Catalytic Asymmetric Formal [4+1] Annulation Leading to Optically Active cis-Isoxazoline N-Oxides

SUPPORTING INFORMATION

Zugui Shi, Bin Tan, Wendy Wen Yi Leong, Xiaofei Zeng, Min Lu, and Guofu Zhong*
Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore

INDEX

I. General Information S2
II. Optimization and general procedure of catalytic [4+1] annulation reaction S2
III. NMR and HPLC data S6
IV. Absolute configuration assignments S18
V. References S19
VI. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra S20
VII. HPLC spectra of products S44

I. General Information

Analytical thin layer chromatography (TLC) was performed using Merck 60 F254 precoated silica gel plate (0.2 mm thickness). Subsequent to elution, plates were visualized using UV radiation (254 nm) on Spectroline Model ENF-24061/F 254 nm . Further visualization was possible by staining with basic solution of potassium permanganate or acidic solution of ceric molybdate.
Flash column chromatography was performed using Merck silica gel 60 with freshly distilled solvents. Columns were typically packed as slurry and equilibrated with the appropriate solvent system prior to use. Proton nuclear magnetic resonance spectra (${ }^{1} \mathrm{H}-\mathrm{NMR}$) were recorded on Bruker AMX 400 spectrophotometer $\left(\mathrm{CDCl}_{3}\right.$ as solvent). Chemical shifts for ${ }^{1} \mathrm{H}$ NMR spectra are reported as δ in units of parts per million (ppm) downfield from $\mathrm{SiMe}_{4}\left(\begin{array}{ll}\delta & 0.0\end{array}\right)$ and relative to the signal of chloroform-d $(\bar{\delta}$ 7.26, singlet). Multiplicities were given as: s (singlet), d (doublet), t (triplet), dd (doublets of doublet) or m (multiplets). The number of protons (n) for a given resonance is indicated by nH . Coupling constants are reported as a J value in Hz . Carbon nuclear magnetic resonance spectra (${ }^{13} \mathrm{C}-\mathrm{NMR}$) are reportedas δ in units of parts per million (ppm) downfield from SiMe4 ($\delta 0.0$) and relative to the signal of chloroform-d ($\delta \quad 77.0$, triplet).

Enantioselectivities were determined by High Performance Liquid Chromatography (HPLC) analysis (Shimadzu, LC-20AD) employing a Chiralcel OD-H or AD-H. Optical rotations were measured in CHCl_{3} on a Schmidt + Haensdch polarimeter (Polartronic MH8) with a 10 cm cell (c given in $\mathrm{g} / 100 \mathrm{~mL}$). High resolution mass spectrometry (HRMS) was recorded on Finnigan MAT $95 \times \mathrm{P}$ spectrometer.
α-Iodoaldehyde ${ }^{1}$ and 2-nitroacrylate ${ }^{2}$ substrates were prepared according to the procedure of literatures, catalyst $\mathbf{4 a},{ }^{3} \mathbf{4 b},{ }^{3} \mathbf{4 c},{ }^{3} \mathbf{4 d} d^{4}$ and $\mathbf{4 f}{ }^{5}$ were synthesized following documented methods. Catalyst $\mathbf{4 e},{ }^{6} \mathbf{4 g},{ }^{6}$ $\mathbf{4 h}^{7}$ and $\mathbf{4} \mathbf{i}^{5}$ were prepared with modified method of literatures.

II. General procedure of catalytic [4+1] annulation reaction

α-Iodoaldehyde ($0.8 \mathrm{mmol}, 4.0$ equivalent), (S)-2-(azidodiphenylmethyl)pyrrolidine (4e, 0.04 mmol, 0.2 equivalent) were dissolved in 2.0 mL toluene at room temperature $\left(23{ }^{\circ} \mathrm{C}\right)$, then 2Nitroacrylate derivatives (0.2 mmol) and triethyl amine (0.22 mmol) were added successively. The reaction progress was monitored by TLC analysis. Upon consumption of 2-nitroacrylate
derivatives, the crude reaction mixture was applied to silica gel and the desired products were obtained by flash chromatography (hexane/ethyl acetate, 10:1 to 2:1).

Racemic adducts were synthesized using 2-(diphenyl(trimethylsilyloxy)methyl)pyrrolidine as catalyst.

Optimization of reaction conditions

1) Catalyst screening

[^0]
2) Survey of additive

		$\begin{aligned} & \mathrm{O}_{2} \mathrm{Me} \\ & \stackrel{\oplus}{\mathrm{~N}}=\mathrm{O} \end{aligned}$	ions			 trans-3c
entry	additive	t (h)	yield (\%) ${ }^{\text {b }}$	cis/trans ${ }^{\text {c }}$	$e e(\%)$	
1	DIPEA	7	83	9:1	98	
2	TEA	8	89	11:1	>99	
3	2,6-lutidine	48	85	7:1	96	
4	NaOAc	48	n.r.	n.d.	n.d.	
5	Pyridine	48	47	8:1	96	
6	DABCO	48	20	11:1	97	
$7{ }^{\text {e }}$	TEA	10	80	11:1	>99	

${ }^{a}$ Unless noted, reactions were performed at rt on a 0.1 mmol scale, in 0.5 mL toluene, with a molar ratio of α-iodohexanal/2nitroacyrate/additive/ $\mathbf{4}=4: 1: 1.1: 0.2 .{ }^{b}$ The sum of both isomers. ${ }^{c}$ Analysis of crude ${ }^{1} \mathrm{H}$ NMR. ${ }^{d}$ Determined by HPLC for cis-isomer. ${ }^{e} 1.0$ equivalent TEA was employed. n.r. $=$ no reaction, n.d. $=$ no determination.

3) Concentration effect

[^1]
4) Solvent effect

${ }^{a}$ Unless noted, reactions were performed at rt on a 0.1 mmol scale, at 0.1 M concentration, with a molar ratio of α-iodohexanal/2nitroacyrate/TEA/4 $=4: 1: 1.1: 0.2 .{ }^{b}$ The sum of both isomers. ${ }^{c}$ Analysis of crude ${ }^{1} \mathrm{H}$ NMR. ${ }^{d}$ Determined by HPLC for cis-isomer.

5) Catalyst loading and temperature effect

$\mathbf{1 c}$			
entry	mol $\%$ of $\mathbf{4 e}$	$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	$t(\mathrm{~h})$

${ }^{a}$ Unless noted, reactions were performed at rt on a 0.1 mmol scale, at 0.1 M concentration, with a molar ratio of α-iodohexanal/2nitroacyrate/TEA/4 $=4: 1: 1.1: 0.2 .{ }^{b}$ The sum of both isomers. ${ }^{c}$ Analysis of crude ${ }^{1} \mathrm{H}$ NMR. ${ }^{d}$ Determined by HPLC for cis-isomer. n.r. $=$ no reaction, n.d. $=$ no determination.

