.5 \mathrm{~Hz}), 2.37$ (app d, 1H, $J=14.1 \mathrm{~Hz}$), 2.12 (quintet, $1 \mathrm{H}, J=6.9 \mathrm{~Hz}$), $1.90-1.76(\mathrm{~m}, 3 \mathrm{H}), 1.47-1.41$ (m, $2 \mathrm{H}), 0.74(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}), 0.70(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}$) δ 177.2, 175.6, 143.0, 139.2, 136.4, 130.0, 128.5, 127.9, 127.2, 127.0, 126.9, 125.9, 121.8, $108.8,77.1,70.5,54.4,54.1,42.7,33.8,33.5,31.0,19.8,19.6,18.9$; IR (neat) 3345,3060 , 3032, 2934, 2870, 1712, 1678, 1609, 1489, 1463, 1364, 1209, 1105, 743, $697 \mathrm{~cm}^{-1}$; HRMS (EI) m / z calcd for $\mathrm{C}_{31} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{3}[M]^{+} 482.2569$, found 482.2579 .

N-((1S,2R,3R)-1'-Benzyl-3-(benzyloxy)-2'-oxospiro[cyclohexane-1,3'-indolin]-2-yl)-2-methoxyacetamide (14)

To a solution of $7(118 \mathrm{mg}, 0.28 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.8 \mathrm{~mL})$ was added $\mathrm{Cp}_{2} \mathrm{Zr}(\mathrm{H}) \mathrm{Cl}(89 \mathrm{mg}, 0.34 \mathrm{mmol})$. The reaction mixture was stirred for 15 min . Methoxyacetyl chloride ($31 \mu \mathrm{~L}, 0.34 \mathrm{mmol}$) was added and the mixture was stirred overnight. The reaction was quenched with saturated NaHCO_{3} solution, and extracted with EtOAc (3x). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by column chromatography ($15 \% \mathrm{EtOAc}$ in hexane to $100 \% \mathrm{EtOAc}$) to give product as two diastereomers ($61 \mathrm{mg}, 46 \%, 9.1: 1$). The faster eluting product was major diastereomer $\mathbf{1 4}$ and was isolated as a white solid (mp $121.0{ }^{\circ} \mathrm{C}-123.8^{\circ} \mathrm{C}$): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $7.38(\mathrm{~d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 7.34-7.25(\mathrm{~m}, 10 \mathrm{H}), 7.11(\mathrm{t}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.05(\mathrm{~d}, 1 \mathrm{H}, J=7.2$
$\mathrm{Hz}), 6.61(\mathrm{~d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 6.22(\mathrm{~d}, 1 \mathrm{H}, J=10.4 \mathrm{~Hz}), 4.99(\mathrm{~d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz}), 4.83$ $(\mathrm{d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz}), 4.72(\mathrm{~d}, 1 \mathrm{H}, J=11.6 \mathrm{~Hz}), 4.64(\mathrm{t}, 1 \mathrm{H}, J=10.4 \mathrm{~Hz}), 4.52(\mathrm{~d}, 1 \mathrm{H}, J=$ $11.6 \mathrm{~Hz}), 4.31(\mathrm{dt}, 1 \mathrm{H}, J=4.4,10.8 \mathrm{~Hz}), 3.61(\mathrm{~d}, 1 \mathrm{H}, J=15.2 \mathrm{~Hz}), 3.49(\mathrm{~d}, 1 \mathrm{H}, J=15.2$ Hz), $3.07(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~d}, 1 \mathrm{H}, J=12.8 \mathrm{~Hz}), 2.23(\mathrm{qt}, 1 \mathrm{H}, J=3.6,13.6 \mathrm{~Hz}$), 1.91 (app dt, $1 \mathrm{H}, J=4.0,14.0 \mathrm{~Hz}$), 1.84-1.80 (m, 1H), 1.71 (app dquint, $1 \mathrm{H}, J=3.2,13.6 \mathrm{~Hz}$), $1.60-$ $1.54(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 178.3,169.5,141.9,139.0,135.8,131.6$, $128.8,128.2,128.0,127.6,127.3,127.2,127.1,123.5,123.1,108.6,71.6,71.2,58.8,54.8$, $54.2,43.6,35.5,30.9,18.8$; IR (neat) 3063, 3032, 2931, 1695, 1613, 1519, 1366, 1204, $1110,1027,741 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 507.2260$, found 507.2279.

The slower eluting syn-diastereomer was repurified by preparative TLC (10% EtOAc in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37$ (d, $1 \mathrm{H}, J=7.2 \mathrm{~Hz}$), 7.33-7.24 (m, 10H), $7.16(\mathrm{t}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}$), $7.07(\mathrm{~d}, 1 \mathrm{H}, J=10.4 \mathrm{~Hz}), 6.97(\mathrm{t}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 6.70(\mathrm{~d}, 1 \mathrm{H}, J=$ $7.6 \mathrm{~Hz}), 5.01(\mathrm{~d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz}), 4.80(\mathrm{~d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz}), 4.60(\mathrm{dd}, 1 \mathrm{H}, J=4.0,10.0$ Hz), $4.57(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 4.44(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 4.05$ (quintet, $1 \mathrm{H}, J=4.0 \mathrm{~Hz}$), $3.89(\mathrm{~d}, 1 \mathrm{H}, J=14.8 \mathrm{~Hz}), 3.82(\mathrm{~d}, 1 \mathrm{H}, J=14.8 \mathrm{~Hz}), 2.18-2.12(\mathrm{~m}, 1 \mathrm{H}), 2.10-2.03(\mathrm{~m}$, $1 \mathrm{H}), 1.99-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.66-1.63(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, CDCl_{3}) $\delta 176.8,169.9,142.6,138.4,136.1,132.3,129.0,128.5,128.1,127.8,127.7$, $127.4,124.9,122.1,109.5,73.6,72.2,70.5,59.5,51.3,49.4,44.1,29.9,27.3,19.0$; IR (neat) 3061, 2938, 1711, 1681, 1610, 1465, 1360, 1110, 1026, $918 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 507.2260$, found 507.2239.

N-((1S,2R,3R)-1'-Benzyl-3-(benzyloxy)-2'-oxospiro[cyclohexane-1,3'-indolin]-2-yl)acrylamide (15)
To a solution of $7(109 \mathrm{mg}, 0.25 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{~mL})$ was added $\mathrm{Cp}_{2} \mathrm{Zr}(\mathrm{H}) \mathrm{Cl}(82 \mathrm{mg}, 0.32 \mathrm{mmol})$. The reaction mixture was stirred for 15 min . Acryloyl chloride ($26 \mu \mathrm{~L}, 0.32 \mathrm{mmol}$) was added and the mixture was stirred overnight. The reaction was quenched with saturated NaHCO_{3} solution, and extracted with EtOAc (3x). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by column chromatography (15% EtOAc in hexane to $100 \% \mathrm{EtOAc}$) to give product as two diastereomers ($62 \mathrm{mg}, 53 \%$, 20:1). The faster eluting product was major diastereomer 15 and was isolated as a white solid (mp $157.0{ }^{\circ} \mathrm{C}-161.2{ }^{\circ} \mathrm{C}$): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}$), $7.32-7.21(\mathrm{~m}, 10 \mathrm{H}), 7.13(\mathrm{dt}, 1 \mathrm{H}, J=3.6,7.6 \mathrm{~Hz}), 7.07(\mathrm{dt}, 1 \mathrm{H}, J=3.6,7.6 \mathrm{~Hz}), 6.67(\mathrm{~d}$, $1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 5.95(\mathrm{dd}, 1 \mathrm{H}, J=3.6,16.8 \mathrm{~Hz}), 5.60(\mathrm{dd}, 1 \mathrm{H}, J=10.4,17.2 \mathrm{~Hz}), 5.43$ (dd, $1 \mathrm{H}, J=3.6,7.6 \mathrm{~Hz}), 4.99-4.95(\mathrm{~m}, 2 \mathrm{H}), 4.80(\mathrm{~d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz}), 4.69(\mathrm{~d}, 1 \mathrm{H}, J=$ $12.0 \mathrm{~Hz}), 4.67(\mathrm{t}, 1 \mathrm{H}, J=10.0 \mathrm{~Hz}), 4.47(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 4.25(\mathrm{dt}, 1 \mathrm{H}, J=4.8,10.4$ Hz), 2.41 (app d, $1 \mathrm{H}, J=3.2,12.8 \mathrm{~Hz}$), $2.18(\mathrm{qt}, 1 \mathrm{H}, J=4.0,13.6 \mathrm{~Hz}$), $1.90(\mathrm{dt}, 1 \mathrm{H}, J=$ $4.0,14.0 \mathrm{~Hz}$), 1.81 (app d, $1 \mathrm{H}, J=12.8 \mathrm{~Hz}$), 1.72 (app dt, $1 \mathrm{H}, J=3.2,13.6 \mathrm{~Hz}$), 1.65$1.55(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.7,165.4,142.0,139.1,136.2,131.8$, 130.8, 129.1, 128.5, 128.2, 127.9, 127.8, 127.2, 126.4, 123.8, 123.5, 108.7, 76.6, 91.0, 55.4, 54.4, 43.5, 35.4, 30.9, 19.1; IR (neat) 3289, 3060, 3031, 2930, 2863, 1701, 1611, 1540, 1492, 1365, 1206, 986, $739 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+} 489.2154$, found 489.2176 .

