## Supporting Information

# Cationic Rhodium(I) Complex-Catalyzed Cotrimerization of Propargyl Esters and Arylacetylenes Leading to Substituted Dihydropentalenes 

Yu Shibata, Keiichi Noguchi, and Ken Tanaka*<br>Department of Applied Chemistry, Graduate School of Engineering, and Instrumentation Analysis Center, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan

## I. General

Anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (No. 27,099-7), toluene (No. 24,451-1), $\mathrm{Et}_{2} \mathrm{O}$ (No. 29,608-2), DME (No. 25,952-7), dioxane (No. 29,630-9), THF (No. 18,656-2), acetone (No. 27,072-5), and $\mathrm{CH}_{3} \mathrm{CN}$ (No. 27,100-4) were obtained from Aldrich and used as received. Solvents for the synthesis of substrates were dried over Molecular Sieves 4A (Wako) or KOH prior to use. Propargyl esters 1a, ${ }^{1} \mathbf{1 b},{ }^{2} \mathbf{1 c},{ }^{2} \mathbf{1 d},{ }^{2}$ and $\mathbf{1 f}^{2}$ were already reported. All other reagents were obtained from commercial sources and used as received unless otherwise noted. All reactions were carried out under nitrogen or argon with magnetic stirring. Infrared spectra were obtained on a JASCO A-302. NMR spectra were recorded on a JEOL AL 300 spectrometer. HRMS data were obtained on a BRUKER micrOTOF Focus II.

## II. Synthesis of Propargyl Ether

4-Methoxy-4-methylpent-2-ynoic acid methyl ester (1e)


To a solution of 3-methoxy-3-methyl-1-butyne ${ }^{3}$ ( $327 \mathrm{mg}, 2.29 \mathrm{mmol}$ ) in THF was added a solution of $n$-butyllithium in hexane ( $7.0 \mathrm{~mL}, 1.57 \mathrm{M}, 11.0 \mathrm{mmol}$ ) at $-78^{\circ} \mathrm{C}$ and the mixture was stirred for 30 minutes. To the resulting mixture was added a solution of methyl chloroformate ( $1.19 \mathrm{~g}, 11.0 \mathrm{mmol}$ ) in THF ( 10 mL ) and the mixture was warmed to room temperature. After stirring for 1 hour, the reaction was quenched with aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with EtOAc. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by a silica gel column chromatography (hexane/EtOAc $=10: 1$ ) to give $\mathbf{1 e}(187 \mathrm{mg}, 1.20 \mathrm{mmol}, 52 \%$ yield) as a colorless oil.
IR (neat) 1757, 1715, 1436, 1261, $1176 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.38(\mathrm{~s}$, $3 \mathrm{H}), 1.50(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 153.8,89.1,75.9,70.4,52.7,52.1,27.5 ;$ HRMS (ESI) calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$179.0679, found 179.0684.

## III. Rhodium-Catalyzed Cotrimerization

Representative procedure for rhodium-catalyzed cotrimerization (Table 2, entry 1, 4aa): $\left[\mathrm{Rh}(\operatorname{cod})_{2}\right] \mathrm{BF}_{4}(24.4 \mathrm{mg}, 0.0600 \mathrm{mmol}), 1 \mathrm{a}(55.3 \mathrm{mg}, 0.300 \mathrm{mmol})$, and cyclooctadiene (cod, 162.3 mg , 1.500 mmol ) were dissolved in THF ( 1.0 mL ). To this solution was added $\mathbf{2 a}(153.2 \mathrm{mg}, 1.500 \mathrm{mmol})$ in THF ( 1.0 mL ). The solution was stirred at $40{ }^{\circ} \mathrm{C}$ for 16 hours. The resulting solution was concentrated and purified by a preparative TLC (hexane/toluene $/ \mathrm{Et}_{2} \mathrm{O}=5: 4: 1$ ), which furnished 4aa ( $58.6 \mathrm{mg}, 0.178 \mathrm{mmol}, 59 \%$ yield) as an orange solid.

6-Methyl-3,4-diphenyl-4,5-dihydropentalene-1-carboxylic acid methyl ester (4aa)


Mp 169.5-171.0 ${ }^{\circ} \mathrm{C}$; IR (KBr) 1696, 1621, 1483, 1288, $1250 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ $8.15(\mathrm{~s}, 1 \mathrm{H}), 7.37-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.00(\mathrm{~m}, 8 \mathrm{H}), 4.44(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{dd}, J=$ $20.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{~d}, J=20.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H}){ }^{13}{ }^{3} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 164.7,164.3$, $154.7,148.4,145.8,143.1,134.3,128.7,128.4,128.2,127.1,126.4,126.3,126.2,117.7,58.0,51.1$, 43.6, 18.1; HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 351.1356$, found 351.1355 .