III. NMR and HPLC data

(S)-2-(Azidodiphenylmethyl)pyrrolidine (4e)

82\% yield
Catalyst 4 e was synthesized using modified method of literature: ${ }^{6}$ (S)-Diphenyl(pyrrolidin-2-yl)methanol ($0.81 \mathrm{~g}, 3.2 \mathrm{mmol}$) was dissolved in 20 mL TFA, then cooled with ice bath. $\mathrm{NaN}_{3}(1.25 \mathrm{~g}, 19.2 \mathrm{mmol})$ was potionwise added, then stirred at room temperature for 24 h . Reaction was quenched with saturated aquous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution, extracted with dichloromethane, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under vacco, then the residue was applied to column chromatography, gave 0.73 g solid product ($\mathrm{Mp}: 70-71^{\circ} \mathrm{C}$), with 82% yield.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.61-1.75(\mathrm{~m}, 5 \mathrm{H}), 2.98(\mathrm{t}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 4.35(\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.49$ $(\mathrm{m}, 8 \mathrm{H}), 7.52(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 26.1,28.0,47.3,65.3,75.2,127.0,127.2$, 127.5, 128.0, 128.2, 128.5, 142.3, 142.7.

(4S,5R)-3-(Methoxycarbonyl)-5-formyl-4-phenyl-5-ethyl-4,5-dihydroisoxazole 2-oxide (3a)

According to general procedure: 16 h , at room temperature, the product was obtained from flash chromatography (hexane/EtOAc $=10: 1$ to $2: 1$), as white solid $36 \mathrm{mg}\left(\mathrm{Mp}: 126-128{ }^{\circ} \mathrm{C}\right), 64 \%$ yield, $10: 1 \mathrm{dr}$, $95 \% ~ e e$. HPLC analysis: Chiralcel OD-H (hexane $/ i-\mathrm{PrOH}=90 / 10,1.0 \mathrm{~mL} / \mathrm{min}$), t_{R} (major) $11.66 \mathrm{~min}, t_{\mathrm{R}}$ (minor) $16.57 \mathrm{~min}[\alpha]^{22}{ }_{\mathrm{D}}=+119.2^{\circ}\left(\mathrm{c}=3.17, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.03(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $3 \mathrm{H}), 2.07-2.17(\mathrm{~m}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 4.55(\mathrm{~s}, 1 \mathrm{H}), 7.14-7.16(\mathrm{~m}, ~ J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.38(\mathrm{~m}, 3 \mathrm{H}), 9.13(\mathrm{~s}$, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.2,28.9,52.8,57.0,88.6,110.4,127.9,129.1,129.6,133.1,158.7$, 196.7, HRMS (ESI) Calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NO}_{5} \quad\left([\mathrm{M}+\mathrm{H}]^{+}\right)$278.1028, found 278.1032.

According to general procedure: 16 h , at room temperature, the product was obtained from flash chromatography (hexane/EtOAc $=10: 1$ to $2: 1$), as white solid $39 \mathrm{mg}\left(\mathrm{Mp}: 149-152{ }^{\circ} \mathrm{C}\right), 68 \%$ yield, $11: 1 \mathrm{dr}$, 94% ee. HPLC analysis: Chiralcel OD-H (hexane $/ i-\mathrm{PrOH}=90 / 10,1.0 \mathrm{~mL} / \mathrm{min}$), t_{R} (major) $9.35 \mathrm{~min}, t_{\mathrm{R}}$ (minor) $18.61 \mathrm{~min}[\alpha]^{22}{ }_{\mathrm{D}}=+92.3^{\circ}\left(\mathrm{c}=1.65, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.97(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$, 1.30-1.39 (m, 1H), 1.53-1.59 (m, 1H), 2.01-2.10 (m, 2H), $3.73(\mathrm{~s}, 3 \mathrm{H}), 4.54(\mathrm{~s}, 1 \mathrm{H}), 7.14-7.15(\mathrm{~m}, J=6.9$ $\mathrm{Hz}, 2 \mathrm{H}), 7.32-7.36(\mathrm{~m}, 3 \mathrm{H}), 9.13(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 14.2,16.3,38.1,52.8,57.4,88.4$, 110.4, 127.9, 129.2, 129.6, 133.3, 158.1, 196.8, HRMS (ESI) Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO} 5\left([\mathrm{M}+\mathrm{H}]^{+}\right)$292.1185, found 292.1179.
(4S,5R)-3-(Methoxycarbonyl)-5-formyl-4-phenyl-5-butyl-4,5-dihydroisoxazole 2-oxide (3c)

According to general procedure: 14 h , at room temperature, the product was obtained from flash chromatography (hexane/EtOAc $=10: 1$ to $2: 1$), as white solid $57 \mathrm{mg}\left(\mathrm{Mp}: 145-147{ }^{\circ} \mathrm{C}\right), 94 \%$ yield, $11: 1 \mathrm{dr}$, $>99 \%$ ee. HPLC analysis: Chiralcel OD-H (hexane $/ i-\mathrm{PrOH}=90 / 10,1.0 \mathrm{~mL} / \mathrm{min}$), t_{R} (major) $8.48 \mathrm{~min}, t_{\mathrm{R}}$ (minor) $17.81 \mathrm{~min}[\alpha]^{22}{ }_{\mathrm{D}}=+108.3^{\circ}\left(\mathrm{c}=1.70, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.91(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, $1.33-1.38(\mathrm{~m}, 3 \mathrm{H}), 1.45-1.54(\mathrm{~m}, 1 \mathrm{H}), 2.02-2.12(\mathrm{~m}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 4.55(\mathrm{~s}, 1 \mathrm{H}), 7.14-7.15(\mathrm{~m}, J=6.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.34-7.36(\mathrm{~m}, 3 \mathrm{H}), 9.13(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 13.7,22.8,24.8,35.8,52.8,57.3$, 88.5, 110.4, 127.9, 129.2, 129.6, 133.3, 158.7, 196.8, HRMS (ESI) Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NO} 5\left([\mathrm{M}+\mathrm{H}]^{+}\right) 306.1341$, found 306.1343 .

According to general procedure: 16 h , at room temperature, the product was obtained from flash chromatography (hexane/EtOAc $=10: 1$ to $2: 1$), as white solid $58 \mathrm{mg}\left(\mathrm{Mp}: 82-85^{\circ} \mathrm{C}\right), 84 \%$ yield, $9: 1 \mathrm{dr}$, 92% ee. HPLC analysis: Chiralcel OD-H (hexane $/ \mathrm{i}-\mathrm{PrOH}=90 / 10,1.0 \mathrm{~mL} / \mathrm{min}$), t_{R} (major) $8.96 \mathrm{~min}, t_{\mathrm{R}}$ (minor) $23.50 \mathrm{~min}[\alpha]_{\mathrm{D}}^{22}=+94.9^{\circ}\left(\mathrm{c}=4.00, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.87(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$, $1.26-1.29(\mathrm{~m}, 9 \mathrm{H}), 1.51-1.54(\mathrm{~m}, 1 \mathrm{H}), 2.02-2.11(\mathrm{~m}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 4.55(\mathrm{~s}, 1 \mathrm{H}), 7.13-7.15(\mathrm{~m}, J=6.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.31-7.35(\mathrm{~m}, 3 \mathrm{H}), 9.12(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 14.1,22.6,22.8,28.9,29.6,31.6$, $36.0,52.8,57.3,88.5,110.4,127.9,129.2,129.6,133.1,158.7$, 196.8, HRMS (ESI) Calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{NO}_{5}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right) 348.1811$, found 348.1811.
(4S,5S)- 5-(Benzyloxymethyl)- 5-formyl -3-(Methoxycarbonyl)-4-phenyl-4,5-dihydroisoxazole 2-oxide (3e)