The slower eluting product was repurified by preparative TLC (10 \% EtOAc in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give minor diastereomer 27 as a white solid (mp $222.6^{\circ} \mathrm{C}-226.9^{\circ} \mathrm{C}$): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 7.63(\mathrm{~d}, 1 \mathrm{H}, J=$ $7.6 \mathrm{~Hz}), 7.32-7.17$ (m, 12H), 7.07 (d, 1H, $J=7.2 \mathrm{~Hz}$), 6.78 (d, 1H, $J=$ $8.0 \mathrm{~Hz}), 6.14(\mathrm{dd}, 1 \mathrm{H}, J=9.6,16.8 \mathrm{~Hz}), 6.01(\mathrm{dd}, 1 \mathrm{H}, J=2.0,16.8 \mathrm{~Hz}), 5.52(\mathrm{dd}, 1 \mathrm{H}, J=$ $2.4,10.0 \mathrm{~Hz}), 5.08(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}), 4.63-4.55(\mathrm{~m}, 3 \mathrm{H}), 4.46(\mathrm{~d}, 1 \mathrm{H}, J=11.6 \mathrm{~Hz})$, $3.90(\mathrm{dt}, 1 \mathrm{H}, J=4.0,10.8 \mathrm{~Hz}), 2.38(\operatorname{app~d}, 1 \mathrm{H}, J=11.6 \mathrm{~Hz}), 1.92-1.78(\mathrm{~m}, 3 \mathrm{H}), 1.52-$ 1.43 (m, 2H); ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO) δ 177.1, 164.6, 142.8, 139.2, 136.2, 132.0, 129.9 , 128.5, 128.0, 128.0, 127.2, 127.1, 126.8, 126.0, 125.0, 121.9, 109.0, 77.3, 70.7, $55.0,54.0,42.5,33.8,31.1,30.7,19.7$; IR (neat) 3245, 3061, 2934, 2856, 1709, 1658, 1610, 1551, 1465, 1361, $734 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$ 489.2154 , found 489.2141 .

N-((1S,2R,3R)-3-(Benzyloxy)-1'-(methoxymethyl)-2'-oxospiro[cyclohexane-1,3'-indolin]-2-yl)-3-phenylpropanamide (17)

To a solution of $\mathbf{1 6}(83 \mathrm{mg}, 0.26 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.6 \mathrm{~mL})$ was added $\mathrm{Cp}_{2} \mathrm{Zr}(\mathrm{H}) \mathrm{Cl}(81 \mathrm{mg}, 0.31 \mathrm{mmol})$. The reaction mixture was stirred for 15 min . Hydrocinnamoyl chloride ($46 \mu \mathrm{~L}, 0.31 \mathrm{mmol}$) was added and the mixture was stirred overnight. The reaction was quenched with saturated NaHCO_{3} solution, and extracted with EtOAc (3x). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by column chromatography ($15 \% \mathrm{EtOAc}$ in hexane to $100 \% \mathrm{EtOAc}$) to give product as two diastereomers ($83 \mathrm{mg}, 64 \%, 15: 1$). The faster eluting product was major diastereomer 17 and was isolated as a white solid (mp $163.0{ }^{\circ} \mathrm{C}-164.8^{\circ} \mathrm{C}$): ${ }^{1} \mathrm{H}$ NMR $(300$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $7.41(\mathrm{~d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}$), 7.31-7.23 (m, 6H), 7.20-7.12 (m, 4H), 6.95-6.91 (m, 3H), $5.09(\mathrm{~d}, 1 \mathrm{H}, J=10.5 \mathrm{~Hz}), 5.04(\mathrm{~d}, 1 \mathrm{H}, J=10.5 \mathrm{~Hz}), 4.94(\mathrm{~d}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz})$, 4.67 (d, $1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 4.62(\mathrm{t}, 1 \mathrm{H}, J=9.9 \mathrm{~Hz}), 4.44(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 4.19(\mathrm{dt}, 1 \mathrm{H}$, $J=4.5,10.2 \mathrm{~Hz}$), 3.27 ($\mathrm{s}, 3 \mathrm{H}$), 2.55 (app dt, $1 \mathrm{H}, J=3.0,9.5 \mathrm{~Hz}$), 2.38 (app d, $1 \mathrm{H}, J=$ $17.4 \mathrm{~Hz}), 2.19-2.08(\mathrm{~m}, 1 \mathrm{H}), 2.06-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.87(\mathrm{dd}, 1 \mathrm{H}, J=3.6,12.9 \mathrm{~Hz}), 1.80-$ $1.75(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.55(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.4,172.0,141.1$, 139.1, 131.3, 128.6, 128.5, 128.3, 128.2, 127.7, 127.6, 124.0, 123.8, 109.0, 76.4, 71.2, $71.0,56.3,55.2,55.0,38.4,35.7,31.5,30.9,19.0$; IR (neat) 3251, 3058, 2932, 2865, $1709,1645,1551,1492,1362,1088,743 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{31} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+} 521.2416$, found 521.2448.

The slower eluting product was isolated as a white solid (mp $193.1^{\circ} \mathrm{C}-196.8^{\circ} \mathrm{C}$): ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO) $\delta 7.62(\mathrm{~d}, 1 \mathrm{H}$, $J=7.5 \mathrm{~Hz}), 7.35(\mathrm{~d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 7.27-7.07(\mathrm{~m}, 10 \mathrm{H}), 7.02$ (app d, 1H, $J=6.9 \mathrm{~Hz}$), $6.92(\mathrm{~d}, 1 \mathrm{H}, J=9.9 \mathrm{~Hz}), 4.99(\mathrm{~s}, 2 \mathrm{H})$, $4.62(\mathrm{~d}, 1 \mathrm{H}, J=11.7 \mathrm{~Hz}), 4.45(\mathrm{~d}, 1 \mathrm{H}, J=11.7 \mathrm{~Hz}), 4.40(\mathrm{t}, 1 \mathrm{H}$, $J=10.2 \mathrm{~Hz}), 3.83(\mathrm{dt}, 1 \mathrm{H}, J=3.9,10.5 \mathrm{~Hz}), 3.10(\mathrm{~s}, 3 \mathrm{H}), 2.36$ (app d, $1 \mathrm{H}, J=12.3 \mathrm{~Hz}), 2.11-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.75(\mathrm{~m}, 4 \mathrm{H}), 1.47-1.40(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO) $\delta 177.7,171.2,142.2,141.4,139.3,129.6,128.1,128.0,127.9$, $127.2,125.9,125.7,122.3,109.3,77.2,70.7,70.6,55.3,54.8,54.3,36.9,33.7,31.1,31.0$, 19.6; IR (neat) $3260,3061,3025,2935,2855,1723,1648,1549,1465,1357,1082,741$ cm^{-1}; HRMS (ESI) m / z calcd for $\mathrm{C}_{31} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 521.2416$, found 521.2440 .

N-((1S,2R,3R)-3-(Benzyloxy)-1'-(methoxymethyl)-2'-oxospiro[cyclohexane-1,3'-indolin]-2-yl)isobutyramide (18)
To a solution of $16(99 \mathrm{mg}, 0.26 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.6 \mathrm{~mL})$ was added $\mathrm{Cp}_{2} \mathrm{Zr}(\mathrm{H}) \mathrm{Cl}(84 \mathrm{mg}, 0.32 \mathrm{mmol})$. The reaction mixture was stirred for 15 min . Isobutyryl chloride ($34 \mu \mathrm{~L}, 0.32 \mathrm{mmol}$) was added and the mixture was stirred overnight. The reaction was quenched with saturated NaHCO_{3} solution, and extracted with EtOAc (3x). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by column chromatography ($15 \% \mathrm{EtOAc}$ in hexane to $100 \% \mathrm{EtOAc}$) to give the product as two diastereomers ($59 \mathrm{mg}, 51 \%, 11.8: 1$). The faster eluting isomer was major product 18: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}$), 7.37-7.30 (m, 5 H$), 7.22(\mathrm{t}, 1 \mathrm{H}, J=$ $8.0 \mathrm{~Hz}), 7.12(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 6.92(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 5.12(\mathrm{~d}, 1 \mathrm{H}, J=10.5 \mathrm{~Hz}), 5.09$ $(\mathrm{d}, 1 \mathrm{H}, J=11.0 \mathrm{~Hz}), 4.90(\mathrm{~d}, 1 \mathrm{H}, J=10.0 \mathrm{~Hz}), 4.69(\mathrm{~d}, 1 \mathrm{H}, J=11.5 \mathrm{~Hz}), 4.60(\mathrm{t}, 1 \mathrm{H}, J=$ $10.0 \mathrm{~Hz}), 4.48(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 4.22(\mathrm{dt}, 1 \mathrm{H}, J=4.5,10.5 \mathrm{~Hz}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{~d}$, $1 \mathrm{H}, J=9.5 \mathrm{~Hz}), 2.15(\mathrm{q}, 1 \mathrm{H}, J=13.5 \mathrm{~Hz}), 1.93-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.79(\operatorname{app} \mathrm{~d}, 1 \mathrm{H}, J=14.0$ Hz), $1.70(\mathrm{app} \mathrm{d}, 1 \mathrm{H}, J=14.0 \mathrm{~Hz}), 1.63-1.60(\mathrm{~m}, 1 \mathrm{H}), 0.84(\mathrm{~d}, 3 \mathrm{H}, J=6.5 \mathrm{~Hz}), 0.60(\mathrm{~d}$, $3 \mathrm{H}, J=6.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.6,176.7,141.3,139.2,131.2,128.6$, $128.5,127.7,127.6,124.2,123.8,108.9,76.3,71.4,71.1,56.6,55.2,54.9,36.0,35.3$, 31.1, 19.9, 19.1, 19.0; IR (neat) 3333, 3059, 2931, 2869, 1710, 1667, 1523, 1490, 1467, 1361, 1089, $744 \mathrm{~cm}^{-1}$; HRMS (EI) m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}]^{+} 436.2362$, found 436.2366 .

