Supporting Information

for

Crystal Structures and Solution Properties of Discrete Complexes Composed of Saddle-Distorted Molybdenum(V)-Dodecaphenylporphyrins and Keggin-Type Heteropolyoxometalates Linked by Direct Coordination

Atsutoshi Yokoyama,[†] Takahiko Kojima,^{‡,*} Kei Ohkubo,[†] and Shunichi Fukuzumi^{†,§,*}

Department of Material and Life Science, Division of Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Department of Chemistry, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571, Japan, and Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea

[†] Osaka University.

- [‡] University of Tsukuba.
- [§] Ewha Womans University.

* To whom correspondence should be addressed.

E-mail: kojima@chem.tsukuba.ac.jp, fukuzumi@chem.eng.osaka-u.ac.jp

X-ray Crystallography. X-ray crystallography on 1 and 6: All measurements were made on a Rigaku Mercury CCD area detector with graphite monochromated Mo-K α radiation. The data were collected at a temperature of -170 ± 1 (1) and -150 ± 1 (6) °C to a maximum 2θ value of 55.0°. A total of 1240 oscillation images were collected. A sweep of data was done using ϕ scans from -80.0 to 100.0° in 0.3° step, at $\omega = 0.0°$ and $\chi = 0.0°$. The exposure rate was 33.3 sec/deg. The detector swing angle was 19.80°. A second sweep was performed using ω scans from -20.0 to 28.0° in 0.3° step, at $\chi = 90.0°$ and $\phi = 0.0°$. The exposure rate was 33.3 sec/deg. The detector swing angle was 19.80°. A second sweep was performed using ω scans from -20.0 to 28.0° in 0.3° step, at $\chi = 90.0°$ and $\phi = 0.0°$. The exposure rate was 33.3 sec/deg. The detector swing angle was 19.80°. The crystal-to-detector distance was 44.24 mm. Readout was performed in the 0.273 mm pixel mode. All crystallographic data are summarized in Table S1.

X-ray crystallography on 5 and 7: All measurements were made on a Rigaku Mercury CCD area detector with graphite monochromated Mo-K α radiation. The data were collected at a temperature of $-150 \pm 1^{\circ}$ C to the maximum 2θ value of 55.0° . A total of 720 oscillation images were collected. A sweep of data was done using ω scans from -70.0 to 110.0° in 0.5° step, at $\chi = 45.0^{\circ}$ and $\phi = 0.0^{\circ}$. The exposure rate was 20.0 (**5**) and 48.0 (**7**) sec/deg. The detector swing angle was 20.06°. A second sweep was performed using ω scans from -70.0 to 110.0° in 0.5° step, at $\chi = 45.0^{\circ}$ and $\phi = 90.0^{\circ}$. The exposure rate was 20.0 sec/deg. The detector swing angle was 20.06°. The crystal-to-detector distance was 20.0 sec/deg. The detector swing angle was 20.06°. The crystal-to-detector distance was 44.54 mm. Readout was performed in the 0.273 mm pixel mode. All crystallographic data are summarized in Table S1.

Structure Refinements. Refinement on F^2 was performed for all reflections. The weighted *R* factor R_w and goodness of fit *S* are based on F^2 , and the conventional *R* factors *R* on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ was used only for calculating *R* factors (gt) etc. and was not relevant to the choice of reflections for refinement. *R* factors based on F^2 are statistically about twice as large as those based on *F*, and *R* factors based on all data are even larger. Since the oxygen and tungsten atoms in the Keggin moieties were disordered in the crystals of **5**, **6** and **7**, each

atom was refined isotropically with occupancy of 0.5.

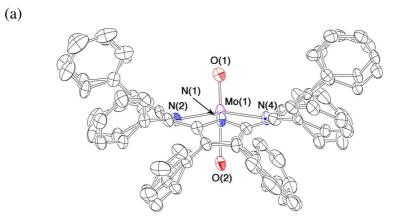
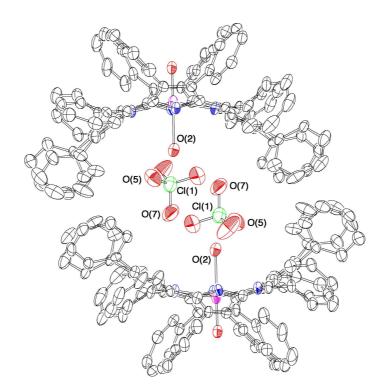
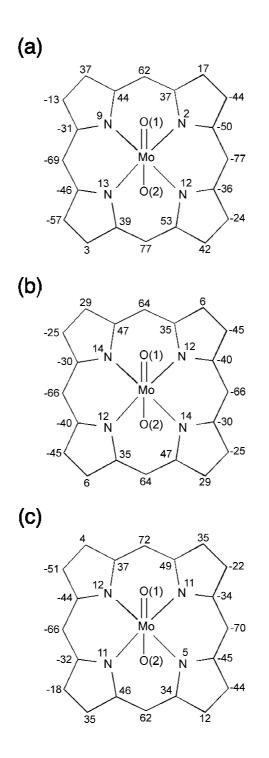
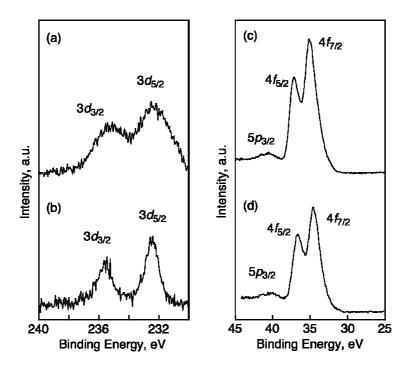