According to general procedure: 14 h , at room temperature, the product was obtained from flash chromatography (hexane/EtOAc $=10: 1$ to $2: 1$), as sticky oil $55 \mathrm{mg}, 75 \%$ yield, $18: 1 \mathrm{dr}, 99 \% e e$. HPLC analysis: Chiralcel OD-H (hexane $/ \mathrm{i}-\mathrm{PrOH}=90 / 10,1.0 \mathrm{~mL} / \mathrm{min}$), t_{R} (major) $22.48 \mathrm{~min}, t_{\mathrm{R}}$ (minor) 29.62 min $[\alpha]^{22}{ }_{\mathrm{D}}=+44.6^{\circ}\left(\mathrm{c}=2.60, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.82-3.94(\mathrm{dd}, J=8,36 \mathrm{~Hz}$, $2 \mathrm{H})$, 4.65-4.66 (m, $J=4 \mathrm{~Hz}, 2 \mathrm{H}), 7.13-7.15(\mathrm{~m}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.38(\mathrm{~m}, 8 \mathrm{H}), 9.14(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 52.8,53.9,70.6,74.1,86.7,110.1,127.8,128.0,128.2,128.6,129.2,129.7,132.9$, 136.9, 158.6, 195.1, HRMS (ESI) Calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{NO}_{6}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 370.1291$, found 370.1299.

According to general procedure: 24 h , at room temperature, the product was obtained from flash chromatography (hexane/EtOAc $=4: 1$ to $2: 1$), as sticky oil $47 \mathrm{mg}, 70 \%$ yield, $8: 1 \mathrm{dr}, 99 \% e e$. HPLC analysis: Chiralcel OD-H (hexane $/ i-\mathrm{PrOH}=95 / 05,1.0 \mathrm{~mL} / \mathrm{min}$), t_{R} (major) $25.77 \mathrm{~min}, t_{\mathrm{R}}$ (minor) 43.81 min . $[\alpha]^{21}{ }_{\mathrm{D}}=+60.8^{\circ}\left(\mathrm{c}=1.40, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz},{ }^{1} \mathrm{HCDCl}_{3}\right): \delta 3.28(\mathrm{~s}, 2 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 4.63(\mathrm{~s}, 1 \mathrm{H})$, 7.15-7.16 (d, $J=2.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.31-7.35 (m, 8H), $9.14(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 40.9,52.7$, $56.3,87.6,110.0,127.8,128.0,128.7,129.2,129.2,129.7,130.3,132.5,132.9,158.2,196.6$. HRMS (ESI) Calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{NO}_{5}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 340.1185$, found 340.1179 .

(4S,5R)-3-(Ethoxycarbonyl)-5-formyl-4-phenyl-5-propyl-4,5-dihydroisoxazole 2-oxide (3g)

According to general procedure: 16 h , at room temperature, the product was obtained from flash chromatography (hexane/EtOAc $=10: 1$ to $2: 1$), as white solid $38 \mathrm{mg}\left(\mathrm{Mp}: 113-114{ }^{\circ} \mathrm{C}\right), 87 \%$ yield, $9: 1 \mathrm{dr}$, $91 \% e e$. HPLC analysis: Chiralcel OD-H (hexane $/ i-\mathrm{PrOH}=90 / 10,1.0 \mathrm{~mL} / \mathrm{min}$), t_{R} (major) $8.44 \mathrm{~min}, t_{\mathrm{R}}$ (minor) $19.44 \min [\alpha]^{22}{ }_{\mathrm{D}}=+90.1^{\circ}\left(\mathrm{c}=3.80, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.97(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, $1.11(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.31-1.39(\mathrm{~m}, 1 \mathrm{H}), 1.52-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.99-2.14(\mathrm{~m}, 2 \mathrm{H}), 4.12-4.22(\mathrm{~m}, 2 \mathrm{H}), 4.54(\mathrm{~s}$, $1 \mathrm{H}), 7.14(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.37(\mathrm{~m}, 3 \mathrm{H}), 9.16(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 13.9,14.2$, 16.3, 38.1, 57.6, 62.0, 88.3, 110.4, 127.9, 129.1, 133.3, 158.1, 196.9, HRMS (ESI) Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NO}_{5}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right) 306.1341$, found 306.1344.

According to general procedure: 24 h , at room temperature, the product was obtained from flash chromatography (hexane/EtOAc $=10: 1$ to $2: 1$), as white solid $52 \mathrm{mg}\left(\mathrm{Mp}: 75-77{ }^{\circ} \mathrm{C}\right), 81 \%$ yield, $11: 1 \mathrm{dr}$, 97% ee. HPLC analysis: Chiralcel OD-H (hexane $/ i-\mathrm{PrOH}=90 / 10,1.0 \mathrm{~mL} / \mathrm{min}$), t_{R} (major) $6.37 \mathrm{~min}, t_{\mathrm{R}}$ (minor) $22.00 \mathrm{~min} .[\alpha]^{22}{ }_{\mathrm{D}}=+59.9^{\circ}\left(\mathrm{c}=4.50, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.97(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, $1.12(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.29-1.38(\mathrm{~m}, 1 \mathrm{H}), 1.53-1.62(\mathrm{~m}, 1 \mathrm{H}), 2.00-2.236(\mathrm{~m}, 2 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 4.13-4.21$ $(\mathrm{m}, 2 \mathrm{H}), 4.77(\mathrm{~s}, 1 \mathrm{H}), 7.10-7.13(\mathrm{q}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 3 \mathrm{H}), 9.11(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 13.9,14.2,16.4,38.5,52.9,62.0,88.2,110.8,126.6,127.0,128.9,131.5,131.8,158.0$, 197.3. HRMS (ESI) Calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{NO}_{5}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 320.1498$, found 320.1494 .
(4S,5R)-4-(2-Chlorophenyl)-3-(ethoxycarbonyl)-5-formyl-5-propyl-4,5-dihydroisoxazole 2-oxide (3i)

According to general procedure: 16 h , at room temperature, the product was obtained from flash chromatography (hexane/EtOAc $=10: 1$ to $2: 1$), as white solid $43 \mathrm{mg}\left(\mathrm{Mp}: 78-79{ }^{\circ} \mathrm{C}\right), 64 \%$ yield, $>20: 1 \mathrm{dr}$, 96% ee. HPLC analysis: Chiralcel OD-H (hexane $/ i-\mathrm{PrOH}=90 / 10,1.0 \mathrm{~mL} / \mathrm{min}$), t_{R} (major) $8.78 \mathrm{~min}, t_{\mathrm{R}}$ (minor) $30.14 \mathrm{~min} .[\alpha]_{\mathrm{D}}^{22}=+46.1^{\circ}\left(\mathrm{c}=3.507, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.99(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}), 1.12(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.33-1.41(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.62(\mathrm{~m}, 1 \mathrm{H}), 2.07-2.24(\mathrm{~m}, 2 \mathrm{H}), 4.13-4.22(\mathrm{~m}, 2 \mathrm{H})$, $5.24(\mathrm{~s}, 1 \mathrm{H}), 7.16-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.27(\mathrm{t}, J=3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.41-7.44(\mathrm{~m}, 1 \mathrm{H}), 9.13(\mathrm{~d}, J=0.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 13.8,14.2,16.3,38.0,52.8,62.1,88.0,109.8,127.8,128.4,130.3,130.6,131.5$, 133.8, 157.9, 195.5. HRMS (ESI) Calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO} 5 \mathrm{Cl}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 340.0952$, found 340.0956.

