Copper-Catalyzed Cross Dehydrogenative Coupling

Reactions of Tertiary Amines with Ketones or Indoles

Fei Yang, Jian Li, Jin Xie, Zhi-Zhen Huang*

Key Laboratory of Mesoscopic Chemistry of MOE, College of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China and State Key Laboratory of Elemento-organic Chemistry Nankai University, Tianjin 300071, P. R. China.

Email: huangzz@nju.edu.cn

Supporting Information

Content

		page
1. Optimizations	of the CDC Reactions of N,N-D	Dimethylanilines with Ketones or
Indoles		S1
2. The CDC React	tions of N,N-dimethylanilines w	ith ketones
or indoles		S5
3. Spectra of ¹ H N	MR, ¹³ C NMR and MS	S9

General Information

¹H NMR and ¹³C NMR spectra were determined in CDCl₃ on a Brucker ARX-300 (300 MHz) with TMS as internal standard. MS spectra was measured on ThermoFisher Scientific LCQ FLEET mass spectrometer. Ketones were dried over CaSO₄ and distilled. *N*,*N*-Dimethylaniline compounds were prepared from anilines according to the literature procedure.¹

1. Optimizations of the CDC Reactions of *N*,*N*-Dimethylanilines with Ketones or Indoles

Table 1. Screening of Organocatalysts for the CDC Reaction of N,N-Dimethylaniline with Acetone.^{*a*}

6a	+ 0 + 30 mol% Organ 1.5 eq <i>t</i> -B neat, 7 7a	5 Cul 10catalyst 1-5 3uOOH 10 °C	N O 8a		
entry	organocatalyst	t (h)	yield $(\%)^b$		
1	1	8	0		
2	2a	8	12		
3	2b	8	15		
4	3 a	8	17		
5	3b	8	trace		
6	4 a	8	8		
7	4b	8	11		
8	5a	4	23		
9	5b	4	36		
10	5c	4	18		
^{<i>a</i>} Reaction conditions: <i>N</i> , <i>N</i> -dimethylaniline (0.5 mmol), acetone (5.0 mmol), CuI (0.025 mmol),					

N_	+ 0 5 mol ⁴ 	% Metal salt nmol% 5b pq <i>t-</i> BuOOH ∞at, 70 °C		
6a	7a		8a	
entry	metal salt	t (h)	yield $(\%)^b$	
1	CuCl	4	42	
2	$CuCl_2$	4	35	
3	$CuCl_2 \cdot 2H_2O$	4	32	
4	CuBr	4	53	
5	CuI	4	36	
6	$CuSO_4$	4	28	
7	Cu(OAc) ₂	4	40	
8	$Cu(OAc)_2 \cdot 2H_2O$	4	38	
9	$Cu(acac)_2$	8	27	
10	FeCl ₂	4	28	
11	FeCl ₃ 4		23	
12	$Fe(acac)_2$	8	18	
13	CoCl ₂ ·6H ₂ O	4	26	
14	Co(OAc) ₂ ·4H ₂ O	4	22	
15	$Co(acac)_2$	8	16	
16	$Pd(OAc)_2$	8	11	
17	$Fe(acac)_2$	8	18	

 Table 2. Screening of Metal Catalysts.^a

^{*a*} Reaction conditions: *N*,*N*-dimethylaniline (0.5 mmol), acetone (5.0 mmol), metal salt (0.025 mmol), organocatalyst **5b** (0.15 mmol), TBHP-decane (0.75 mmol), 70 °C. ^{*b*} Isolated yields.

Table 3.	Screening	of Oxidants. ^a
----------	-----------	---------------------------

	0 .	5 mol% CuBr 30 mmol% 5b		× ^N √√	
	*	1.5 eq Oxidant neat		Ö	
6a	7a			8a	
entry	oxidant	temp (°C)	t (h)	yield $(\%)^b$	
1	TBHB	70	4	53	
2	TBP	70	8	0	
3	O_2	50	8	14	
4	H_2O_2	50	4	27	
5	T-HYDRO	70	4	48	
^{<i>a</i>} Reaction conditions: <i>N</i> , <i>N</i> -dimethylaniline (0.5 mmol), acetone (5.0 mmol), CuBr (0.025 mmol),					

organocatalyst **5b** (0.15 mmol), oxidant (0.75 mmol), 70 °C. ^b Isolated yields.