Slower eluting minor product: ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO) $\delta 7.60$ (d, $1 \mathrm{H}, J=7.5 \mathrm{~Hz}$), $7.34(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.29-7.22(\mathrm{~m}, 5 \mathrm{H})$, $7.13(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.07(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 6.68(\mathrm{~d}, 1 \mathrm{H}, J=$ $10.0 \mathrm{~Hz}), 4.99$ (s, 2H), $4.60(\mathrm{~d}, 1 \mathrm{H}, J=11.5 \mathrm{~Hz}), 4.46(\mathrm{~d}, 1 \mathrm{H}, J=$ $11.5 \mathrm{~Hz}), 4.33(\mathrm{t}, 1 \mathrm{H}, J=10.0 \mathrm{~Hz}), 3.83(\mathrm{dt}, 1 \mathrm{H}, J=5.0,11.5 \mathrm{~Hz})$, $3.14(\mathrm{~s}, 3 \mathrm{H}), 2.35(\operatorname{app~d}, 1 \mathrm{H}, J=6.0 \mathrm{~Hz}), 2.09$ (quintet, $1 \mathrm{H}, J=6.5 \mathrm{~Hz}$), 1.87-1.81 (m, $2 \mathrm{H}), 1.74(\mathrm{~m}, 1 \mathrm{H}), 1.45-1.41(\mathrm{~m}, 2 \mathrm{H}), 0.74(\mathrm{~d}, 3 \mathrm{H}, J=6.5 \mathrm{~Hz}), 0.67(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz})$; ${ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO) $\delta 177.8,175.6,142.3,139.2,129.6,128.0,127.9,127.2$, $127.1,125.9,122.3,109.1,77.0,70.7,70.5,55.6,54.5,54.3,33.6,33.5,31.0,19.7,19.6$, 18.9; IR (neat) $3322,3060,2936,2871,1723,1659,1527,1465,1358,1241,1095,915$, $742,698 \mathrm{~cm}^{-1}$; HRMS (EI) m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}]^{+} 436.2362$, found 436.2360 .

N-((1S,2R,3R)-3-(Benzyloxy)-1'-(methoxymethyl)-2'-

 oxospiro[cyclohexane-1,3'-indolin]-2-yl)acrylamide (19)To a solution of $\mathbf{1 6}(98 \mathrm{mg}, 0.26 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.6 \mathrm{~mL})$ was added $\mathrm{Cp}_{2} \mathrm{Zr}(\mathrm{H}) \mathrm{Cl}(79 \mathrm{mg}, 0.31 \mathrm{mmol})$. The reaction mixture was stirred for 15 min at room temperature. Acryloyl chloride ($26 \mu \mathrm{~L}, 0.32 \mathrm{mmol}$) was added and the mixture was stirred for $30 \mathrm{~min} . \mathrm{Sc}(\mathrm{OTf})_{3}(13 \mathrm{mg}, 0.026 \mathrm{mmol})$ was added and the solution was stirred for another 1.5 hours. The reaction was quenched with saturated NaHCO_{3} solution. The mixture was extracted with EtOAc (3x), and the combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent under reduced pressure, the residue was purified by column chromatography ($15 \% \mathrm{EtOAc}$ in hexane to 100% EtOAc) to give product as two diastereomers ($49 \mathrm{mg}, 46 \%, 8.2: 1$). The faster eluting product was major diastereomer 19 and was isolated as a white solid (mp 126.5 ${ }^{\circ} \mathrm{C}-128.8^{\circ} \mathrm{C}$): ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $7.41(\mathrm{~d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 7.31-7.20(\mathrm{~m}, 6 \mathrm{H})$,
$7.12(\mathrm{t}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 6.93(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 6.01(\mathrm{~d}, 1 \mathrm{H}, J=16.8 \mathrm{~Hz}), 5.70(\mathrm{dd}, 1 \mathrm{H}$, $J=10.5,17.1 \mathrm{~Hz}), 5.45(\mathrm{~d}, 1 \mathrm{H}, J=10.2 \mathrm{~Hz}), 5.10(\mathrm{app} \mathrm{s}, 2 \mathrm{H}), 5.04(\mathrm{~d}, 1 \mathrm{H}, J=9.9 \mathrm{~Hz})$, $4.69(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 4.67(\mathrm{t}, 1 \mathrm{H}, J=10.0 \mathrm{~Hz}), 4.47(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 4.22(\mathrm{dt}$, $1 \mathrm{H}, J=4.8,10.8 \mathrm{~Hz}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{app} \mathrm{d}, 1 \mathrm{H}, J=12.3 \mathrm{~Hz}), 2.11(\mathrm{dt}, 1 \mathrm{H}, J=3.6$, $13.2 \mathrm{~Hz}), 1.89(\mathrm{dt}, 1 \mathrm{H}, J=3.6,13.8 \mathrm{~Hz}), 1.81-1.52(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.4,165.5,141.0,139.0,131.0,130.8,128.5,128.4,127.8,127.6,126.4,123.9,109.1$, $76.6,71.3,71.0,56.4,55.2,54.9,35.9,30.9,19.0$; IR (neat) 3291, 3059, 2934, 2864, 1711, 1664, 1612, 1540, 1362, 1230, 1089, 914, $744 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 443.1947$, found 443.1939.

The slower eluting product was repurified by chromatography (10% to 25% EtOAc in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to provide the minor diastereomer: ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.32-7.26(\mathrm{~m}, 6 \mathrm{H}), 7.06$ $(\operatorname{app} \mathrm{t}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}), 6.18(\mathrm{dd}, 1 \mathrm{H}, J=1.8,17.1 \mathrm{~Hz}), 6.08(\mathrm{~d}, 1 \mathrm{H}, J$ $=9.9 \mathrm{~Hz}), 6.03(\mathrm{~d}, 1 \mathrm{H}, J=9.9 \mathrm{~Hz}), 5.60(\mathrm{dd}, 1 \mathrm{H}, J=1.8,10.2 \mathrm{~Hz}), 5.15(\mathrm{~d}, 1 \mathrm{H}, J=11.1$ $\mathrm{Hz}), 5.10(\mathrm{~d}, 1 \mathrm{H}, J=11.1 \mathrm{~Hz}), 4.64(\mathrm{dd}, 1 \mathrm{H}, J=4.2,9.9 \mathrm{~Hz}), 4.55(\mathrm{~d}, 1 \mathrm{H}, J=11.7 \mathrm{~Hz})$, $4.46(\mathrm{~d}, 1 \mathrm{H}, J=11.7 \mathrm{~Hz}), 4.02$ (quintet, $1 \mathrm{H}, J=4.2 \mathrm{~Hz}$), $3.32(\mathrm{~s}, 3 \mathrm{H}), 2.17-2.11(\mathrm{~m}, 1 \mathrm{H})$, 2.06-1.96 (m, 1H), 1.91-1.82 (m, 3H), 1.69-1.64 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $177.4,165.6,141.6,138.3,132.0,131.1,128.6,128.6,128.1,127.8,126.6,124.7,122.8$, $109.8,73.7,71.6,70.7,56.4,51.7,50.2,30.6,27.4,18.6$; IR (neat) $3323,3059,2939$, $1723,1660,1610,1539,1466,1349,1240,1086,744 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 443.1947$, found 443.1955 .

N-((1S, 2R, 3R)-3-(Benzyloxy)-1'-(methoxymethyl)-2'-oxospiro[cyclohexane-1,3'-indolin]-2-yl)-3-bromopropanamide

 (20)To a solution of $\mathbf{1 6}(113 \mathrm{mg}, 0.30 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$ was added $\mathrm{Cp}_{2} \mathrm{Zr}(\mathrm{H}) \mathrm{Cl}(95 \mathrm{mg}, 0.37 \mathrm{mmol})$. The reaction mixture was stirred for 15 min . 3Bromopropionyl chloride ($37 \mu \mathrm{~L}, 0.37 \mathrm{mmol}$) was added and the mixture was stirred for 15 min , followed by addition of $\mathrm{Sc}(\mathrm{OTf})_{3}(15 \mathrm{mg}, 0.03 \mathrm{mmol})$. The solution was stirred for another 30 min , then was quenched with saturated NaHCO_{3} solution. The mixture was extracted with $\mathrm{EtOAc}\left(3 \mathrm{x}\right.$), and the combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent under reduced pressure the residue was purified by column chromatography ($15 \% \mathrm{EtOAc}$ in hexane to $100 \% \mathrm{EtOAc}$) to give the product as two diastereomers ($80 \mathrm{mg}, 54 \%, 6.7: 1$). The faster eluting product was the major diastereomer 20 and was isolated as a white solid (mp $\left.169.8^{\circ} \mathrm{C}-174.5^{\circ} \mathrm{C}\right):{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $7.33(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.30-7.21(\mathrm{~m}, 6 \mathrm{H}), 7.18(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.08(\mathrm{~d}, 1 \mathrm{H}, J=7.5$ $\mathrm{Hz}), 6.89(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 5.06(\mathrm{~s}, 2 \mathrm{H}), 5.01(\mathrm{~d}, 1 \mathrm{H}, J=9.9 \mathrm{~Hz}), 4.67(\mathrm{~d}, 1 \mathrm{H}, J=12.0$ $\mathrm{Hz}), 4.54(\mathrm{t}, 1 \mathrm{H}, J=9.9 \mathrm{~Hz}), 4.44(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 4.18(\mathrm{dt}, 1 \mathrm{H}, J=4.5,10.5 \mathrm{~Hz})$, $3.29(\mathrm{~s}, 3 \mathrm{H}), 3.19(\mathrm{t}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}), 2.43-2.33(\mathrm{~m}, 2 \mathrm{H}), 2.21-2.13(\mathrm{~m}, 1 \mathrm{H}), 2.11-2.02(\mathrm{~m}$, $1 \mathrm{H}), 1.85(\mathrm{dt}, 1 \mathrm{H}, J=3.6,14.1 \mathrm{~Hz}), 1.77-1.46(\mathrm{~m}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $179.1,169.1,141.0,138.9,130.9,128.4,128.2,127.6,127.5,123.7,123.6,109.0,76.2$, $71.1,71.0,56.3,55.1,54.7,39.8,35.5,30.8,26.9,18.8$; IR (neat) $3251,3063,2932,1703$, 1647, 1558, 1490, 1361, 1115, $1089 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{BrNa}$ $[\mathrm{M}+\mathrm{Na}]^{+} 523.1208$, found 523.1210 .