According to general procedure: 16 h , at room temperature, the product was obtained from flash chromatography (hexane/EtOAc $=10: 1$ to $2: 1$), as white solid $51 \mathrm{mg}\left(\mathrm{Mp}: 111-113{ }^{\circ} \mathrm{C}\right), 80 \%$ yield, $11: 1 \mathrm{dr}$, 92% ee. HPLC analysis: Chiralcel OD-H (hexane $/ i-\mathrm{PrOH}=90 / 10,1.0 \mathrm{~mL} / \mathrm{min}$), t_{R} (major) $6.39 \mathrm{~min}, t_{\mathrm{R}}$ (minor) $15.20 \mathrm{~min} .[\alpha]^{22}{ }_{\mathrm{D}}=+66.9^{\circ}\left(\mathrm{c}=4.80, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.97(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, $1.14(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.33-1.35(\mathrm{~m}, 1 \mathrm{H}), 1.54-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.98-2.13(\mathrm{~m}, 2 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 4.13-4.23$ $(\mathrm{m}, 2 \mathrm{H}), 4.49(\mathrm{~s}, 1 \mathrm{H}), 6.94(\mathrm{~s}, 2 \mathrm{H}), 7.11(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 9.15(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 13.9,14.2,16.3,21.4,38.1,57.5,62.0,88.2,110.5,125.0,128.4,129.4,129.9,133.2$, 139.5, 158.2, 196.9. HRMS (ESI) Calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{NO}_{5}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 320.1498$, found 320.1496.
(4S,5R)-4-(3-Chlorophenyl)-3-(ethoxycarbonyl)-5-formyl-5-propyl-4,5-dihydroisoxazole 2-oxide (3k)

According to general procedure: 9 h , at room temperature, the product was obtained from flash chromatography (hexane/EtOAc $=10: 1$ to $2: 1$), as white solid $43 \mathrm{mg}\left(\mathrm{Mp}: 106-108{ }^{\circ} \mathrm{C}\right), 63 \%$ yield, $>20: 1$ $\mathrm{dr},>96 \%$ ee. HPLC analysis: Chiralcel OD-H (hexane $/ i-\mathrm{PrOH}=90 / 10,1.0 \mathrm{~mL} / \mathrm{min}$), t_{R} (major) 8.30 min , t_{R} (minor) $21.12 \mathrm{~min} .[\alpha]^{22}{ }_{\mathrm{D}}=+40.7^{\circ}\left(\mathrm{c}=1.70, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.97(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $3 \mathrm{H}), 1.15(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.33-1.36(\mathrm{~m}, 1 \mathrm{H}), 1.54-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.98-2.12(\mathrm{~m}, 2 \mathrm{H}), 4.14-4.24(\mathrm{~m}, 2 \mathrm{H})$, $4.50(\mathrm{~s}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~s}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 9.22(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 13.9,14.2,16.3,38.3,57.1,62.2,88.2,110.0,126.0,128.1,129.4,130.8,135.5,135.6$, 157.9, 196.8. HRMS (ESI) Calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO} 5 \mathrm{Cl}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 340.0952$, found 340.0956.

According to general procedure: 16 h , at room temperature, the product was obtained from flash chromatography (hexane/EtOAc $=10: 1$ to $2: 1$), as white solid $60 \mathrm{mg}\left(\mathrm{Mp}: 99-101{ }^{\circ} \mathrm{C}\right), 78 \%$ yield, $14: 1 \mathrm{dr}$, 94% ee. HPLC analysis: Chiralcel OD-H (hexane $/ i-\mathrm{PrOH}=90 / 10,1.0 \mathrm{~mL} / \mathrm{min}$), t_{R} (major) $8.58 \mathrm{~min}, t_{\mathrm{R}}$ (minor) $26.68 \mathrm{~min} .[\alpha]^{24}{ }_{\mathrm{D}}=+44.4^{\circ}\left(\mathrm{c}=2.40, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.96(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, $1.14(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.25-1.36(\mathrm{~m}, 1 \mathrm{H}), 1.52-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.97-2.13(\mathrm{~m}, 2 \mathrm{H}), 4.14-4.22(\mathrm{~m}, 2 \mathrm{H}), 4.50(\mathrm{~s}$, $1 \mathrm{H}), 7.03(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 9.18(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 13.9$, 14.2, 16.3, 38.2, 57.0, 62.2, 88.2, 110.1, 123.3, 129.5, 132.5, 132.7, 158.0, 196.9. HRMS (ESI) Calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO} 5 \mathrm{Br}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$384.0447, found 384.0446.
(4S,5R)-3-(Ethoxycarbonyl)-5-formyl-5-propyl-4-p-tolyl-4,5-dihydroisoxazole 2-oxide (3m)

According to general procedure: 16 h , at room temperature, the product was obtained from flash chromatography (hexane/EtOAc $=10: 1$ to $2: 1$), as white solid $52 \mathrm{mg}\left(\mathrm{Mp}: 93-96{ }^{\circ} \mathrm{C}\right), 81 \%$ yield, $10: 1 \mathrm{dr}$, 92% ee. HPLC analysis: Chiralcel OD-H (hexane $/ i-\mathrm{PrOH}=90 / 10,1.0 \mathrm{~mL} / \mathrm{min}$), t_{R} (major) $6.73 \mathrm{~min}, t_{\mathrm{R}}$ (minor) $15.74 \mathrm{~min} .[\alpha]^{22}{ }_{\mathrm{D}}=+69.8^{\circ}\left(\mathrm{c}=4.20, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.96(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, $1.13(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.33-1.39(\mathrm{~m}, 1 \mathrm{H}), 1.53-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.98-2.15(\mathrm{~m}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 4.16-4.24(\mathrm{~m}$, $2 \mathrm{H}), 4.53(\mathrm{~s}, 1 \mathrm{H}), 7.03-7.05(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 9.17(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 13.9,14.2,16.3,38.0,57.2,62.0,88.3,110.5,127.7,130.1,130.2,139.0,158.2,197.1$. HRMS (ESI) Calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{NO} 5\left([\mathrm{M}+\mathrm{H}]^{+}\right) 320.1498$, found 320.1495.

