Supplementary Information of the manuscript

Resorcinol Based Deep Eutectic Solvents as Both Carbonaceous Precursors and Templating Agents in the Synthesis of Hierarchical Porous Carbon Monoliths

by

Daniel Carriazo, María C. Gutiérrez,* María L. Ferrer, and Francisco del Monte*

Microporous specific surface area (S_{mic}) and external specific surface area (S_{ext}) were calculated by the t-plot (Figure S1),

$$V_a (P/P^\circ) = V_{a,mic} + k S_{ext} t (P/P^\circ)$$

where $V_{a,mic}$ is the adsorption in saturated micropores, S_{ext} the external surface area (surface area of pores larger than micropores) and t (P/P°) is the statistical thickness of the adsorbed layer calculated using the Halsey equation (t = 0.354 [-5/ln(P/P°)]^{1/3}, where t is given in nm) within the 0.354-0.5 nm range

Sample	Slope (cm³/g Å)	Y-intercept (cm³/g)	Correlation Coefficient	S _{mic} (m²/g)	S _{ext} (m²/g)
C _{RUC1}	15.7	116.1	0.9837	333	243
C _{RUC2}	12.1	93.4	0.9824	267	188
C _{RC1}	17.1	85.5	0.9914	254	264
C _{RC2}	20.4	99.8	0.9910	296	316

Table S1

Figure S1

Table S2: ¹H-NMR spectroscopy data of non-diluted and diluted (in D_2O) RC1-DES and RC2-DES samples. DES content ranged from 85 to 56 up to 10 wt% in RC1-DES diluted samples and from 85 to 57 up to 10 wt% in RC2-DES diluted samples. Spectra were recorded using CDCl₃ as external reference. ¹H-NMR spectroscopy data of resorcinol (15 wt%) and choline chloride (12 wt%) in D_2O solution are also included for comparison.

Sample	δ (ppm)								
	HDO	Resorc	inol = Benzene-2	1,3-diol	Choline chloride = 2-hydroxy- N,N,N-trimethylamonium chloride				
		C <u>H</u> in position 5	C <u>H</u> s in positions 4,6	C <u>H</u> in position 2	C <u>H</u> ₂ in position 2	C <u>H</u> ₂ in position 1	3×CH₃ in N		
R	4.85	6.99 (1H)	6.34 (2H)	6.31 (1H)					
С	4.76				4.10 (2H)	3.56 (2H)	3.24 (9H)		
RC1-DES		6.58 (4H) ^a	6.17 (8H)ª	6.30 (4H) ^a	3.27 (2H) ^a	2.36 (2H) ^a	2.04 (9H) ^a		
RC1- DES85		6.65 (4H) ^a	6.18 (8H)ª	6.29 (4H) ^a	3.31 (2H) ^a	2.40 (2H) ^a	2.10 (9H) ^a		
RC1- DES56	5.17	6.75 (4H) ^a	6.20 (8H)ª	6.26 (4H) ^a	3.44 (2H) ^a	2.63 (2H) ^a	2.34 (9H) ^a		
RC1- DES10	4.83	7.09 (4H) ^a	6.43 (8H) ^a	6.37 (4H) ^a	3.92 (2H) ^a	3.30 (2H) ^a	3.00 (9H) ^a		
RC2-DES		6.59 (3.75H) ^a	6.17 (7.5H) ^a	6.31 (3.75H) ^a	3.29 (2H) ^a	2.42 (2H) ^a	2.10 (9H) ^a		
RC2- DES85		6.66 (3.75H) ^a	6.20 (7.5H) ^a	6.32 (3.75H) ^a	3.33 (2H) ^a	2.43 (2H) ^a	2.12 (9H) ^a		
RC2- DES57	5.13	6.77 (3.75H) ^a	6.22 (7.5H) ^a	6.26 (3.75H) ^a	3.46 (2H) ^a	2.66 (2H) ^a	2.37 (9H) ^a		
RC2- DES10	4.83	7.10 (3.75H) ^a	6.44 (7.5H) ^a	6.38 (3.75H) ^a	3.93 (2H) ^a	3.31 (2H) ^a	3.01 (9H) ^a		

^a The molar ratio of resorcinol to choline chloride was 4:1 in RC1-DES and 3.75:1 in RC2-DES.

Table S3: ¹H-NMR spectroscopy data of non-diluted and diluted (in D_2O) RUC1-DES and RUC2-DES samples. DES content ranged from 85 to 62 up to 10 wt% in RUC1-DES diluted samples and from 85 to 63 up to 10 wt% in RUC2-DES diluted samples. Spectra were recorded using CDCl₃ as external reference. ¹H-NMR spectroscopy data of resorcinol (15 wt%) and choline chloride (12 wt%) in D_2O solution are also included for comparison.