The slower eluting product was repurified by preparative TLC (20% EtOAc in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to provide the minor diatereomer. ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36(\mathrm{~d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 7.33-7.30(\mathrm{~m}, 6 \mathrm{H}), 7.06$ (app t, 2H, $J=7.5 \mathrm{~Hz}), 6.00(\mathrm{~d}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}), 5.15(\mathrm{~d}, 1 \mathrm{H}, J=$ $10.8 \mathrm{~Hz}), 5.09(\mathrm{~d}, 1 \mathrm{H}, J=10.8 \mathrm{~Hz}), 4.55(\mathrm{dd}, 1 \mathrm{H}, J=4.2,10.2 \mathrm{~Hz}), 4.52(\mathrm{~d}, 1 \mathrm{H}, J=11.7$ Hz), $4.46(\mathrm{~d}, 1 \mathrm{H}, J=11.7 \mathrm{~Hz}$), 4.00 (quintet, $1 \mathrm{H}, J=4.2 \mathrm{~Hz}$), $3.50(\mathrm{t}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}$), $3.33(\mathrm{~s}, 3 \mathrm{H}), 2.76-2.59(\mathrm{~m}, 2 \mathrm{H}), 2.18-2.12(\mathrm{~m}, 1 \mathrm{H}), 2.03-1.81(\mathrm{~m}, 4 \mathrm{H}), 1.68-1.61(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.5,169.8,141.6,138.3,131.8,128.7,128.6,128.2$, $127.9,124.8,122.8,109.8,73.6,71.6,70.7,56.5,51.6,50.3,39.9,30.6,27.5,27.3,18.5 ;$ IR (neat) $3340,3059,2939,2876,1720,1655,1611,1541,1466,1349,1245,1086,914$, $746 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{BrNa}[\mathrm{M}+\mathrm{Na}]^{+} 523.1208$, found 523.1165.

N-((1S,2R,3R)-3-(Benzyloxy)-4'-chloro-1'-(methoxymethyl)-2'-oxospiro[cyclohexane-1,3'-indolin]-2-yl)-3-phenylpropanamide (22) To a solution of $21(82 \mathrm{mg}, 0.20 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ was added $\mathrm{Cp}_{2} \mathrm{Zr}(\mathrm{H}) \mathrm{Cl}(63 \mathrm{mg}, 0.25 \mathrm{mmol})$. The reaction mixture was stirred for 15 min . Hydrocinnamoyl chloride ($37 \mu \mathrm{~L}, 0.25 \mathrm{mmol}$) was added and the mixture was stirred overnight. The reaction was quenched with saturated NaHCO_{3} solution, and extracted with EtOAc (3 x). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by column chromatography ($15 \% \mathrm{EtOAc}$ in hexane to $100 \% \mathrm{EtOAc}$, then $5 \% \mathrm{EtOAc}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give product 22 as single diastereomer ($38 \mathrm{mg}, 36 \%$, white solid, mp $159.8^{\circ} \mathrm{C}-161.6{ }^{\circ} \mathrm{C}$): ${ }^{1} \mathrm{H} \operatorname{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.30-7.08(\mathrm{~m}, 10 \mathrm{H}), 6.98(\mathrm{app} \mathrm{d}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}), 6.84(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 5.21$ $(\mathrm{t}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}), 5.06(\mathrm{~d}, 1 \mathrm{H}, J=10.8 \mathrm{~Hz}), 5.00(\mathrm{~d}, 1 \mathrm{H}, J=10.8 \mathrm{~Hz}), 4.88(\mathrm{~d}, 1 \mathrm{H}, J=$ $9.3 \mathrm{~Hz}), 4.69(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 4.44(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 4.15(\mathrm{dt}, 1 \mathrm{H}, J=4.5,11.1$ $\mathrm{Hz}), 3.26(\mathrm{~s}, 3 \mathrm{H}), 2.72-2.60(\mathrm{~m}, 3 \mathrm{H}), 2.37(\mathrm{app} \mathrm{d}, 1 \mathrm{H}, J=12.6 \mathrm{~Hz}), 2.21-1.97(\mathrm{~m}, 3 \mathrm{H})$, 1.75-1.54 (m, 3H); ${ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}) $\delta 178.4,171.8,142.8,141.0,138.9$, $131.8,129.5,128.4,128.3,128.1,127.6,127.5,126.6,126.0,125.3,107.6,76.5,71.1$, $70.7,56.3,56.2,52.1,38.2,31.3,30.4,29.8,18.5$; IR (neat) 3295, 3061, 3028, 2935, 2864, 1715, 1657, 1607, 1456, 1361, $1092 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{31} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{ClNa}[\mathrm{M}+\mathrm{Na}]^{+} 555.2027$, found 555.2047.

N-((1S,2R,3R)-3-(Benzyloxy)-6'-chloro-1'-(methoxymethyl)-2'-oxospiro[cyclohexane-1,3'-indolin]-2-yl)-3phenylpropanamide (24)

To a solution of $\mathbf{2 3}(95 \mathrm{mg}, 0.23 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.3 \mathrm{~mL})$ was added $\mathrm{Cp}_{2} \mathrm{Zr}(\mathrm{H}) \mathrm{Cl}(73 \mathrm{mg}, 0.28 \mathrm{mmol})$. The reaction mixture was stirred for 15 min . Hydrocinnamoyl chloride ($42 \mu \mathrm{~L}, 0.28$ mmol) was added and the mixture was stirred overnight at rt . The reaction was quenched with saturated NaHCO_{3} solution and extracted with EtOAc (3x). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by column chromatography (15% EtOAc in hexane to 100% EtOAc) to give 24 as single diastereomer ($61 \mathrm{mg}, 50 \%$, white solid, $\mathrm{mp} 193.0{ }^{\circ} \mathrm{C}-195.2{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.11(\mathrm{~m}, 10 \mathrm{H}), 6.95-6.93(\mathrm{~m}, 3 \mathrm{H}), 5.01(\mathrm{~s}, 2 \mathrm{H}), 4.95(\mathrm{~d}, 1 \mathrm{H}, J=9.6$
$\mathrm{Hz}), 4.68(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 4.58(\mathrm{~d}, 1 \mathrm{H}, J=9.9 \mathrm{~Hz}), 4.40(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 4.17$ $(\mathrm{dt}, 1 \mathrm{H}, J=4.5,10.5 \mathrm{~Hz}), 3.24(\mathrm{~s}, 3 \mathrm{H}), 2.66-2.60(\mathrm{~m}, 2 \mathrm{H}), 2.37(\operatorname{app} \mathrm{~d}, 1 \mathrm{H}, J=9.9 \mathrm{~Hz})$, $2.23-1.99(\mathrm{~m}, 3 \mathrm{H}), 1.85(\mathrm{dt}, 1 \mathrm{H}, J=3.9,13.8 \mathrm{~Hz}), 1.77-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.49(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.1,172.1,142.1,140.9,139.0,134.0,129.6,128.6$, $128.5,127.7,126.2,125.1,123.6,109.9,76.2,71.2,70.9,56.3,54.9,54.8,38.2,35.6$, 31.3, 30.8, 18.9; IR (neat) 3249, 3057, 3028, 2935, 2869, 2362, 1707, 1647, 1610, 1549, $1448,1094 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{31} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{ClNa}[\mathrm{M}+\mathrm{Na}]^{+} 555.2027$, found 555.2028 .