6-Methyl-3,4-di-p-tolyl-4,5-dihydropentalene-1-carboxylic acid methyl ester (4ab)


Orange solid; Mp 135.1-136.5 ${ }^{\circ} \mathrm{C}$; IR (KBr) 1703, 1512, 1436, 1235, $1125 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $300 \mathrm{MHz}) \delta 8.15(\mathrm{~s}, 1 \mathrm{H}), 7.27-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.04-6.94(\mathrm{~m}, 6 \mathrm{H}), 4.40(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H})$, $3.72(\mathrm{dd}, J=20.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{~d}, J=20.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 164.3,164.1,154.2,148.6,145.8,140.3,135.93,135.87,131.6,129.4,129.0$, 128.4, 126.9, 126.1, 117.6, 58.2, 51.0, 43.2, 21.03, 20.97, 18.1; HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+} 379.1669$, found 379.1666 .

6-Methyl-3,4-bis(4-trifluoromethylphenyl)-4,5-dihydropentalene-1-carboxylic acid methyl ester (4ac)


Orange amorphous; IR (KBr) 1708, 1328, 1123, 1069, $825 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 8.13$ ( $\mathrm{s}, 1 \mathrm{H}$ ), $7.48(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $2 \mathrm{H}), 4.55(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{dd}, J=20.3,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{~d}, J=20.3 \mathrm{~Hz}, 1 \mathrm{H})$, $2.65(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 166.4,164.1,155.1,147.6,146.7(\mathrm{q}, J=1.2 \mathrm{~Hz}), 145.9$, $137.6(\mathrm{q}, J=1.2 \mathrm{~Hz}), 129.2(\mathrm{q}, J=32.5 \mathrm{~Hz}), 128.3(\mathrm{q}, J=32.5 \mathrm{~Hz}), 127.5,127.4,126.1,125.9(\mathrm{q}, J=$ $3.7 \mathrm{~Hz}), 125.4(\mathrm{q}, J=3.7 \mathrm{~Hz}), 124.13(\mathrm{q}, J=271.7 \mathrm{~Hz}), 124.05(\mathrm{q}, J=271.9 \mathrm{~Hz}), 118.7,57.8,51.3$, 43.4, 18.3; HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{~F}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$487.1103, found 487.1102.

3,4-Bis(3-chlorophenyl)-6-methyl-4,5-dihydropentalene-1-carboxylic acid methyl ester (4ad)


Orange solid; Mp 123.5-125.0 ${ }^{\circ} \mathrm{C}$; IR (KBr) 1707, 1595, 1434, 1130, $1586 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $300 \mathrm{MHz}) \delta 8.05(\mathrm{~s}, 1 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.02(\mathrm{~m}, 6 \mathrm{H}), 7.01-6.95(\mathrm{~m}, 1 \mathrm{H}), 4.39(\mathrm{~d}, J=6.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{dd}, J=20.3,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{~d}, J=20.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 165.8,164.0,154.8,147.7,145.7,144.7,136.0,134.6,134.3,130.0,129.5,127.4$, 127.2, 126.9, 126.4, 126.3, 125.3, 124.2, 118.3, 57.7, 51.2, 43.2, 18.2; HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{Cl}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 419.0576$, found 419.0582 .

## 3,4-Bis(biphenyl-4-yl)-6-methyl-4,5-dihydropentalene-1-carboxylic acid methyl ester (4ae)



Orange solid; Mp $177.5-178.9^{\circ} \mathrm{C}$; IR (KBr) 1702, 1487, 1233, 1126, $764 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $300 \mathrm{MHz}) \delta 8.21(\mathrm{~s}, 1 \mathrm{H}), 7.57-7.11(\mathrm{~m}, 18 \mathrm{H}), 4.51(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.78$ (dd, $J=20.2$, $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{~d}, J=20.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 164.8,164.3,154.6$, $148.3,145.9,142.2,140.6,140.5,139.3,138.9,133.3,128.6,128.1,127.5,127.4,127.1,126.94$, $126.86,126.7,126.6,117.9,58.1,51.1,43.3,18.2$; HRMS (ESI) calcd for $\mathrm{C}_{35} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$ 503.1982, found 503.1992.