 Table 4. Screening of Solvents and Reaction Temperature.^a

N.	+	5 mol% CuBr 30 mmol% 5b 1.5 eq <i>t</i> -BuOOH		
6a	7a	Solvent		8a
entry	solvent	temp (°C)	t (h)	yield $(\%)^b$
1	DCE	rt	36	22
2	DCM	rt	36	14
3	CHCl ₃	rt	36	trace
4	MeOH	rt	36	17
5	toluene	70	8	23
6	hexane	70	8	16
7	neat	50	8	38
8	neat	70	4	53
9 °	MeOH	70	4	64

^{*a*} Reaction conditions: *N*,*N*-dimethylaniline (0.5 mmol), acetone (5.0 mmol), CuBr (0.025 mmol), organocatalyst **5b** (0.15 mmol), TBHP-decane (0.75 mmol), solvent (1.0 mL). ^{*b*} Isolated yields. ^{*c*} MeOH (0.2 mL).

Table 5. Screening of Reaction Conditions for the CDC Reaction of N,N-Dimethylaniline with Indole.^{*a*}

$ \begin{array}{c} & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $						
	6a	9a			10a	
entry	metal salt	TBHP (equiv)	temp (°C)	t (h)	solvent	yield $(\%)^b$
1	CuBr	1.0	40	3	neat	38
2	CuCl	1.0	40	3	neat	26
3	$CuCl_2$	1.0	40	3	neat	16
4	CuI	1.0	40	3	neat	25
5	Cu(OAc) ₂	1.0	40	3	neat	18
6	CuBr	1.5	40	3	neat	52
7	CuBr	1.5	rt	12	neat	17
8	CuBr	1.5	50	3	neat	22
9	CuBr	1.5	40	12	CH ₃ CN	9
10	CuBr	1.5	40	12	hexane	18
11	CuBr	1.5	40	12	toluene	25
^a Reaction conditions: N,N-dimethylaniline (1.0 mmol), indole (0.5 mmol), metal catalyst						
(0.025mmol), indicated amount of TBHP. ^b Isolated yields.						

2. The CDC Reactions of N,N-dimethylanilines with ketones or indoles

(1) The CDC reaction by cooperative copper and aminocatalysis for the synthesis of β -arylamino ketones **8a-k**.

General procedure: A solution of ketone **7a-c** (5.0 mmol), pyrrolidine benzoate **5b** (29.0 mg, 0.15 mmol, 30 mol%) in MeOH (0.2 mL) was stired at room temperature for 15 min. To the mixture were added *N*,*N*-dimethylaniline **6a-g** (0.5 mmol) and CuBr (3.6 mg, 0.025 mmol), and then the solution of 5.5 M TBHP in decane (136 μ L, 0.75 mmol) was added dropwise. The

reaction mixture was stirred in a sealed vial at 70°C for 4 -8 h. After the reaction was completed,

the mixture was purified by preparative TLC (petroleum ether/ethyl acetate = 20:1 as eluent) to afford the desired β -arylamino ketones **8a-k**.

4-(*N*-Methyl-*N*-phenylamino)butan-2-one **8a**²

Yield: 64%. ¹H NMR (CDCl₃) δ (ppm): 7.30-7.20 (m, 2 H), 6.78-6.67 (m, 3 H), 3.64 (t, *J* = 6.9 Hz, 2 H), 2.92 (s, 3 H), 2.71 (t, *J* = 6.9 Hz, 2 H), 2.15 (s, 3 H).

1-(*N*-Methyl-*N*-phenylamino)pentan-3-one **8b**³

Yield: 53%. ¹H NMR (CDCl₃) δ (ppm): 7.27-7.17 (m, 2 H), 6.75-6.63 (m, 3 H), 3.62 (t, *J* = 6.9 Hz, 2 H), 2.89 (s, 3 H), 2.64 (t, *J* = 6.9 Hz, 2 H), 2.39 (q, *J* = 7.2 Hz, 2 H), 1.02 (t, *J* = 7.2 Hz, 3 H).