N-((1R,2R,3R)-1'-Benzyl-3-(benzyloxy)-2'-oxospiro[cyclohexane-1,3'-indolin]-2-yl)isobutyramide (25)

To a solution of $\mathbf{8}(120 \mathrm{mg}, 0.21 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.1 \mathrm{~mL})$ was added $\mathrm{Cp}_{2} \mathrm{Zr}(\mathrm{H}) \mathrm{Cl}(68 \mathrm{mg}, 0.26 \mathrm{mmol})$. The reaction mixture was stirred for 15 min . Isobutyryl chloride ($27 \mu \mathrm{~L}, 0.26 \mathrm{mmol}$) was added and the mixture was stirred for 20 min , followed by addition of $\mathrm{Sc}(\mathrm{OTf})_{3}(103 \mathrm{mg}, 0.21 \mathrm{mmol})$. After stirring overnight the reaction was quenched with saturated NaHCO_{3} solution and extracted with EtOAc ($3 x$). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then concentrated under reduced pressure. The residue was purified by column chromatography ($5 \% \mathrm{EtOAc}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to 100%) to give the product as four diastereomers ($69 \mathrm{mg}, 68 \%$). The fastest eluting product was a mixture of two inseparable diastereomers ($12 \mathrm{mg}, 1: 0.72$). By comparison to the available spectrum, they are $\mathbf{1 3}$ and its epimer at the benzyloxy position. The second fastest eluting product was repurified by preparative TLC (35\%
 EtOAc in hexane) to yield the minor diastereomer $(10 \mathrm{mg}):{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.92(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.38-7.21(\mathrm{~m}, 10 \mathrm{H})$, $7.15(\mathrm{t}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 6.88(\mathrm{t}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 6.71(\mathrm{~d}, 1 \mathrm{H}, J=7.6$ $\mathrm{Hz}), 5.23(\mathrm{~d}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}), 4.96(\mathrm{~d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz}), 4.79(\mathrm{~d}, 1 \mathrm{H}, J$ $=15.6 \mathrm{~Hz}), 4.74(\mathrm{~d}, 1 \mathrm{H}, J=11.6 \mathrm{~Hz}), 4.70(\mathrm{dd}, 1 \mathrm{H}, J=3.6,10.0 \mathrm{~Hz}), 4.37(\mathrm{~d}, 1 \mathrm{H}, J=$ $11.2 \mathrm{~Hz}), 3.97-3.95(\mathrm{~m}, 1 \mathrm{H}), 2.29(\mathrm{app} \mathrm{dt}, 1 \mathrm{H}, J=3.2,14.4 \mathrm{~Hz}), 2.10-1.95(\mathrm{~m}, 3 \mathrm{H}), 1.77-$ $1.63(\mathrm{~m}, 3 \mathrm{H}), 0.85(\mathrm{~d}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 0.81(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 179.4,175.7,143.5,138.4,136.3,130.0,128.9,128.7,128.4,128.1,128.0$, $128.0,127.7,127.6,122.0,108.9,76.0,72.0,53.3,51.4,44.2,35.5,34.3,27.6,19.5,19.4$, 15.9; IR (neat) $3349,3060,3031,2929,2869,1715,1678,1609,1494,1466,1364,1207$, $1089,751 \mathrm{~cm}^{-1}$; HRMS (EI) m / z calcd for $\mathrm{C}_{31} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}]^{+} 482.2569$, found 482.2567 . The third eluting product 25 was the major diastereomer ($47 \mathrm{mg}, 46 \%$). All spectral data for this compound were identical to the minor product from the cyclization of 7 .

N-((1R,2R,3R)-1'-Benzyl-3-(benzyloxy)-2'-oxospiro[cyclohexane-1,3'-indolin]-2-yl)-2-methoxyacetamide (26)
To a solution of $\mathbf{8}(114 \mathrm{mg}, 0.20 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ was added $\mathrm{Cp}_{2} \mathrm{Zr}(\mathrm{H}) \mathrm{Cl}(65 \mathrm{mg}, 0.25 \mathrm{mmol})$. The reaction mixture was stirred for 15 min . Methoxyacetyl chloride $(23 \mu \mathrm{~L}, 0.25 \mathrm{mmol})$ was added and the mixture was stirred for 20 min , followed by addition of $\mathrm{Sc}(\mathrm{OTf})_{3}(96 \mathrm{mg}, 0.20 \mathrm{mmol})$. After stirring overnight, the reaction was quenched with saturated NaHCO_{3} solution and extracted with EtOAc (3x). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and then concentrated under reduced pressure. The residue was purified by column chromatography ($5 \% \mathrm{EtOAc}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to $100 \% \mathrm{EtOAc}$) to give product as four
diastereomers ($65 \mathrm{mg}, 67 \%$). The fastest eluting product was minor diastereomer 14 (3 $\mathrm{mg})$. The second fastest eluting product was the minor diastereomer (2 mg) which was the epimer of $\mathbf{1 4}$ at the benzyloxyl position as shown before. The last eluting fraction was a mixture of two inseparable diastereomers ($60 \mathrm{mg}, 1: 2.1$), which were repurified by preparative TLC $\left(10 \% \mathrm{EtOAc}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ for characterization purpose, and give the third eluting product as the minor diastereomer, ${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.90(\mathrm{~d}, 1 \mathrm{H}, J=$ $7.2 \mathrm{~Hz}), 7.34-7.23(\mathrm{~m}, 10 \mathrm{H}), 7.15(\mathrm{t}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 6.87(\mathrm{t}, 1 \mathrm{H}, J$ $=7.2 \mathrm{~Hz}), 6.72(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 6.45(\mathrm{~d}, 1 \mathrm{H}, J=10.2 \mathrm{~Hz}), 5.10$ $(\mathrm{d}, 1 \mathrm{H}, J=15.0 \mathrm{~Hz}), 4.75(\mathrm{dd}, 1 \mathrm{H}, J=3.6,10.2 \mathrm{~Hz}), 4.73(\mathrm{~d}, 1 \mathrm{H}, J$ $=11.4 \mathrm{~Hz}), 4.42(\mathrm{~d}, 1 \mathrm{H}, J=11.4 \mathrm{~Hz}), 3.94(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{~d}, 1 \mathrm{H}, J$ $=15.0 \mathrm{~Hz}), 3.49(\mathrm{~d}, 1 \mathrm{H}, J=15.0 \mathrm{~Hz}), 2.28(\operatorname{app} \mathrm{~d}, 1 \mathrm{H}, J=13.8 \mathrm{~Hz})$, $2.10-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.74(\operatorname{app} \mathrm{t}, 1 \mathrm{H}, J=13.2 \mathrm{~Hz}), 1.68(\mathrm{app} \mathrm{d}, 2 \mathrm{H}, J=11.9 \mathrm{~Hz})$. The slow eluting product was the major diastereomer 26 and was isolated as a white solid (mp $\left.164.2{ }^{\circ} \mathrm{C}-165.8{ }^{\circ} \mathrm{C}\right):{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 7.61(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}$), 7.31-7.28 $(\mathrm{m}, 5 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 6 \mathrm{H}), 7.06(\mathrm{~d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 6.92(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 6.11(\mathrm{~d}$, $1 \mathrm{H}, J=10.2 \mathrm{~Hz}), 5.00(\mathrm{~d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz}), 4.70(\mathrm{~d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz}), 4.64(\mathrm{~d}, 1 \mathrm{H}, J=$ $12.0 \mathrm{~Hz}), 4.45(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 4.43(\mathrm{t}, 1 \mathrm{H}, J=10.8 \mathrm{~Hz}), 3.86(\mathrm{dt}, 1 \mathrm{H}, J=4.2,10.8$ $\mathrm{Hz}), 3.57(\mathrm{~d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz}), 3.43(\mathrm{~d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz}), 2.81(\mathrm{~s}, 3 \mathrm{H}), 2.41(\operatorname{app} \mathrm{~d}, 1 \mathrm{H}, J$ $=15.6 \mathrm{~Hz}), 1.93-1.78(\mathrm{~m}, 3 \mathrm{H}), 1.51-1.44(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{DMSO}\right) \delta 177.1$, $168.2,142.9,139.1,136.4,129.4,128.5,128.4,128.0,127.3,127.2,127.1,125.6,122.0$, $109.2,77.2,71.1,70.2,58.2,54.1,53.8,42.7,33.5,30.7$, 19.6; IR (neat) 3271,3060 , 3031, 2929, 2853, 1714, 1608, 1521, 1464, 1364, 1113, 1070, $737 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 507.2260$, found 507.2251 .

N-((1R,2R,3R)-1'-Benzyl-3-(benzyloxy)-2'-oxospiro[cyclohexane-1,3'-indolin]-2-yl)acrylamide (27)

To a solution of $\mathbf{8}(105 \mathrm{mg}, 0.19 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.9 \mathrm{~mL})$ was added $\mathrm{Cp}_{2} \mathrm{Zr}(\mathrm{H}) \mathrm{Cl}(60 \mathrm{mg}, 0.23 \mathrm{mmol})$. The reaction mixture was stirred for 15 min . Acryloyl chloride ($19 \mu \mathrm{~L}, 0.23 \mathrm{mmol}$) was added and the mixture was stirred for 20 min , followed by addition of $\mathrm{Sc}(\mathrm{OTf})_{3}(93 \mathrm{mg}, 0.20 \mathrm{mmol})$. After stirring overnight , the reaction was quenched with saturated NaHCO_{3} solution and extracted with EtOAc $(3 x)$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and then concentrated under reduced pressure. The residue was purified by column chromatography ($5 \% \mathrm{EtOAc}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to $100 \% \mathrm{EtOAc}$) to give product as four diastereomers ($33 \mathrm{mg}, 38 \%$). The fastest eluting product 15 was the minor diastereomer $(1 \mathrm{mg})$. The second fastest eluting product was a mixture of two inseparable diastereomers ($6 \mathrm{mg}, 1: 1$). The third eluting product 27 was the major diastereomer $(26 \mathrm{mg})$. This product showed identical spectral data to the minor product from the cyclization of 7 .