According to general procedure: 24 h , at room temperature, the product was obtained from flash chromatography (hexane/EtOAc $=10: 1$ to $2: 1$), as white solid $49 \mathrm{mg}\left(\mathrm{Mp}: 88-89{ }^{\circ} \mathrm{C}\right), 73 \%$ yield, $13: 1 \mathrm{dr}$, 91% ee. HPLC analysis: Chiralcel OD-H (hexane $/ i-\mathrm{PrOH}=90 / 10,1.0 \mathrm{~mL} / \mathrm{min}$), t_{R} (major) $11.31 \mathrm{~min}, t_{\mathrm{R}}$ (minor) $27.46 \mathrm{~min} .[\alpha]^{22}{ }_{\mathrm{D}}=+69.1^{\circ}\left(\mathrm{c}=4.50, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.96(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}), 1.13(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.30-1.36(\mathrm{~m}, 1 \mathrm{H}), 1.51-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.95-2.12(\mathrm{~m}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 4.13-$ $4.22(\mathrm{~m}, 2 \mathrm{H}), 4.49(\mathrm{~s}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 9.15(\mathrm{~d}, J=0.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 13.9,14.2,16.3,38.0,55.3,56.8,62.0,88.3,110.5,114.9,125.0,129.1,158.2$, 160.0, 197.1. HRMS (ESI) Calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{NO}_{6}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 336.1447$, found 336.1443 .
(4S,5R)-3-(Ethoxycarbonyl)-5-formyl-4-(naphthalen-1-yl)-5-propyl-4,5-dihydroisoxazole 2-oxide (3o)

According to general procedure: 16 h , at room temperature, the product was obtained from flash chromatography (hexane/EtOAc $=10: 1$ to $2: 1$), as white solid $44 \mathrm{mg}\left(\mathrm{Mp}: 114-115{ }^{\circ} \mathrm{C}\right), 62 \%$ yield, $12: 1 \mathrm{dr}$, 94% ee. HPLC analysis: Chiralcel OD-H (hexane $/ i-\mathrm{PrOH}=90 / 10,1.0 \mathrm{~mL} / \mathrm{min}$), t_{R} (major) $10.47 \mathrm{~min}, t_{\mathrm{R}}$ (minor) $31.92 \mathrm{~min} .[\alpha]^{22}{ }_{\mathrm{D}}=+5.7^{\circ}\left(\mathrm{c}=3.20, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.97-1.04(\mathrm{~m}, 6 \mathrm{H}), 1.36-$ $1.43(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.68(\mathrm{~m}, 1 \mathrm{H}), 2.17-2.33(\mathrm{~m}, 2 \mathrm{H}), 4.08-4.14(\mathrm{~m}, 2 \mathrm{H}), 5.43(\mathrm{~s}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.45(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.83-7.92(\mathrm{~m}, 3 \mathrm{H}), 8.98(\mathrm{~s}$, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 13.8,14.2,16.4,38.0,51.8,62.0,88.0,110.5,122.3,125.30,125.33$, $126.5,127.3,129.3,129.9,130.9,134.2,158.1,195.5$. HRMS (ESI) Calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NO} 5\left([\mathrm{M}+\mathrm{H}]^{+}\right)$ 356.1498 , found 356.1496 .

According to general procedure: 12 h , at room temperature, the product was obtained from flash chromatography (hexane/EtOAc $=8: 1$ to $2: 1$), as white solid $50 \mathrm{mg}\left(\mathrm{Mp}: 164-165^{\circ} \mathrm{C}\right), 74 \%$ yield, $11: 1 \mathrm{dr}$, $87 \% e e$. After recrystallization, $>99 \%$ ee. HPLC analysis: Chiralcel OD-H (hexane $/ i-\operatorname{PrOH}=90 / 10,1.0$ $\mathrm{mL} / \mathrm{min}$), t_{R} (major) $11.68 \mathrm{~min}, t_{\mathrm{R}}($ minor $) 33.67 \mathrm{~min} .[\alpha]^{23}{ }_{\mathrm{D}}=+126.7^{\circ}\left(\mathrm{c}=2.00, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz},{ }^{1} \mathrm{HCDCl}_{3}\right): \delta 0.99(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.34-1.40(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.63(\mathrm{~m}, 1 \mathrm{H}), 2.07-2.16(\mathrm{~m}, 2 \mathrm{H}), 3.71$ $(\mathrm{s}, 3 \mathrm{H}), 4.71(\mathrm{~s}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{t}, J=4.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{~s}, 1 \mathrm{H}), 7.81-7.86(\mathrm{~m}, 3 \mathrm{H}), 9.15$ ($\mathrm{s}, 1 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 14.2,16.3,38.2,52.9,57.5,88.6,110.4,125.0,126.9,127.0,127.3$, $127.8,128.0,129.8,130.5,133.3,133.4,158.7,196.7$. HRMS (ESI) Calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NO}_{5}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$ 342.1341, found 342.1344 .
(4S,5R)-3-(Ethoxycarbonyl)-5-formyl-4-(furan-3-yl)-5-butyl-4,5-dihydroisoxazole 2-oxide (3q)

According to general procedure: 16 h , at room temperature, the product was obtained from flash chromatography (hexane/EtOAc $=10: 1$ to $6: 1$), as white solid $41 \mathrm{mg}\left(\mathrm{Mp}: 68-69{ }^{\circ} \mathrm{C}\right), 67 \%$ yield, $>20: 1 \mathrm{dr}$, $85 \% ~ e e$. HPLC analysis: Chiralcel OD-H (hexane $/ i-\mathrm{PrOH}=90 / 10,1.0 \mathrm{~mL} / \mathrm{min}$), t_{R} (major) $8.38 \mathrm{~min}, t_{\mathrm{R}}$ (minor) $18.39 \mathrm{~min} .[\alpha]^{22}{ }_{\mathrm{D}}=+30.8^{\circ}\left(\mathrm{c}=1.70, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.91(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, $1.27(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.30-1.41(\mathrm{~m}, 3 \mathrm{H}), 1.47-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.98-2.08(\mathrm{~m}, 2 \mathrm{H}), 4.22-4.26(\mathrm{~m}, 2 \mathrm{H}), 4.53(\mathrm{~s}$, $1 \mathrm{H}), 6.25(\mathrm{~s}, 1 \mathrm{H}), 7.37(\mathrm{~s} 1 \mathrm{H}), 7.41(\mathrm{~s}, 1 \mathrm{H}), 9.34(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 13.7,14.0,22.8$, $24.8,35.0,48.1,62.1,87.9,109.4,109.5,117.9,140.9,144.7,158.0,196.8$, HRMS (ESI) Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}_{6}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 309.1230$, found 309.1228.

According to general procedure: 16 h , at room temperature, the product was obtained from flash chromatography (hexane/EtOAc $=8: 1$ to $2: 1$), as white solid $36 \mathrm{mg}\left(\mathrm{Mp}: 103-105{ }^{\circ} \mathrm{C}\right), 61 \%$ yield, $11: 1 \mathrm{dr}$, 84% ee. HPLC analysis: Chiralcel OD-H (hexane $/ \mathrm{i}-\mathrm{PrOH}=90 / 10,1.0 \mathrm{~mL} / \mathrm{min}$), t_{R} (major) $9.18 \mathrm{~min}, t_{\mathrm{R}}$ (minor) $15.85 \mathrm{~min} .[\alpha]^{22} \mathrm{D}=+12.5^{\circ}\left(\mathrm{c}=2.50, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}, \mathrm{CDCl} 3): \delta 0.96(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $3 \mathrm{H}), 1.19(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.35-1.40(\mathrm{~m}, 1 \mathrm{H}), 1.48-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.92-2.11(\mathrm{~m}, 2 \mathrm{H}), 4.17-4.29(\mathrm{~m}, 2 \mathrm{H})$, $4.70(\mathrm{~s}, 1 \mathrm{H}), 6.28(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.33-6.35\left(\mathrm{dd}, J_{1}=3.2 \mathrm{~Hz}, J_{2}=22.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.36(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $9.35(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 14.0,14.2,16.2,37.4,50.7,62.1,87.6,107.7,110.1,111.2$, 143.5, 145.9, 157.9, 196.2, HRMS (ESI) Calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO}_{6}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$296.1134, found 296.1135.