1-(N-Methyl-N-phenylamino)hexan-3-one 8c

Yield: 42%. ¹H NMR (CDCl₃) δ (ppm): 7.28-7.18 (m, 2 H), 6.77-6.65 (m, 3 H), 3.62 (t, *J* = 6.9 Hz, 2 H), 2.89 (s, 3 H), 2.64 (t, *J* = 6.9 Hz, 2 H), 2.36 (t, *J* = 7.2 Hz, 2 H), 1.65-1.50 (m, 2 H), 0.89 (t, *J* = 7.2 Hz, 3 H); ¹³C NMR (CDCl₃) δ (ppm): 210.3, 148.7, 129.3,

116.7, 112.5, 47.5, 45.5, 39.4, 38.5, 17.2, 13.7; MS (ESI) m/z [M+H]⁺ Calcd for C₁₃H₁₉NO: 206.15, found: 206.25.

4-(*N*-Methyl-*N*-(4-methylphenyl)amino)butan-2-one **8d**⁴

Yield: 73%. ¹H NMR (CDCl₃) δ (ppm): 7.05 (d, J = 8.1, 2 H), 6.65 (d, J = 8.1, 2 H), 3.59 (t, J = 6.9 Hz, 2 H), 2.88 (s, 3 H), 2.69 (t, J = 6.9 Hz, 2 H), 2.25 (s, 3 H), 2.14 (s, 3 H).

1-(N-Methyl-N-(4-methylphenyl)amino)pentan-3-one 8e

Yield: 56%. ¹H NMR (CDCl₃) δ (ppm): 7.02 (d, *J* = 8.1 Hz, 2 H), 6.61 (d, *J* = 8.1 Hz, 2 H), 3.59 (t, *J* = 6.9 Hz, 2 H), 2.85 (s, 3 H), 2.62 (t, *J* = 6.9 Hz, 2 H), 2.39 (q, *J* = 7.2 Hz, 2 H), 2.24 (s, 3 H), 1.02 (t, *J* = 7.2 Hz, 3 H); ¹³C NMR (CDCl₃) δ (ppm): 210.7, 146.6, 129.7,

125.9, 112.9, 47.8, 38.8, 38.6, 36.6, 20.2, 7.6; MS (ESI) *m*/*z* [M+H]⁺ Calcd for C₁₃H₁₉NO: 206.15, found: 206.17.

1-(N-Methyl-N-(4-methylphenyl)amino)hexan-3-one 8f

Yield: 44%. ¹H NMR (CDCl₃) δ (ppm): 7.03 (d, *J* = 8.7 Hz, 2 H), 6.62 (d, *J* = 8.7 Hz, 2 H), 3.58 (t, *J* = 6.9 Hz, 2 H), 2.85 (s, 3 H), 2.60 (t, *J* = 6.9 Hz, 2 H), 2.34 (t, *J* = 7.5 Hz, 2 H), 2.24 (s, 3 H), 1.63-1.48 (m, 2 H), 0.88 (t, *J* = 7.5 Hz, 3 H); ¹³C NMR (CDCl₃) δ

(ppm): 210.3, 146.6, 129.7, 125.8, 112.9, 47.7, 45.4, 39.1, 38.6, 20.2, 17.1, 13.7; MS (ESI) m/z [M+H]⁺ Calcd for C₁₄H₂₁NO: 220.17, found: 220.17.

4-(*N*-(4-chlorophenyl)-*N*-methyl)amino)butan-2-one **8g**⁵

Yield: 57%. ¹H NMR (CDCl₃) δ (ppm): 7.16 (d, J = 9.0 Hz, 2 H), \sim 6.61 (d, J = 9.0 Hz, 2 H), 3.61 (t, J = 6.9 Hz, 2 H), 2.90 (s, 3 H), 2.69 (t, J = 6.9 Hz, 2 H), 2.16 (s, 3 H).

4-(N-(4-Methoxyphenyl)-N-methylamino)butan-2-one 8h

Yield: 58%. ¹H NMR (CDCl₃) δ (ppm): 6.88-6.80 (m, 2 H), 6.76-6.68 (m, 2 H), 3.76 (s, 3 H), 3.54 (t, *J* = 6.9 Hz, 2 H), 2.84 (s, 3 H), 2.66 (t, *J* = 6.9 Hz, 2 H), 2.14 (s, 3 H); ¹³C NMR (CDCl₃) δ (ppm): 208.1, 152.0, 143.6, 115.0, 114.7, 55.6, 48.5, 40.1, 39.1, 30.5;

MS (ESI) m/z [M+H]⁺ Calcd for C₁₂H₁₇NO₂: 208.13, found: 208.17.