N-((1R,2R,3R)-1'-Benzyl-3-(benzyloxy)-2'-oxospiro[cyclohexane-1,3'-indolin]-2-yl)-3-phenylpropanamide (12)
To a solution of $\mathbf{8}(113 \mathrm{mg}, 0.20 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ was added $\mathrm{Cp}_{2} \mathrm{Zr}(\mathrm{H}) \mathrm{Cl}(65 \mathrm{mg}, 0.25 \mathrm{mmol})$. The reaction mixture was stirred for 15 min . Hydrocinnamoyl chloride ($37 \mu \mathrm{~L}, 0.25 \mathrm{mmol}$) was added and the mixture was stirred for 20 min , followed by addition of $\mathrm{Sc}(\mathrm{OTf})_{3}(98 \mathrm{mg}, 0.20 \mathrm{mmol})$. After stirring overnight, the reaction was
quenched with saturated NaHCO_{3} solution and extracted with EtOAc (3x). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then concentrated under reduced pressure. The residue was purified by column chromatography (5% to $100 \% \mathrm{EtOAc}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give product as four diastereomers ($72 \mathrm{mg}, 66 \%$). The fastest eluting product was a mixture of two inseparable diastereomers ($13 \mathrm{mg}, 1: 1$). By comparing with the available spectra, they are $\mathbf{1 1}$ and its epimer at the benzyloxy position.

The second fastest eluting product was syn-diastereomer 28 (8 mg), ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.90(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}$), 7.35-7.12 (m, 14H), 7.03 (app d, 2H, $J=7.2 \mathrm{~Hz}$), 6.87 (dt, 1H, J $=3.6,7.6 \mathrm{~Hz}), 6.71(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 5.16(\mathrm{~d}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz})$, 5.05 (d, 1H, $J=15.6 \mathrm{~Hz}$), 4.75 (dd, 1H, $J=4.0,10.0 \mathrm{~Hz}$), 4.68 (d, $1 \mathrm{H}, J=15.6 \mathrm{~Hz}), 4.64(\mathrm{~d}, 1 \mathrm{H}, J=11.2 \mathrm{~Hz}), 4.20(\mathrm{~d}, 1 \mathrm{H}, J=11.2 \mathrm{~Hz}), 3.87-3.86(\mathrm{~m}, 1 \mathrm{H})$, $2.75-2.61(\mathrm{~m}, 2 \mathrm{H}), 2.25(\mathrm{~d}, 1 \mathrm{H}, J=14.0 \mathrm{~Hz}), 2.20-2.12(\mathrm{~m}, 1 \mathrm{H}), 2.09-1.93(\mathrm{~m}, 3 \mathrm{H}), 1.76-$ $1.72(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.62(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.3,171.0,143.4$, $141.0,138.4,136.3,129.9,128.9,128.7,128.6,128.4,128.4,128.2,128.0,128.0,127.8$, 127.6, 126.3, 122.1, 109.0, 76.2, 71.9, 53.2, 51.7, 44.2, 38.0, 34.3, 31.3, 27.7, 15.9; IR (neat) $3087,3029,2936,2866,1711,1670,1609,1494,1466,1364,733 \mathrm{~cm}^{-1} ;$ HRMS (ESI) m / z calcd for $\mathrm{C}_{36} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 567.2624$, found 567.2598 . The third eluting product $\mathbf{1 2}$ was the major diastereomer $(51 \mathrm{mg})$. All spectral data for this compound were identical to those from the minor isomer of the cyclization of 7.

$N-((1 R, 2 R, 3 S)-1 '-B e n z y l-3-(b e n z y l o x y)-2 '-$
oxospiro[cyclohexane-1,3'-indolin]-2-yl)-3phenylpropanamide (28)
To a solution of $\mathbf{8}(62 \mathrm{mg}, 0.11 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.1 \mathrm{~mL})$ was added $\mathrm{Cp}_{2} \mathrm{Zr}(\mathrm{H}) \mathrm{Cl}(35 \mathrm{mg}, 0.13 \mathrm{mmol})$. The reaction mixture was stirred for 15 min . Hydrocinnamoyl chloride ($19 \mu \mathrm{~L}, 0.13 \mathrm{mmol}$) was added and the mixture was stirred for 20 min , followed by addition of $\mathrm{ZnCl}_{2}(0.13 \mathrm{~mL} 1 \mathrm{M}$ solution). After stirring overnight at room temperature, the reaction was quenched with saturated NaHCO_{3} solution and extracted with EtOAc (3x). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and then concentrated under reduced pressure. The residue was purified by column chromatography ($5 \% \mathrm{EtOAc}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to $100 \% \mathrm{EtOAc}$) to give the product as four diastereomers ($33 \mathrm{mg}, 66 \%$). The fastest eluting product was a mixture of two inseparable diastereomers ($2 \mathrm{mg}, 3: 2$). By comparing with the available spectrum, they are 11 and its epimer at the benzyloxy position. The second fastest eluting material was the major product $\mathbf{2 8}(22 \mathrm{mg})$ and the third eluting product $\mathbf{1 2}$ as the minor product (11 mg). All spectral data were consistent with products that had previously been prepared.

N-((1S,2R,3R)-3-Hydroxy-1'-(methoxymethyl)-2'-oxospiro[cyclohexane-1,3'-indolin]-2-yl)-3-phenylpropanamide To a solution of $17(50 \mathrm{mg}, 0.10 \mathrm{mmol}$) in $\mathrm{EtOH} / E t O A c ~(2 \mathrm{~mL}$, 1:1) was added $\mathrm{Pd} / \mathrm{C}(7 \mathrm{mg})$. The atmosphere was exchanged with H_{2} and the mixture was stirred for 24 h . The suspension was diluted with EtOAc then was filtered through a short pad of silica gel. Removal of the solvent provided the alcohol as a white solid ($29 \mathrm{mg}, 71 \%$, mp 219.2 ${ }^{\circ} \mathrm{C}-220.8{ }^{\circ} \mathrm{C}$) that was directly used for next step without further purification: ${ }^{1} \mathrm{H}$ NMR
(300 MHz, DMSO) $\delta 7.30(\mathrm{~d}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.22-6.89(\mathrm{~m}, 7 \mathrm{H}), 5.08(\mathrm{~d}, 1 \mathrm{H}, J=10.8$ $\mathrm{Hz}), 4.98(\mathrm{~d}, 1 \mathrm{H}, J=11.1 \mathrm{~Hz}), 4.40(\mathrm{~d}, 1 \mathrm{H}, J=5.1 \mathrm{~Hz}), 4.25-4.15(\mathrm{~m}, 2 \mathrm{H}), 3.19(\mathrm{~s}, 3 \mathrm{H})$, 2.31-2.23 (m, 2H), 2.11-2.00 (m, 4H), 1.92-1.83 (m, 1H), 1.62-1.45 (m, 3H); ${ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO) $\delta 178.1,171.7,141.5,141.4,131.4,128.2,127.9,127.4,125.6,123.7$, $122.2,108.4,70.5,66.7,56.9,55.5,53.9,37.1,34.8,34.2,31.3,18.7$; IR (neat) 3424 , 3269, 2938, 1694, 1640, 1554, 1453, 1369, $1077 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$431.1947, found 431.1955 .

(1S,2R,3R)-1'-(Methoxymethyl)-2'-oxo-2-(3-phenylpropanamido)spiro[cyclohexane-1,3'-indolin]-3-yl benzoate (29)
To a solution of the alcohol ($11 \mathrm{mg}, 0.027 \mathrm{mmol}$) and a catalytic amout of DMAP in pyridine $(0.5 \mathrm{~mL})$ was added benzoyl chloride $(31 \mu \mathrm{~L}, 0.27 \mathrm{mmol})$. The mixture was stirred for 30 h , then another portion of benzoyl choride ($31 \mu \mathrm{~L}, 0.27 \mathrm{mmol}$) was added. After 18 h the temperature was raised to $60^{\circ} \mathrm{C}$. After stirring for 4 h the mixture was diluted with EtOAc, and then washed with saturated NaHCO_{3} solution. After removal of the solvent, the residue was purified by flash chromatography (20% to 40% EtOAc in hexane) to yield benzoate 29 $(10 \mathrm{mg}, 72 \%):{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.12(\mathrm{~d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 8.02(\mathrm{~d}, 2 \mathrm{H}, J=$ $7.2 \mathrm{~Hz}), 7.62(\mathrm{t}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.55(\mathrm{t}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.48(\mathrm{t}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.45-$ $7.40(\mathrm{~m}, 3 \mathrm{H}), 7.16(\mathrm{t}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.11-7.04(\mathrm{~m}, 3 \mathrm{H}), 6.96(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 6.80-$ $6.78(\mathrm{~m}, 2 \mathrm{H}), 5.97(\mathrm{dt}, 1 \mathrm{H}, J=4.8,10.8 \mathrm{~Hz}), 5.50(\mathrm{~d}, 1 \mathrm{H}, J=10.0 \mathrm{~Hz}), 5.12(\mathrm{~d}, 1 \mathrm{H}, J=$ $10.8 \mathrm{~Hz}), 5.09(\mathrm{~d}, 1 \mathrm{H}, J=10.8 \mathrm{~Hz}), 4.83(\mathrm{t}, 1 \mathrm{H}, J=10.4 \mathrm{~Hz}), 2.46-2.37(\mathrm{~m}, 2 \mathrm{H}), 2.35-$ $2.26(\mathrm{~m}, 2 \mathrm{H}), 2.03-1.93(\mathrm{~m}, 3 \mathrm{H}), 1.89-1.75(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $178.8,172.3,167.0,141.3,140.8,133.8,133.4,130.7,130.4,130.1,130.0,128.7,128.6$, $128.5,128.0,126.1,123.9,123.8,109.3,71.9,71.3,56.4,55.1,54.8,38.3,35.5,31.5$, $31.2,19.0$; IR (neat) $3350,3062,3030,2935,1713,1613,1537,1361,1273,1117,713$ cm^{-1}; HRMS (ESI) m / z calcd for $\mathrm{C}_{31} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 535.2209$, found 535.2236.