## 6-Methyl-3,4-diphenyl-4,5-dihydropentalene-1-carboxylic acid ethyl ester (4ba)



Orange solid; Mp 114.4-116.4 ${ }^{\circ} \mathrm{C}$; IR (KBr) 1685, 1631, 1479, 1277, $767 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $300 \mathrm{MHz}) \delta 8.16(\mathrm{~s}, 1 \mathrm{H}), 7.35-7.00(\mathrm{~m}, 10 \mathrm{H}), 4.44(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.38-4.27(\mathrm{~m}, 2 \mathrm{H}), 3.74(\mathrm{dd}, J$ $=20.2,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{~d}, J=20.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H}) 1.39(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $75 \mathrm{MHz}) \delta 164.5,163.9,154.6,148.3,145.8,143.2,134.4,128.6,128.4,128.2,127.1,126.4,126.23$, $126.19,118.2,59.8,58.0,43.6,18.2,14.5$; HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 365.1512$, found 365.1523.

## 6-Methyl-3,4-diphenyl-4,5-dihydropentalene-1-carboxylic acid isopropyl ester (4ca)



Orange solid; Mp 129.1-130.3 ${ }^{\circ} \mathrm{C}$; IR (KBr) 1687, 1474, 1294, 1129, $1105 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $300 \mathrm{MHz}) \delta 8.14(\mathrm{~s}, 1 \mathrm{H}), 7.37-7.01(\mathrm{~m}, 10 \mathrm{H}), 5.22$ (septet, $J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H})$, $3.76(\mathrm{dd}, J=20.2,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{~d}, J=20.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 164.3,163.5,154.4,148.3,145.8,143.2,134.4,128.6,128.4,128.2,127.1$, $126.4,126.2,118.7,67.0,58.0,43.6,22.1,18.2$; HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$ 379.1669 , found 379.1680 .

1,8-Diphenyl-4,5,6,7,7a,8-hexahydrocyclopenta[a]indene-3-carboxylic acid methyl ester (4fa) $J=<0.1 \mathrm{~Hz}$


The relative configuration of this compound was determined by a coupling constant between two trans-protons on ${ }^{1} \mathrm{H}$ NMR. Orange solid; Mp 113.4-114.6 ${ }^{\circ} \mathrm{C}$; IR (KBr) 1703, 1479, 1119, 764, 695 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 8.18(\mathrm{~s}, 1 \mathrm{H}), 7.36-6.98(\mathrm{~m}, 10 \mathrm{H}), 4.07(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.94$ $(\mathrm{s}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.08-2.92(\mathrm{~m}, 1 \mathrm{H}), 2.58-2.45(\mathrm{~m}, 1 \mathrm{H}), 2.45-2.29(\mathrm{~m}, 1 \mathrm{H}), 2.12-1.98(\mathrm{~m}, 1 \mathrm{H})$, $1.94-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.34(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 170.7,164.3,153.0,148.9,142.4$, $142.3,134.3,128.7,128.6,128.2,127.0,126.5,126.2,118.0,67.0,51.7,51.1,34.8,30.2,27.1,25.5$; HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$391.1669, found 391.1677.

## IV. References

(1) Matsumura, S.; Maeda, Y.; Nishimura, T.; Uemura, S. J. Am. Chem. Soc. 2003, 125, 8862.
(2) Shibata, Y.; Noguchi, K.; Tanaka, K. J. Am. Chem. Soc. 2010, 132, 7896.
(3) Pinkerton, D. M.; Banwell, M. G.; Willis, A. C. Org. Lett. 2009, 11, 4290.

4-Methoxy-4-methylpent-2-ynoic acid methyl ester (1e)




6-Methyl-3,4-diphenyl-4,5-dihydropentalene-1-carboxylic acid methyl ester (4aa)




6-Methyl-3,4-di-p-tolyl-4,5-dihydropentalene-1-carboxylic acid methyl ester (4ab)




6-Methyl-3,4-bis(4-trifluoromethylphenyl)-4,5-dihydropentalene-1-carboxylic acid methyl ester (4ac)




3,4-Bis(3-chlorophenyl)-6-methyl-4,5-dihydropentalene-1-carboxylic acid methyl ester (4ad)




3,4-Bis(biphenyl-4-yl)-6-methyl-4,5-dihydropentalene-1-carboxylic acid methyl ester (4ae)




6-Methyl-3,4-diphenyl-4,5-dihydropentalene-1-carboxylic acid ethyl ester (4ba)




6-Methyl-3,4-diphenyl-4,5-dihydropentalene-1-carboxylic acid isopropyl ester (4ca)




1,8-Diphenyl-4,5,6,7,7a,8-hexahydrocyclopenta[a]indene-3-carboxylic acid methyl ester (4fa)