(4S,5R)-5-Butyl-5-((tert-butyldimethylsilyloxy)methyl)-3-(methoxycarbonyl)-4-phenyl-4,5dihydroisoxazole 2-oxide (5)
To the solution of $\mathbf{3 c}(100 \mathrm{mg}, 0.33 \mathrm{mmol})$ in $\mathrm{MeOH} / \mathrm{DCM} 2 \mathrm{~mL}(1: 3)$ under $-10^{\circ} \mathrm{C}$, was added $\mathrm{NaBH}_{4}(25$ $\mathrm{mg}, 0.66 \mathrm{mmol}$) portionwise. Reaction completed in 10 minutes, then quenched with 5 mL saturated aqueous ammonium chloride. After separation, and dry on anhydrous magnesium sulfate, the solvent was removed under reduced pressure. Obtained residue and imidazole ($45 \mathrm{mg}, 0.66 \mathrm{mmol}$) dissolved in 1.0 mL anhydrous DMF, then TBDMSCl ($99 \mathrm{mg}, 0.66 \mathrm{mmol}$) was added in one portion. Reaction finished in 5 h , with TLC monitor. Subsequent chromatography purification on silicon gel gave colorless oil in 77% yield for two steps.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-0.29(\mathrm{~s}, 3 \mathrm{H}),-0.16(\mathrm{~s}, 3 \mathrm{H}), 0.78(\mathrm{~s}, 9 \mathrm{H}), 0.93(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.33-1.52$ (m, 4H), 1.94-1.96 (m, 2H), 3,23 (d, $J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3,35(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 4.40(\mathrm{~s}, 1 \mathrm{H})$, 7.14-7.17 (m, 2H), 7.30-7.32 (m, 3H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-6.1,-6.0,14.0,18.0,22.9,24.9,25.7$, $35.5,52.5,55.9,61.3,86.7,113.0,128.2,128.7,135.1,159.4$.

carboxylate (6)

A solution of $4(82 \mathrm{mg}, 0.2 \mathrm{mmol})$ in $1.0 \mathrm{~mL} \mathrm{P}(\mathrm{OMe})_{3}$ was stirred at $100^{\circ} \mathrm{C}$ for 16 h , with N_{2} protection, hereafter diluted with $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$, then 5 mL 1 M HCl was added at $-10^{\circ} \mathrm{C}$. After separation, dried over magnesium sulfate, solution was concentrated in vacuo, then applied to silicon gel to give colorless oil in quantitative yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-0.33(\mathrm{~s}, 3 \mathrm{H}),-0.17(\mathrm{~s}, 3 \mathrm{H}), 0.77(\mathrm{~s}, 9 \mathrm{H}), 0.93(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.25-1.48$ (m, 4H), 1.80-1.83 (m, 2H), 3,25 (d, $J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 4.30(\mathrm{~s}, 1 \mathrm{H})$, $7.03(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.32(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{CH} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-6.1,-6.0,14.0,18.0,23.0$, $25.1,25.7,36.0,52.6,58.9,61.6,94.7,127.9,128.6,128.8,133.8,154.0,160.8$.
tert-Butyl (3R,4S,5R)-5-butyl-5-((tert-butyldimethylsilyloxy)methyl)-2-oxo-4-phenyltetrahydrofuran-3-ylcarbamate (7)
$\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ ($0.33 \mathrm{mmol}, 3$ equiv), $\mathrm{Boc}_{2} \mathrm{O}(0.33 \mathrm{mmol}, 3$ equiv) and $5(0.11 \mathrm{mmol}, 1$ equiv) were suspended in a 3:1 mixture of $\mathrm{MeOH} / \mathrm{THF}(0.8 \mathrm{~mL})$ at $-30^{\circ} \mathrm{C}$. After 10 min of stirring, $\mathrm{NaBH}_{4}(1.1 \mathrm{mmol}, 10$ equiv) was added portionwise. The stirring was maintained at $-30^{\circ} \mathrm{C}$ for 24 h . After the reaction was completed, it was quenched with conc. $\mathrm{NH}_{4} \mathrm{OH}(2 \mathrm{~mL})$, extracted with dichloromethane, dried over magnesium sulfate and concentrated in vacuo. Silicon gel chromatography purification gave 31 mg colorless oil in 60% yield.
96% ee. HPLC analysis: Chiralcel IA-H (hexane $/ i-\mathrm{PrOH}=98 / 2,1.0 \mathrm{~mL} / \mathrm{min}$), t_{R} (major) $6.87 \mathrm{~min}, t_{\mathrm{R}}$ (minor) 8.36 min. $[\alpha]^{21} \mathrm{D}=+52.8^{\circ}\left(\mathrm{c}=2.30, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-0.25(\mathrm{~s}, 3 \mathrm{H}),-0.11(\mathrm{~s}, 3 \mathrm{H}), 0.80(\mathrm{~s}, 9 \mathrm{H}), 0.92(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.29(\mathrm{~s}$, $9 \mathrm{H}), 1.35-1.41(\mathrm{~m}, 4 \mathrm{H}), 1.87-1.92(\mathrm{~m}, 2 \mathrm{H}), 3.33(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~d}, J=$ $12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.31(\mathrm{~m}, 3 \mathrm{H})$. ${ }^{13} \mathrm{CH}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-6.1,14.0,18.1,23.0,25.6,25.7,25.7,28.1,35.2,52.5,53.3,62.7,80.2$, $88.8,127.8,128.6,129.6,133.9,155.1,174.9$. HRMS (ESI) Calcd for $\mathrm{C}_{26} \mathrm{H}_{43} \mathrm{NO}_{5} \mathrm{SiNa}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 500.2808$, found 500.2805.
IV. Absolute configuration assignments of (4S,5R)-4-(4-Bromophenyl)-3-(ethoxycarbonyl)-5-formyl-5-propyl-4,5-dihydroisoxazole 2-oxide (31)

V. Reference

1. a) Kanao, M.; Watanabe, Y.; Kimura, Y. J. Med. Chem. 1989, 32, 1326. b) Riehl, J. J.; Fougerousse, A. Tetraheron Lett. 1968, 42, 4415.
2. Fornicola, R.; Oblinger, E.; Montgomery, J. J. Org. Chem. 1998, 63, 3528.
3. Hayashi, Y.; Gotoh, H.; Hayashi, T.; Shoji, M. Angew. Chem. 2005, 117, 4284-4287; Angew. Chem. Int. Ed. 2005, 44, 4212.
4. Chi, Y. ; Gellman, S. H. Org. Lett. 2005, 7, 4253.
5. Cao, C.; Ye, M.; Sun, X.; Tang, Y. Org. Lett. 2006, 8, 2901.
6. Luis, O. J.; Eusebio, J. Tetrahedron 2008, 64, 9992.
7. Kanth, J. V. B.; Periasamy, M. Tetrahedron 1993, 49, 5127.