N-((1S,2R,3R)-1'-Benzyl-3-(benzyloxy)-2'-oxospiro[cyclohexane-1,3'-indolin]-2-yl)cinnamamide (30)
To a solution of $\mathbf{1 5}(30 \mathrm{mg}, 0.06 \mathrm{mmol})$ in DMF $(0.5 \mathrm{~mL})$ in a sealed tube was added $\mathrm{Pd}(\mathrm{OAc})_{2}(0.7 \mathrm{mg}), \mathrm{PPh}_{3}(1.7 \mathrm{mg}, 0.0064 \mathrm{mmol})$, iodobenzene $(7.2 \mu \mathrm{~L}, 0.06 \mathrm{mmol})$ and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(23 \mathrm{mg}, 0.07 \mathrm{mmol})$. The atmosphere was exchanged with argon, then the tube was sealed and immersed in a preheated oil bath $\left(120^{\circ} \mathrm{C}\right)$. The reaction stirred for 12 h , then the mixture was diluted with EtOAc and washed with brine (2 x). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. The residue was purified by chromatography (10% to 50% EtOAc in hexane) to yield 30 as a slightly red solid ($25 \mathrm{mg}, 72 \%$, mp $185.4^{\circ} \mathrm{C}-189.8^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.44(\mathrm{~d}, 1 \mathrm{H}, J$ $=8.0 \mathrm{~Hz}), 7.39-7.35(\mathrm{~m}, 6 \mathrm{H}), 7.31-7.24(\mathrm{~m}, 9 \mathrm{H}), 7.16-7.08(\mathrm{~m}, 2 \mathrm{H}), 6.68(\mathrm{~d}, 1 \mathrm{H}, J=8.0$ $\mathrm{Hz}), 5.82(\mathrm{~d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz}), 5.00(\operatorname{app} \mathrm{~d}, 2 \mathrm{H}, J=15.6 \mathrm{~Hz}), 4.83(\mathrm{~d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz})$, 4.76-4.71 (m, 2H), $4.49(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 4.29(\mathrm{dt}, 1 \mathrm{H}, J=4.8,10.8 \mathrm{~Hz}), 2.44(\mathrm{~d}, 1 \mathrm{H}$, $J=12.8 \mathrm{~Hz}), 2.23(\mathrm{qt}, 1 \mathrm{H}, J=3.6,13.6 \mathrm{~Hz}), 1.94(\mathrm{dt}, 1 \mathrm{H}, J=4.0,14.0 \mathrm{~Hz}), 1.85(\mathrm{app} \mathrm{d}$, $1 \mathrm{H}, J=14.0 \mathrm{~Hz}), 1.78-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.59(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $178.8,165.6,142.0,141.0,139.1,136.3,134.9,131.9,129.8,129.0,128.9,128.5,128.2$,
$128.0,127.9,127.8,127.5,127.3,123.8,123.4,120.5,108.8,76.7,71.0,55.4,54.5,43.5$, 35.3, 31.0, 19.1; IR (neat) 3304, 3060, 3030, 2932, 2864, 1699, 1663, 1612, 1492, 1366, 1209, 1027, 1098, 978, 910, $734 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{36} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+}$565.2467, found 565.2432.

N-((1S,2R,3R)-3-(Benzyloxy)-1'-(methoxymethyl)-2'-oxospiro[cyclohexane-1,3'-indolin]-2-yl)-3(propylthio)propanamide (31)
 To a suspension of $\mathrm{NaH}(6 \mathrm{mg}, 0.15 \mathrm{mmol})$ in THF $(0.6 \mathrm{~mL})$ at 0

 ${ }^{\circ} \mathrm{C}$ under argon was added 1 -propanethiol ($10 \mu \mathrm{~L}, 0.11 \mathrm{mmol}$). After 15 min a solution of $19(31 \mathrm{mg}, 0.074 \mathrm{mmol})$ in THF $(0.6 \mathrm{~mL})$ was added dropwise at $0{ }^{\circ} \mathrm{C}$. The ice bath was removed and the reaction stirred at for 1 h . The reaction mixture was quenched with water and extracted with EtOAc (2x). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. The residue was purified by chromatography (5% to $15 \% \mathrm{EtOAc}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give sulfide 31 ($26 \mathrm{mg}, 71 \%$): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36$ (d, $1 \mathrm{H}, J=7.2 \mathrm{~Hz}$), $7.32-7.24$ (m, 5 H), $7.22(\mathrm{~d}, 1 \mathrm{H}, J=$ $7.6 \mathrm{~Hz}), 7.11(\mathrm{t}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 6.93(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 5.25(\mathrm{~d}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}), 5.11$ $(\mathrm{d}, 1 \mathrm{H}, J=10.8 \mathrm{~Hz}), 5.08(\mathrm{~d}, 1 \mathrm{H}, J=10.8 \mathrm{~Hz}), 4.70(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 4.58(\mathrm{t}, 1 \mathrm{H}, J=$ 10.0 Hz), $4.49(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 4.21(\mathrm{dt}, 1 \mathrm{H}, J=4.8,10.8 \mathrm{~Hz}), 3.23(\mathrm{~s}, 3 \mathrm{H}), 2.43-$ $2.36(\mathrm{~m}, 2 \mathrm{H}), 2.30-2.23(\mathrm{~m}, 3 \mathrm{H}), 2.15-2.06(\mathrm{~m}, 2 \mathrm{H}), 2.01-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.88(\mathrm{dt}, 1 \mathrm{H}, J=$ $3.6,14.0 \mathrm{~Hz}), 1.78(\operatorname{app} \mathrm{~d}, 1 \mathrm{H}, J=14.4 \mathrm{~Hz}), 1.71-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.47$ (sextet, $2 \mathrm{H}, J=7.2 \mathrm{~Hz}$), $0.91(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}),{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.3$, $171.2,141.2,139.1,131.2,128.5,128.3,127.7,127.6,123.9,123.7,109.0,76.4,71.3$, $71.1,56.4,55.3,54.9,37.0,35.6,34.2,31.0,27.6,22.9,19.0,13.6$; IR (neat) 3247,3061 , 2932, 2869, 1706, 1643, 1555, 1491, 1362, 1294, 1116, 1088, $740 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{NaS}[\mathrm{M}+\mathrm{Na}]^{+} 519.2293$, found 519.2319.
(E)- N-(($1 S, 2 R, 3 R)$-1'-Benzyl-3-(benzyloxy)-2'-oxospiro[cyclohexane-1,3'-indolin]-2-yl)-4-phenylbut-2enamide (32)
To a solution of $15(23 \mathrm{mg}, 0.05 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ in a sealed tube were added the second generation Hoveyda-Grubbs catalyst (2 mg) and allylbenzene ($19 \mu \mathrm{~L}, 0.15 \mathrm{mmol}$). The atmosphere was exchanged with argon, then the tube was immersed in a preheated oil bath $\left(41{ }^{\circ} \mathrm{C}\right)$. The reaction was stirred for 18 h , then the solvent was removed under reduced pressure and the residue was purified by preparative TLC ($5 \% \mathrm{EtOAc}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to yield $32(11 \mathrm{mg}, 40 \%, 51 \% \mathrm{brsm})$ and starting material (5 mg) : ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.40(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.33-7.22(\mathrm{~m}, 13 \mathrm{H}), 7.16-7.06(\mathrm{~m}, 4 \mathrm{H}), 6.75(\mathrm{dt}, 1 \mathrm{H}, J$ $=6.8,15.2 \mathrm{~Hz}), 6.66(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 5.27(\mathrm{~d}, 1 \mathrm{H}, J=15.2 \mathrm{~Hz}), 4.96(\mathrm{~d}, 1 \mathrm{H}, J=15.6$ $\mathrm{Hz}), 4.91(\mathrm{~d}, 1 \mathrm{H}, J=10.0 \mathrm{~Hz}), 4.80(\mathrm{~d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz}), 4.70(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 4.68$ (t, $1 \mathrm{H}, J=10.0 \mathrm{~Hz}$), $4.47(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 4.24(\mathrm{dt}, 1 \mathrm{H}, J=4.4,10.4 \mathrm{~Hz}), 3.39(\mathrm{t}, 1 \mathrm{H}$, $J=6.4 \mathrm{~Hz}), 2.41(\mathrm{~d}, 1 \mathrm{H}, J=10.0 \mathrm{~Hz}), 2.19(\mathrm{q}, 1 \mathrm{H}, J=13.2 \mathrm{~Hz}), 1.91(\mathrm{dt}, 1 \mathrm{H}, J=3.6$, $14.0 \mathrm{~Hz}), 1.82($ app d, $1 \mathrm{H}, J=14.0 \mathrm{~Hz}), 1.74-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.62-1.55(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 178.8,165.7,143.1,142.0,139.1,138.2,136.2,131.9,129.0,129.0$, $128.9,128.4,128.1,127.8,127.8,127.5,127.2,126.7,124.6,123.8,123.4,108.7,76.7$, $70.9,55.3,54.4,43.5,38.3,35.5,30.9,19.1$; IR (neat) 3416, 3060, 3029, 2931, 2864,

1696, 1640, 1612, 1537, 1493, 1365, 1174, 1098, $980 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{37} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 579.2624$, found 579.2679.