4-(N-(4-Bromophenyl)-N-methylamino)butan-2-one 8i

Ö

Yield: 52%. ¹H NMR (CDCl₃) δ (ppm): 7.29 (d, J = 9.0 Hz, 2 H), ~ 6.56 (d, J = 9.0 Hz, 2 H), 3.60 (t, J = 6.9 Hz, 2 H), 2.89 (s, 3 H), 2.68 (t, J = 6.9 Hz, 2 H), 2.15 (s, 3 H); ¹³C NMR (CDCl₃) δ (ppm): 207.6, 147.6, 131.9, 114.0, 108.4, 47.2, 40.1, 38.5, 30.6; MS (ESI) m/z

[M+H]⁺ Calcd for C₁₁H₁₄BrNO (M+H): 256.03, found: 256.17.

4-(N-Methyl-N-(3-methylphenyl)amino)butan-2-one 8j

Yield: 68%. ¹H NMR (CDCl₃) δ (ppm): 7.17-7.08 (m, 1 H), 6.59-6.47 (m,

3 H), 3.62 (t, J = 6.9 Hz, 2 H), 2.90 (s, 3 H), 2.69 (t, J = 6.9 Hz, 2 H), 2.31 (s, 3 H), 2.14 (s, 3 H); ¹³C NMR (CDCl₃) δ (ppm): 208.1, 148.8, 139.0, 129.2, 117.7, 113.3, 109.7, 47.3, 40.4, 38.6, 30.6, 22.0; MS (ESI) *m/z* Calcd for C₁₂H₁₇NO (M+H): 192.14, found: 192.17.

4-(N-Methyl-N-(naphthalen-2-yl)amino)butan-2-one 8k

Yield: 55%. ¹H NMR (CDCl₃) δ (ppm): 7.72-7.58 (m, 3 H), 7.38-7.30 (m, 1 H), 7.23-7.15 (m, 1 H), 7.13-7.07 (m, 1 H), 6.86 (d, J = 2.7 Hz, 1 H), 3.70 (t, J = 6.9 Hz, 2 H), 2.97 (s, 3 H), 2.68 (t, J =6.9 Hz, 2 H), 2.10 (s, 3 H); ¹³C NMR (CDCl₃) δ (ppm): 208.0,

146.7, 135.0, 129.0, 127.5, 126.9, 126.3, 126.2, 122.2, 116.2, 106.6, 47.6, 40.4, 38.7, 30.6; MS (ESI) m/z [M+H]⁺ Calcd for C₁₅H₁₇NO: 228.14, found: 228.17.

(2) The CDC reaction of *N*,*N*-dimethylanilines with indoles for the synthesis of alkyated indole derivatives **10a-g**.

General procedure: To the mixture of $N \cdot N$ -dimethylanilines **6a-c** (1.0 mmol), indoles **9a-d** (0.50 mmol) and CuBr (3.6 mg, 0.025 mmol) was added the solution of 5.5 M TBHP in decane (136 µL, 0.75 mmol) dropwise at room temperature. The reaction mixture was stirred at 40 °C for 3 h. After the reaction was finished, the mixture was purified by preparative TLC (petroleum ether/ethyl acetate = 8:1 as eluent) to afford the alkylated indole derivatives **10a-g**.

N-((1H-Indol-3-yl)methyl)-N-methylbenzenamine 10a⁶

Yield: 52%. ¹H NMR (CDCl₃) δ (ppm): 7.82 (s, 1 H), 7.57 (d, J = 7.8 Hz, 1 H), 7.32-7.05 (m, 5 H), 6.92-6.83 (m, 3 H), 6.73 (t, J = 7.2 Hz, 1 H), 4.64 (s, 2 H), 2.94 (s, 3 H).

N-((1H-Indol-3-yl)methyl)-N,4-dimethylbenzenamine 10b

Yield: 72%. ¹H NMR (CDCl₃) δ (ppm): 7.84 (s, 1 H), 7.56 (d, J = 7.8 Hz, 1 H), 7.28-7.02 (m, 5 H), 6.90-6.85 (m, 1 H), 6.78 (d, J = 8.4 Hz, 2 H), 4.58 (s, 2 H), 2.89 (s, 3 H), 2.25 (s, 3 H); ¹³C NMR (CDCl₃) δ (ppm): 148.3, 136.4, 129.8, 126.9, 126.1, 122.8, 122.0,

119.5, 119.1, 113.8, 113.0, 111.3, 49.1, 38.2, 20.4; MS (ESI) m/z [M+H]⁺ Calcd for C₁₇H₁₈N₂: 251.15, found: 251.25.