VI. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra

(S)-2-(Azidodiphenylmethyl)pyrrolidine (4e)

(4S,5R)-3-(Methoxycarbonyl)-5-formyl-4-phenyl-5-ethyl-4,5-dihydroisoxazole 2-oxide (3a)

(4S,5R)-3-(Methoxycarbonyl)-5-formyl-4-phenyl-5-propyl-4,5-dihydroisoxazole 2-oxide (3b)

1	1	1	1	1	1	1	1	I	1
200	180	160	140	120	100	80	60	40	20

(4S,5S)-5-(Benzyloxymethyl)-5-formyl-3-(Methoxycarbonyl)-4-phenyl-4,5-dihydroisoxazole 2-oxide (3e)

(4S,5R)-5-Benzyl-4-(4-chlorophenyl)-5-formyl-3-(methoxycarbonyl)-4,5-dihydroisoxazole 2-oxide (3f)

(4S,5R)-3-(Ethoxycarbonyl)-5-formyl-4-phenyl-5-propyl-4,5-dihydroisoxazole 2-oxide (3g)

(4S,5R)-4-(2-Chlorophenyl)-3-(ethoxycarbonyl)-5-formyl-5-propyl-4,5-dihydroisoxazole 2-oxide (3i)

（4S，5R）－3－（Ethoxycarbonyl）－5－formyl－5－propyl－4－m－tolyl－4，5－dihydroisoxazole 2－oxide（3j）

	$\stackrel{\stackrel{\rightharpoonup}{*}}{\stackrel{1}{0}}$		$\begin{aligned} & \text { n } \\ & \stackrel{0}{0} \\ & \stackrel{\rightharpoonup}{7} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{N} \\ & \infty \\ & \infty \end{aligned}$		7 \cdots ∞ m	
					$\rceil \mid$		

（4S，5R）－4－（3－Chlorophenyl）－3－（ethoxycarbonyl）－5－formyl－5－propyl－4，5－dihydroisoxazole 2－oxide（3k）

－	ค	－の○ம6m	N					
${ }^{\infty}$	\cdots	に サommoo	\bigcirc	$\stackrel{-}{\sim}$			\cdots	$\bigcirc \bigcirc$
\bigcirc	－		－	\sim			m	мrの．
の	in	$\cdots \mathrm{m} \sim \sim \sim$	$\stackrel{+}{\square}$	∞	\sim	－	∞	மナウ
\ulcorner	\checkmark		\checkmark	∞		\bullet	m	－न－
								1／

| 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 |
| :--- |

(4S,5R)-3-(Ethoxycarbonyl)-5-formyl-5-propyl-4-p-tolyl-4,5-dihydroisoxazole 2-oxide (3m)

(4S,5R)-5-Formyl-3-(methoxycarbonyl)-4-(naphthalen-2-yl)-5-propyl-4,5-dihydroisoxazole 2-oxide (3p)

(4S,5R)-3-(Ethoxycarbonyl)-5-formyl-4-(furan-3-yl)-5-butyl-4,5-dihydroisoxazole-2-oxide (3q)

(4S,5R)-3-(Ethoxycarbonyl)-5-formyl-4-(furan-2-yl)-5-propyl-4,5-dihydroisoxazole 2-oxide (3r)

(4S,5R)-5-Butyl-5-((tert-butyldimethylsilyloxy)methyl)-3-(methoxycarbonyl)-4-phenyl-4,5dihydroisoxazole 2-oxide (5)

(4S,5R)-Methyl carboxylate (6)

tert-Butyl (3R,4S,5R)-5-butyl-5-((tert-butyldimethylsilyloxy)methyl)-2-oxo-4-phenyltetrahydrofuran-3ylcarbamate (7)

COSY spectrum of tert-butyl (3R,4S,5R)-5-butyl-5-((tert-butyldimethylsilyloxy)methyl)-2-oxo-4-phenyltetrahydrofuran-3-ylcarbamate (7)

NOESY spectrum of tert-butyl (3R,4S,5R)-5-butyl-5-((tert-butyldimethylsilyloxy)methyl)-2-oxo-4-phenyltetrahydrofuran-3-ylcarbamate (7)

VII. HPLC spectra

1 PDAMulti 4/270m4m

1 PDA Muiti $4 / 270 \mathrm{~m} 4 \mathrm{~m}$

PeakTable
PDA Ch4 270 nm 4nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	11.665	3598736	72444	97.594	97.992
2	16.567	88715	1484	2.406	2.008
Total		3687451	73928	100.000	100.000

uV

1
PDA Multi $4 / 270 \mathrm{~m} 4 \mathrm{~m}$
PeakTable
PDA Ch4 270 nm 4 nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	9.514	2070350	55984	50.379	64.762
2	18.179	2039169	30462	49.621	35.238
Total		4109519	86446	100.000	100.000

uV

1 PDA Mult 4/270m 4 mm

PeakTable

PDA Ch4 270 nm 4 nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	9.351	2614018	66726	96.809	97.968
2	18.606	86155	1384	3.191	2.032
Total		2700173	68110	100.000	100.000

1 PDA Muiti 4/270m 4m

1 PDAMndi $4 / 270 \mathrm{~mm} 4 \mathrm{~m}$

PeakTable
PDACh4 270nm 4nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	8.484	1612094	48220	99.782	99.792
2	17.814	3520	100	0.218	0.208
Total		1615614	48321	100.000	100.000

uV

1 PDA Multi 4/270m 4m
PDA Ch4 270 nm 4 nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	8.915	2212148	53382	50.627	70.851
2	23.009	2157322	21962	49.373	29.149
Total		4369470	75344	100.000	100.000

uV

1 PDA Multi 4/270m 4 m

PeakTable
PDA Ch4 270 nm 4 mm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	8.959	3315745	81852	96.121	97.566
2	23.500	133818	2042	3.879	2.434
Total		3449563	83894	100.000	100.000

uV

1 PDA Muiti 4/270m 4m

PeakTable
PDA Ch4 270 mm 4 nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	21.133	2114615	20098	56.996	62.985
2	28.327	1595495	11811	43.004	37.015
Total		3710110	31909	100.000	100.000

1 PDA Multi $4 / 270 \mathrm{~m} 4 \mathrm{~m}$

PeakTable

PDA Ch4 270 mm 4 nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	22.480	2441281	12282	99.470	98.940
2	29.616	13000	132	0.530	1.060
Total		2454281	12414	100.000	100.000

uV

1 PDA Muiti 4/270m 4m
PeakTable
PDA.Ch4 270 nm 4 nm

Peal\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	25.893	481221	3758	49.260	52.224
2	43.004	495683	3438	50.740	47.776
Total		976904	7196	100.000	100.000

uV

1 PDA Muiti $4 / 270 \mathrm{~m} 4 \mathrm{~m}$

PeakTable

PDA Ch4 270 nm 4 nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	25.774	6820440	45330	99.363	98.974
2	43.811	43725	470	0.637	1.026
Total		6864165	45801	100.000	100.000

1 PDA Multi $4 / 270 \mathrm{~m} 4 \mathrm{~m}$
PeakTable
PDA Ch4 270 nm 4 nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	9.009	894207	29108	50.470	65.940
2	20.987	877555	15035	49.530	34.060
Total		1771762	44144	100.000	100.000

uV

1 PDA Muiti 4/270mm 4 mm

PeakTable
PDA Ch4 270 nm 4 nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	8.436	3278564	79043	95.326	97.232
2	19.441	160772	2250	4.674	2.768
Total		3439335	81293	100.000	100.000

uV

1 PDA Multi $4 / 270 \mathrm{~mm} 4 \mathrm{~mm}$
PeakTable
PDA Ch4 270nm 4nm

Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	6.603	803461	40076	50.371	75.103
2	21.533	791617	13286	49.629	24.897
Total		1595078	53362	100.000	100.000

uV

1 PDA Multi 4/270m 4 m
PeakTable
PDA Ch4 270 nm 4 nm

Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	6.372	7072549	253935	98.708	99.286
2	22.005	92542	1825	1.292	0.714
Total		7165091	255761	100.000	100.000

uV

1
PDA Muiti $4 / 270 \mathrm{~m} 4 \mathrm{~m}$

PeakTable
PDA Ch4 270 mm 4 nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	8.517	2471393	65081	49.915	78.343
2	30.365	2479785	17991	50.085	21.657
Total		4951177	83072	100.000	100.000