N-((1S,2R,3R)-1'-Benzyl-3-(benzyloxy)-5'-bromo-2'-oxospiro[cyclohexane-1,3'-indolin]-2-yl)-3-phenylpropanamide To a solution of $\mathbf{1 1}(250 \mathrm{mg}, 0.46 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{~mL})$ was added NBS ($82 \mathrm{mg}, 0.46 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The ice bath was removed and the mixture was stirred for 1 h . NBS ($20 \mathrm{mg}, 0.11 \mathrm{mmol}$) was added and after 40 min the solvent was removed under reduced pressure. The residue was purified by chromatography (15% to 30% EtOAc in hexane) to give the aryl bromide as white solid ($170 \mathrm{mg}, 59 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $7.51(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}$), $7.34-7.11(\mathrm{~m}, 14 \mathrm{H}), 6.92(\operatorname{app} \mathrm{~d}, 2 \mathrm{H}, J=6.8$ $\mathrm{Hz}), 6.53(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 4.89(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}), 4.88(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 4.74$ (d, $1 \mathrm{H}, J=15.6 \mathrm{~Hz}), 4.67(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 4.57(\mathrm{t}, 1 \mathrm{H}, J=10.0 \mathrm{~Hz}), 4.44(\mathrm{~d}, 1 \mathrm{H}, J=$ $12.0 \mathrm{~Hz}), 4.21(\mathrm{dt}, 1 \mathrm{H}, J=4.4,10.4 \mathrm{~Hz}), 2.56(\mathrm{t}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 2.39$ (app dd, $1 \mathrm{H}, J=$ $3.2,12.8 \mathrm{~Hz}$), 2.16 (qt, $1 \mathrm{H}, J=3.6,9.2 \mathrm{~Hz}$), 2.06 (quint, $1 \mathrm{H}, J=7.6 \mathrm{~Hz}$), 1.93 (app dd, $1 \mathrm{H}, J=7.6,14.8 \mathrm{~Hz}), 1.84(\mathrm{dt}, 1 \mathrm{H}, J=4.0,12.8 \mathrm{~Hz}), 1.79(\operatorname{app} \mathrm{~d}, 1 \mathrm{H}, J=12.8 \mathrm{~Hz}), 1.71$ (app dt, $1 \mathrm{H}, J=3.2,14.0 \mathrm{~Hz}$), 1.62-1.52 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.1$, $171.9,141.0,140.9,139.0,135.8,133.9,131.1,129.1,128.5,128.4,128.2,127.6,127.6$, $127.3,127.2,126.1,115.9,110.0,76.2,70.7,55.0,54.6,43.6,38.0,35.1,31.2,30.7,18.9$; IR (neat) $3306,3062,3029,2931,2864,1702,1606,1484,1426,1358,1205,1169,1098$, $737 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{36} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{NaBr}[\mathrm{M}+\mathrm{Na}]^{+} 645.1729$, found 645.1726.

N-((1S,2R,3R)-1'-Benzyl-3-(benzyloxy)-5'-(4-methoxyphenyl)-2'-oxospiro[cyclohexane-1,3'-indolin]-2-yl)-3-phenylpropanamide (33)
To a solution ($40 \mathrm{mg}, 0.06 \mathrm{mmol}$) of the aryl bromide in THF/ $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL}, 3: 1)$ in a sealed tube was added $\left(\mathrm{PPh}_{3}\right)_{4} \mathrm{Pd}(7$ $\mathrm{mg}, 0.006 \mathrm{mmol}$), 4-methoxyphenylboronic acid ($20 \mathrm{mg}, 0.13$ $\mathrm{mmol})$, and $\mathrm{Na}_{2} \mathrm{CO}_{3}(27 \mathrm{mg}, 0.26 \mathrm{mmol})$. The atmosphere was exchanged for argon then the tube was sealed and immersed in a preheated oil bath $\left(66^{\circ} \mathrm{C}\right)$. The reaction stirred at $66^{\circ} \mathrm{C}$ for 5 h , then the solution was extracted with EtOAc (2x). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent under reduced pressure, the residue was purified by flash chromatography (15% to 30% EtOAc in hexane) to give biaryl 33 (37 $\mathrm{mg}, 89 \%$): ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $7.60(\mathrm{~d}, 1 \mathrm{H}, J=1.8 \mathrm{~Hz}$), 7.52 (app d, $2 \mathrm{H}, J=8.7$ Hz), 7.35-7.21 (m, 11H), 7.15-7.10 (m, 3H), 6.97 (app d, 2H, $J=8.7 \mathrm{~Hz}$), 6.87 (app d, $2 \mathrm{H}, J=7.8 \mathrm{~Hz}), 6.74(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}), 5.00(\mathrm{~d}, 1 \mathrm{H}, J=10.2 \mathrm{~Hz}), 4.94(\mathrm{~d}, 1 \mathrm{H}, J=15.6$ $\mathrm{Hz}), 4.84(\mathrm{~d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz}), 4.74(\mathrm{t}, 1 \mathrm{H}, J=10.2 \mathrm{~Hz}), 4.71(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 4.47$ (d, 1H, $J=12.0 \mathrm{~Hz}$), 4.29 (dt, $1 \mathrm{H}, J=4.2,10.5 \mathrm{~Hz}$), 3.85 ($\mathrm{s}, 3 \mathrm{H}$), $2.56-2.37$ (m, 3H), 2.22 (qt, $1 \mathrm{H}, J=3.6,12.6 \mathrm{~Hz}$), 2.14-2.04 (m, 1H), 2.00-1.83 (m, 3H), 1.80-1.69 (m, 2H), 1.61$1.56(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 178.7,172.0,159.1,141.0,140.8,139.2$, $136.3,136.3,133.8,132.3,129.1,128.5,128.5,128.3,128.2,127.9,127.5,127.3,126.6$, $126.1,122.9,114.4,108.7,76.4,70.8,55.5,55.3,54.6,43.7,38.2,35.4,31.5,31.0,19.0$; IR (neat) $3324,3062,3030,2933,2864,1696,1612,1543,1491,1453,1365,1247,1100$,

1027, 909, 813, $732 \mathrm{~cm}^{-1}$; HRMS (EI) m / z calcd for $\mathrm{C}_{43} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}]^{+} 650.3144$, found 650.3148 .

chl2-091-1 400a

\bullet

∞
O)

$$
\text { chl2-091-3 } 400
$$

96•عG
[8.ヵら
29.0L—
$9 \varepsilon^{\circ} L L-$

12

chl2-155-3 400a

$$
66^{\circ} \mathrm{IL}
$$

Б0.9L—

[^0]
chl2－118－1 400A

14

R

の
$\dagger 0^{\circ} \varepsilon$

$\begin{array}{r}66^{\circ} 0 \\ -00^{\circ} \\ \hline\end{array}$
ナ

\bullet
$96^{\circ} 0$
$66^{\circ} 0$
N

∞
の

chl2-180-3 600

chl2-165-3 400a

Acetone

ल
$\rightarrow 0$!
Zて'Z

$+00^{\circ}$
$\begin{array}{r}8 L^{\prime \prime} L \\ \hline 90 . \varepsilon\end{array}$
10
$00^{\circ} 1$
$66^{\circ} 0$
\bullet
$\begin{array}{r}-10 \% \\ \hline 50 \% 1\end{array}$

∞
の

$00 \cdot 6 I$
$\square 6 \cdot 0 \varepsilon$
$0 G \cdot \tau \varepsilon$
$\angle 9 \cdot 9 \varepsilon$
$\square \square \cdot 8 \varepsilon$

$$
\begin{aligned}
& 86 \cdot \square G \\
& 9 \tau \cdot G G \\
& \square \varepsilon \cdot 9 G
\end{aligned}
$$

$$
\begin{aligned}
& 86 \cdot 0 L \\
& 27 \cdot \tau L
\end{aligned}
$$

乙も・9L—

chl2-079 301a

20

$$
\begin{aligned}
& \text { 00・ロて } \\
& \text { 8も・9て— } \\
& \text { T6・てと- }
\end{aligned}
$$

OL•L9
Lて・てL
SI・もん

chl2－081 C13 300

$$
\text { chl2-078-1 } 300
$$

ल
$-\quad 28^{\prime Z}$

-6

$-\infty$

の

$$
\frac{00 \cdot L}{\frac{90 \cdot L}{10 \cdot L}} \frac{60 \cdot L}{\angle 6 . L}
$$

chl2-142 400A

Ph
30

ल

て0て・て
$66 \varepsilon \cdot 2$
しもて・ぁ
をらも。
と8も・ぁ
899・も
98＇1
を！L・ロ
6LL•五
$868^{\circ} \quad \square$
とて6・ぁ
もあ 6° 万
と 86° Ø
BGZ．
$26 Z^{\circ}$
G
とG9．9
ZL9•9
Lてし・9
8もし・9
S9L•9
$090^{\circ} \mathrm{L}$
6 LO L
$80 I \cdot L]=$
$=$
0てI．L
$6 \varepsilon I \cdot L$
$8 G I \cdot L$
してて・し」
与てて・し

$-\infty \frac{\frac{\sqrt{10^{\circ} L}}{\frac{166^{\circ} 0}{L L^{\circ} t}}}{\frac{10^{\circ}+L}{0 \varepsilon^{\circ} L}}$
∞
©

[^0]: chl2-166-2 C13 400a
 $Z L \cdot G L T$
 $0 ヵ \cdot 6 L T$