N-((5-Bromo-1H-indol-3-yl)methyl)-N, 4-menthylbenzenamine 10c

Yield: 76%. ¹H NMR (CDCl₃) δ (ppm): 7.91 (s, 1 H), 7.65 (d, J = 1.8 Hz, 1 H), 7.25-7.18 (m, 1 H), 7.12-6.98 (m, 3 H), 6.87-6.82 (m, 1 H), 6.77 (d, J = 8.7 Hz, 2 H), 4.49 (s, 2 H), 2.85 (s, 3 H), 2.25 (s, 3 H); ¹³C NMR (CDCl₃) δ (ppm): 148.2, 138.0, 129.8, 128.7, 126.6, 125.0, 124.0, 121.7, 114.1, 113.0, 112.8, 112.7, 49.2, 38.4, 20.4; MS

(ESI) m/z [M+H]⁺ Calcd for C₁₇H₁₇BrN₂: 329.06, found: 329.00.

N-((1H-Indol-3-yl)methyl)-4-chloro-N-methylbenzenamine 10d

Yield: 67%. ¹H NMR (CDCl₃) δ (ppm): 7.87 (s, 1 H), 7.52 (d, J = 7.8 Hz, 1 H), 7.29 (d, J = 8.1 Hz, 1 H), 7.23-7.05 (m, 4 H), 6.90-6.85 (m, 1 H), 6.72 (d, J = 8.7 Hz, 2 H), 4.60 (s, 2 H), 2.91 (s, 3 H); ¹³C NMR (CDCl₃) δ (ppm): 148.6, 136.5, 129.0, 126.8,

122.7, 122.4, 119.8, 119.0, 114.3, 113.5, 112.7, 111.4, 48.9, 38.3; MS (EI) m/z [M]⁺ Calcd for C₁₆H₁₅ClN₂: 270.1, found: 270.1.

N-((5-Bromo-1H-indol-3-yl)methyl)-N-methylbenzenamine 10e

Yield: 69%. ¹H NMR (CDCl₃) δ (ppm): 7.82 (s, 1 H), 7.69 (d, J = 1.2 Hz, 1 H), 7.28-7.18 (m, 3 H), 7.08 (d, J = 8.4 Hz, 1 H), 6.87-6.78 (m, 3 H), 6.74 (t, J = 7.2 Hz, 1 H), 4.53 (s, 2 H), 2.90 (s, 3 H); ¹³C NMR (CDCl₃) δ (ppm): 150.1, 135.1, 129.3, 128.6, 125.0, 123.9, 121.7, 117.1, 113.4, 113.0, 112.9, 112.8, 48.7, 38.2; MS (ESI) m/z [M+H]⁺

Calcd for C₁₅H₁₅BrN₂: 315.05, found: 315.00.

N-Methyl-*N*-((5-nitro-1*H*-indol-3-yl)methyl)benzenamine **10f**

Yield: 78%. ¹H NMR (DMSO) δ (ppm): 11.66 (s, 1 H), 8.50 (d, J = 1.8 Hz, 1 H), 7.97 (dd, J = 9.0 Hz, 2.1 Hz, 1 H), 7.51 (d, J = 9.0 Hz, 1 H), 7.41 (d, J = 2.1 Hz, 1 H), 7.22-7.10 (m, 2 H), 6.85 (d, J = 7.8 Hz, 2 H), 6.63 (t, J = 7.2 Hz, 1 H), 4.69 (s, 2 H), 2.90 (s, 3 H); ¹³C NMR (DMSO) δ (ppm): 150.3, 141.2, 140.4, 129.8 (2 C), 128.4,

126.8, 117.4, 117.2, 117.0, 115.5, 113.9, 112.8, 48.1, 38.7; MS (ESI) m/z [M+H]⁺ Calcd for C₁₆H₁₅N₃O₂: 282.12, found: 282.08.