	1	5	6	7
Formula	$C_{92}H_{62}N_4O_6Cl$	$C_{184}H_{121}N_8O_{42}PMo_2W_{12}$	$C_{184}H_{122}N_8O_{42}SiMo_2W_{12}$	$C_{184}H_{123}N_8O_{42}BMo_2W_{12}$
F. W.	1699.67	5544.95	5543.07	5526.80
crystal system	triclinic	monoclinic	monoclinic	monoclinic
space group	P -1	$P2_1/n$	C2/m	$P2_{1}/c$
<i>T</i> , K	103	123	123	123
<i>a</i> , Å	15.901(6)	17.607(15)	18.4212(11)	17.750(5)
<i>b</i> , Å	16.509(6)	37.654(10)	37.5328(17)	37.319(9)
<i>c</i> , Å	18.453(7)	18.227(5)	17.8126(11)	18.393(5)
α , deg.	104.143(3)	_	_	_
β , deg.	108.391(3)	118.664(4)	118.897(2)	118.6632(11)
γ, deg.	109.915(3)	_	_	_
$V, Å^3$	3972(3)	10605(5)	10782(10)	10691(5)
Z	2	2	2	2
No. of reflections	30844	75582	33298	74601
No. of observations	17703	23851	9879	23451
No. of parameters	1019	1099	560	1099
$R1^{a}$ (<i>I</i> > 2.0 σ (<i>I</i>))	0.123	0.135 (0.072°)	0.077	0.158 (0.088 °)
$wR2^{b}$ (all data)	0.338	0.239 (0.143 ^c)	0.165	0.313 (0.236°)
GOF	1.130	1.51 (1.08 °)	1.11	1.30 (1.08 °)

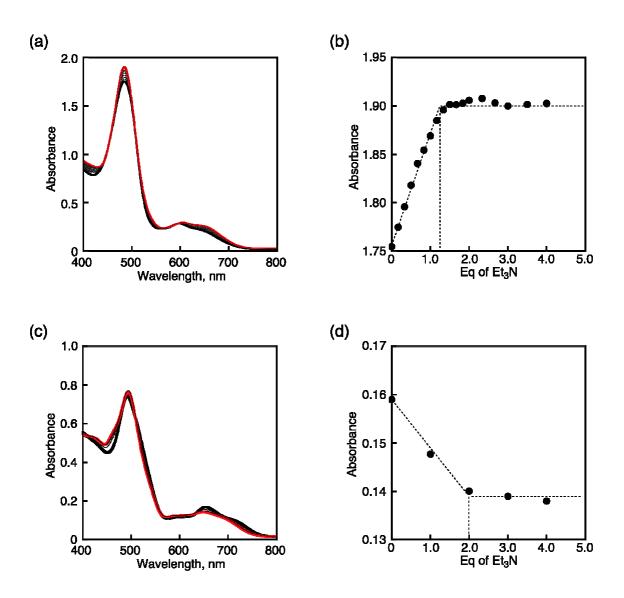
Table S1. Crystallographic Data for 1, 5, 6 and 7.


^{*a*} $R1 = ||F_o| - |F_c|| / \sum |F_o|.$

^b wR2 = $[\sum (\mathbf{w} (\mathbf{F_o}^2 - \mathbf{F_c}^2)^2) / \sum \mathbf{w} (\mathbf{F_o}^2)^2]^{1/2}.$


^c Structure refinements using the "Squeeze" method.


(b)


Figure S1. Crystal Structures of $[Mo(DPP)(O)(H_2O)]ClO_4$ (1) with 50% probability thermal ellipsoids.

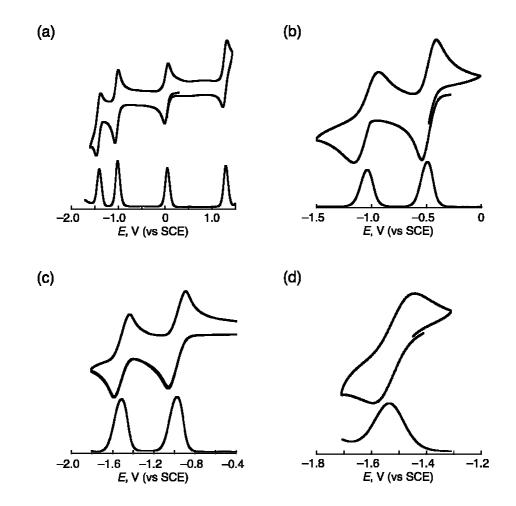

Figure S2. The displacement of each atom from the least-squares mean plane of 24 atoms of the DPP moiety in 5(a), 6(b) and 7(c) (in units of 0.01Å).

Figure S3. XPS spectra of 1(a), 3(c) and 6(b),(d) in boron nitride pellets. Spectra of (a) and (b) are assigned to Molybdenum atom $(3d_{3/2}, 3d_{5/2})$. (c) and (d) are assigned to tungsten atom $(5p_{3/2}, 4f_{5/2}, 4f_{7/2})$.

Figure S4. UV-vis spectral changes of (a) **5** $(1.0 \times 10^{-5} \text{ M})$ and (c) **6** $(1.0 \times 10^{-5} \text{ M})$ upon addition of triethylamine (1 mM). Changes of absorbance at 484.5 nm for **5** (b) and 653 nm for **6** (d) are depicted.

Figure S5. Cyclic voltammograms and differential plus voltammograms for 1(a), 2(b), 3(c), and 4(d) in PhCN at room temperature under Ar in the presence of 0.1 M TBAPF₆ as an electrolyte.