1 PDA Multi $4 / 270 \mathrm{~m} 4 \mathrm{~m}$

PeakTable
PDA Ch4 270 mm 4 mm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	8.784	5946027	146129	97.854	99.040
2	34.139	130384	1416	2.146	0.960
Total		6076412	147545	100.000	100.000

uV

1 PDA Multi $4 / 270$ m 4 m
PDA Ch4 270nm 4nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	7.210	982058	39012	50.556	66.040
2	18.094	960459	20061	49.444	33.960
Total		1942517	59074	100.000	100.000

uV

PeakTable
PDA Ch4 270 nm 4 nm

Pealk\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	6.378	5429026	163733	96.211	97.880
2	15.204	213790	3546	3.789	2.120
Total		5642815	167278	100.000	100.000

1 PDA Muiti $1 / 220 \mathrm{~mm} 4 \mathrm{~m}$
PeakTable
PDA Chl 220 nm 4 nm

Peak\#	Ret. Time	Area	Height	Area \%	Height $\%$
1	9.041	3329174	118389	50.695	72.399
2	23.649	3237944	45135	49.305	27.601
Total		6567118	163524	100.000	100.000

uV

PDA Multi $1 / 220 \mathrm{~m} 4 \mathrm{~m}$

PeakTable
PDA Chl 220 nm 4 nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	8.297	2458368	63404	98.222	98.472
2	21.116	44510	984	1.778	1.528
Total		2502879	64388	100.000	100.000

uV

1 PDA Muiti $1 / 220 \mathrm{~m} 4 \mathrm{~m}$

PDA Multi $1 / 220 \mathrm{~m} 4 \mathrm{~m}$

PeakTable
PDACh1 220 nm 4 nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	8.579	5289427	129161	96.755	98.466
2	26.679	177399	2012	3.245	1.534
Total		5466826	131173	100.000	100.000

uV

1 PDAMulti $4 / 270 \mathrm{~m} 4 \mathrm{~m}$

PeakTable

PDA Ch4 270 nm 4 nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	6.914	2446377	69787	50.450	65.522
2	15.341	2402698	36722	49.550	34.478
Total		4849076	106509	100.000	100.000

1 PDA Multi $4 / 270 \mathrm{~m} 4 \mathrm{~m}$
PeakTable
PDA Ch4 270 nm 4 nm

Peak\#	Ret Time	Area	Height	Area $\%$	Height $\%$
1	7.308	4113747	105702	96.326	97.516
2	17.756	156898	2693	3.674	2.484
Total		4270645	108395	100.000	100.000

1 PDA Multi 4/270m 4m
PeakTable
PDA Ch4 270 mm 4 mm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	10.925	3132057	60205	49.536	66.932
2	24.676	3190774	29745	50.464	33.068
Total		6322831	89951	100.000	100.000

1 PDA Multi 4/270m 4m

PeakTable

PDA Ch4 270 mm 4 nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	11.308	14485550	248884	95.361	96.884
2	27.460	704617	8004	4.639	3.116
Total		15190167	256888	100.000	100.000

uV

1
PDA Muiti $1 / 220 \mathrm{~m} 4 \mathrm{~m}$

PeakTable
PDA Ch1 220 nm 4 nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	10.666	6944427	136031	49.868	71.384
2	30.264	6981322	54531	50.132	28.616
Total		13925749	190562	100.000	100.000

1 PDA Muiti 4/270m 4m

PeakTable
PDA Ch4 270 nm 4 nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	10.473	19916113	401637	97.151	98.807
2	31.920	584043	4847	2.849	1.193
Total		20500156	406484	100.000	100.000

uV

1 PDA Multi 4/270m 4m

PeakTable					
PDA Ch4 270 nm 4 nm					
Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	11.780	851525	20845	50.819	72.837
2	35.089	824070	7774	49.181	27.163
Total		1675595	28619	100.000	100.000

1 PDAMulti $1 / 220 \mathrm{~m} 4 \mathrm{~m}$

PeakTable

PDA Chl 220 nm 4 nm

Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	11.775	7793408	156328	100.000	100.000
Total		7793408	156328	100.000	100.000

uV

1 PDA Muiti 4/270m4m

PeakTable
PDA Ch4 270 nm 4 nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	8.369	3878591	107790	50.231	69.120
2	18.055	3842860	48156	49.769	30.880
Total		7721451	155946	100.000	100.000

uV

1 PDA Multi 4/270m 4 m

PeakTable
PDA Ch4 270 nm 4nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	8.381	4136044	107864	92.533	95.573
2	18.393	333747	4997	7.467	4.427
Total		4469791	112860	100.000	100.000

uV

1
PDA Multi $4 / 270 \mathrm{~m} 4 \mathrm{~m}$
PDA Ch4 270 nm 4nm

Pealस	Ret. Time	Area	Height	Area \%	Height \%
1	8.922	2368896	61022	50.056	59.395
2	14.770	2363586	41717	49.944	40.605
Total		4732482	102739	100.000	100.000

uV

1 PDAMulti $4 / 270 \mathrm{~m} 4 \mathrm{~m}$
PeakTable
uV

1 PDA Multi $1 / 210 \mathrm{~mm} 4 \mathrm{~m}$
PeakTable
PDA Chl 210 nm 4 nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	6.724	6725223	247303	49.598	61.457
2	8.424	6834115	155099	50.402	38.543
Total		13559337	402402	100.000	100.000

uV

1 PDA Muiti $1 / 210 \mathrm{~m} 4 \mathrm{~m}$
PeakTable
PDA Ch1 210 nm 4 nm

Peak\#	Ret. Time	Area	Height	Area \%	Height $\%$
1	6.761	6584451	201458	98.214	96.905
2	8.360	119717	6434	1.786	3.095
Total		6704168	207892	100.000	100.000

[^0]: ${ }^{a}$ Unless noted, reactions were performed at rt on a 0.1 mmol scale, in 0.5 mL toluene, with a molar ratio of α-iodohexanal/2nitroacyrate/DIPEA/4 $=4: 1: 1.1: 0.2 .{ }^{b}$ The sum of both isomers. ${ }^{c}$ Analysis of crude ${ }^{1} \mathrm{H}$ NMR. ${ }^{d}$ Determined by HPLC for cis-isomer. n.r. $=$ no reaction, n.d. $=$ no determination.

[^1]: ${ }^{a}$ Unless noted, reactions were performed at rt on a 0.1 mmol scale, in toluene, with a molar ratio of α-iodohexanal/2-nitroacyrate/TEA/4 $=$ 4:1:1.1:0.2. ${ }^{b}$ The sum of both isomers. ${ }^{c}$ Analysis of crude ${ }^{1} \mathrm{H}$ NMR. ${ }^{d}$ Determined by HPLC for cis-isomer.