Methyl 3-((N-methyl-N-phenylamino)methyl)-1H-indole-5-carboxylate 10g

Yield: 64%. ¹H NMR (CDCl₃) δ (ppm): 8.53 (s, 1 H), 8.09 (d, J = 0.6 Hz, 1 H), 7.78 (dd, J = 8.1 Hz, 1.2 Hz, 1 H), 7.56 (d, J = 8.1 Hz, 1 H), 7.30-7.20 (m, 2 H), 7.12-7.06 (m, 1 H), 6.85 (d, J = 8.1 Hz, 2 H), 6.74 (t, J = 6.9 Hz, 1 H), 4.63 (s, 2 H), 3.91 (s, H₃ 3 H), 2.93 (s, 3 H); ¹³C NMR (CDCl₃) δ (ppm): 168.4, 150.0,

135.9, 130.5, 129.3, 126.3, 123.7, 120.6, 118.7, 117.1, 113.8, 113.6, 113.4, 52.1, 48.7, 38.2; MS

(EI) m/z [M]⁺ Calcd for C₁₈H₁₈N₂O₂: 294.1, found: 294.1.

References

- (1) Huang, L.-H.; Zhang, X.-B.; Zhang, Y.-H. Org. Lett. 2009, 11, 3730.
- (2) Bartoli, G.; Bartolacci, M.; Giuliani, A.; Marcantoni, E.; Massaccesi, M.; Torregiani, E. J. Org. Chem. 2005, 70, 169.
- (3) Yang, L. Xu, L.-W.; Zhou, W.; Li, L.; Xia, C-G. Tetrahedron Lett. 2006, 47, 7723.
- (4) Shen, Y.; Li, M.; Wang, S.; Zhan, T.; Tan, Z.; Guo, C.-C. Chem. Commun. 2009, 953.
- (5) Ray, N. B.; Herman, G. E. Eur. Pat. 1979, No. 0002867.
- (6) Jan, T.; Hans, M.; Darmstadt, T.-H. Chem. Ber. 1954, 1084.

3. Spectra of ¹H NMR, ¹³C NMR and MS

¹H NMR of 1-(*N*-methyl-*N*-phenylamino)-hexan-3-one 8c

¹³C NMR of 1-(*N*-methyl-*N*-phenylamino)-hexan-3-one **8c**

MS (ESI) of 1-(N-methyl-N-phenylamino)-hexan-3-one 8c

¹HNMR of 1-(*N*-methyl-*N*-(4-methylphenyl)amino)-pentan-3-one **8e**

¹³C NMR of 1-(N-methyl-N-(4-methylphenyl)amino)-pentan-3-one 8e

MS (ESI) of 1-(N-methyl-N-(4-methylphenyl)amino)-pentan-3-one 8e

¹H NMR of 1-(*N*-methyl-*N*-(4-methylphenyl)amino)-hexan-3-one **8f**

¹³C NMR of 1-(*N*-methyl-*N*-(4-methylphenyl)amino)-hexan-3-one **8f**

MS (ESI) of 1-(N-methyl-N-(4-methylphenyl)amino)-hexan-3-one 8f

¹H NMR of 4-(*N*-methyl-*N*-(3-methylphenyl)amino)-butan-2-one **8**j

¹³C NMR of 4-(*N*-methyl-*N*-(3-methylphenyl)amino)-butan-2-one **8**j

MS (ESI) of 4-(N-methyl-N-(3-methylphenyl)amino)-butan-2-one 8j

¹H NMR of *N*-((5-bromol-1*H*-indol-3-yl)methyl)-*N*, 4-menthylbenzenamine **10c**

13 C NMR of *N*-((5-bromol-1*H*-indol-3-yl)methyl)-*N*, 4-menthylbenzenamine **10**c

MS (ESI) of N-((5-bromol-1H-indol-3-yl)methyl)-N, 4-menthylbenzenamine 10c

1 H NMR of 3-((*N*-methyl-*N*-phenylamino)methyl)-1*H*-indole-5-carboxylic acid methyl ester **10g**

 $^{13}\mathrm{C}\ \mathrm{NMR}\ \mathrm{of}\ 3-((N-\mathrm{methyl}-N-\mathrm{phenylamino})\mathrm{methyl})-1\\ H-\mathrm{indole}-5-\mathrm{carboxylic}\ \mathrm{acid}\ \mathrm{methyl}\ \mathrm{ester}\ \mathbf{10g}$

MS (EI) of 3-((N-methyl-N-phenylamino)methyl)-1H-indole-5-carboxylic acid methyl ester 10g