Sample	δ (ppm)								
	HDO	Resorc	inol = Benzene-:	Choline chloride = 2-hydroxy- N,N,N-trimethylamonium chloride					
		C <u>H</u> in position 5	C <u>H</u> s in positions 4,6	C <u>H</u> in position 2	C <u>H</u> ₂ in position 2	C <u>H</u> 2 in position 1	3×CH₃ in N		
R	4.85	6.99 (1H)	6.34 (2H)	6.31 (1H)					
С	4.76				4.10 (2H)	3.56 (2H)	3.24 (9H)		
RUC1- DES		6.68 (3.5H) ^a	6.20 (7H) ^a	6.33 (3.5H) ^a	3.37 (2H) ^a	2.51 (2H) ^a	2.21 (9H) ^a		
RUC1- DES85	6.05	6.70 (3.5H) ^a	6.19 (7H)ª	6.29 (3.5H) ^a	3.47 (2H) ^a	2.66 (2H) ^a	2.37 (9H) ^a		
RUC1- DES62	5.19	6.82 (3.5H) ^a	6.24 (7H)ª	6.29 (3.5H) ^a	3.53 (2H) ^a	2.75 (2H) ^ª	2.47 (9H) ^a		
RUC1- DES10	4.82	7.12 (3.5H) ^a	6.44 (7H) ^a	6.40 (3.5H) ^a	3.96 (2H) ^a	3.36 (2H)ª	3.06 (9H) ^a		
RUC2- DES		6.72 (3H) ^a	6.23 (6H)ª	6.36 (3H) ^a	3.42 (2H) ^a	2.59 (2H) ^a	2.28 (9H) ^a		
RUC2- DES85	6.12	6.73 (3H) ^a	6.21 (6H)ª	6.31 (3H) ^a	3.45 (2H) ^a	2.64 (2H) ^a	2.34 (9H) ^a		
RUC2- DES63	5.17	6.83 (3H) ^a	6.26 (6H) ^a	6.29 (3H) ^a	3.56 (2H) ^a	2.80 (2H) ^a	2.50 (9H) ^a		
RUC2- DES10	4.82	7.12 (3H) ^a	6.45 (6H) ^a	6.40 (3H) ^a	3.95 (2H) ^a	3.36 (2H) ^a	3.06 (9H) ^a		

^a The molar ratio of resorcinol to choline chloride was 3.5:1 in RUC1-DES and 3:1 in RUC2-DES.

Figure S2: ¹H NMR spectra of D₂O dilutions of (from top to bottom) RC1-DES, RC2-DES, RUC1-DES and RUC2-DES. D₂O dilutions were prepared by adding 56 mg of RC1-DES to 44 mg of D₂O, 57 mg of RC2-DES to 43 mg of D₂O, 62 mg of RUC1-DES to 38 mg of D₂O and 63 mg of RUC2-DES to 37 mg of D₂O dilution.

Figure S3: Adsorption (solid symbols) and desorption (open symbols) nitrogen isotherms of $RF_{RC1-DES}$ (squares), $RF_{RC2-DES}$ (circles), $RF_{RUC1-DES}$ (inverted triangles) and $RF_{RUC2-DES}$ (triangles) gels.

Figure S4: ¹H NMR spectra of the residue recovered after washing $RF_{RC1-DES}$ and $RF_{RC2-DES}$ (left and right in top panel, respectively), and $RF_{RUC1-DES}$ and $RF_{RUC2-DES}$ (left and right in bottom panel, respectively) gels and freeze-drying. Spectra were recorded using D₂O as solvent and CDCl₃ as external reference. ¹H NMR spectra did not allow to determine the urea recovered because the protons were exchangeable with D₂O and convoluted together with residual water.

Figure S5: XRD (top) and Raman spectra (bottom) of $C_{RC1-DES}$ (blue line), $C_{RC2-DES}$ (magenta line), $C_{RUC1-DES}$ (red line) and $C_{RUC2-DES}$ (dark yellow line).

Wavenumber (cm⁻¹)

Figure S6: EDX analysis of of $C_{RC1-DES}$. EDX analyses of $C_{RC2-DES}$, $C_{RUC1-DES}$ and $C_{RUC2-DES}$ are not shown but they did not exhibit significant differences.

1									
Counts									
639									
568			Eleme	ent	Wt %	At	8		
497 C K	a		C	ĸ	95.85	96.	85		
426			Tot	al	100.00	100.	00		
355									
284									
213									
142									
71	O Ka			anth a sector star					
	0.40	0.80) 1.	20	1.60 2	.00 2	.40 2	.80	keV

Figure S7: Top panel: Adsorption (solid symbols) and desorption (open symbols) branches of nitrogen isotherms of $C_{RC1-DES}$ (squares) and $C_{RUC2-DES}$ (triangles). **Bottom panel:** Pore size distributions of $C_{RC1-DES}$ (squares) and $C_{RUC2-DES}$ (triangles).

Figure S8: SEM micrographs of RF gels (prepared by resorcinol-formaldehyde polycondensation in presence of sodium carbonate) in absence of choline chloride without (left, bar is 2 μ m) and with (right, bar is 4 μ m) urea.

