Supporting Information

Modification at the lipophilic domain of RXR agonists differentially influences activation of RXR heterodimers

Fuminori Ohsawa,^{1,2} Ken-ichi Morishita,¹ Shoya Yamada,¹ Makoto Makishima,³ and

Hiroki Kakuta¹*

 Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-Naka, Okayama 700-8530, Japan.
Multiple Molecular Imaging Research Laboratory, RIKEN Center for Molecular Imaging Science, Minatojima-minamimachi 6-7-3, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Itabashi-ku, Tokyo 173-8610, Japan.

E-mail: kakuta@pharm.okayama-u.ac.jp

Contents:

S1: Title page

- S2: Chemistry
- S10: Luciferase Reporter Gene Assay
- S11: Table S1. Combustion analysis data for compounds 5c-5m

Chemistry.

Melting points were determined with a Yanagimoto hot-stage melting point apparatus and are uncorrected. IR were recorded on JASCO FT/IR350 (KBr). ¹H NMR spectra were recorded on a VarianVXR-300 (300 MHz) or VarianVXR-500 (500 MHz) spectrometer. Elemental analysis was carried out with a Yanagimoto MT-5 CHN recorder elemental analyzer. FAB-MS was carried out with a VG70-SE.

LGD1069(1)

This compound was prepared according to reference 1.

6-[Ethyl-(5,5,8,8-tetramethyl-5,6,7,8-tetrahydronaphthalen-2-yl)amino]nicotinic acid (4a) This compound was prepared according to reference 2.

Methyl 6-[ethyl-(3-isopropoxy-4-isopropylphenyl)amino]nicotinate (6) 6-[Ethyl-(3-isopropoxy-4-isopropylphenyl)amino]nicotinic acid (5a) 6-[Ethyl-(3-isobutoxy-4-isopropylphenyl)amino]nicotinic acid (5b) 6-[Ethyl-(4-isopropyl-3-propoxyphenyl)amino]nicotinic acid (5g) These compounds were prepared according to reference 3.

Methyl 6-[ethyl-(3-hydroxy-4-isopropylphenyl)amino]nicotinate (7)

To a solution of 7 (420 mg, 1.2 mmol) in CH₂Cl₂ (5 mL) was added AlCl₃ (600 mg, 4.5 mmol). The mixture was stirred at room temperature for 4 h. The solution was poured into water and extracted with EtOAc (3×50) mL). The organic layers were combined, washed with water and brine, and dried over MgSO₄. The solvent was evaporated under reduced pressure and the resulting crude material was purified by flash column chromatography (3/1 *n*-hexane/EtOAc) to provide 350 mg (93%) of 7 as a colorless oil.

¹H NMR (500 MHz, CDCl₃) δ : 8.81 (d, 1H, J = 2.5 Hz), 7.79 (dd, 1H, J = 9.0, 2.5 Hz), 7.24 (d, 1H, J = 2.0 Hz), 6.76 (dd, 1H, J = 8.0, 2.0 Hz), 6.61 (d, 1H, J = 2.0 Hz), 6.27 (d, 1H, J = 9.0Hz), 5.31 (s, 1H), 4.00 (q, 2H, J = 7.0 Hz), 3.86 (s, 3H), 3.23 (sep, 1H, J = 7.0 Hz), 1.29 (d, 6H, J = 7.0 Hz), 1.22 (t, 3H, J = 7.0 Hz).

General procedure for synthesis of O-alkyl intermediates (8c-f, 8h-m) (GP-1)

To a solution of each OH-intermediate (1.0 mmol) in DMF (3 mL) were added K₂CO₃ (1.2 mmol), alkyl halide (1.5 mmol) and KI (c. a.). The reaction mixture was stirred at 60-90 °C for 2 h, and the solution was poured into water and extracted with EtOAc (3×20 mL). The organic

layer was washed with water and brine, and dried over MgSO₄. The solution was evaporated under reduced pressure. The residue was purified by flash column chromatography to yield the O-alkyl intermediates.

Methyl 6-[(3-cyclopropylmethoxy-4-isopropylphenyl)ethylamino]nicotinate (8c)

According to the general procedure (GP-1), **8c** was obtained as a colorless oil (67%).

¹H NMR (300 MHz, CDCl₃) δ : 8.83 (d, 1H, J = 2.5 Hz), 7.78 (dd, 1H, J = 9.0, 2.5 Hz), 7.25 (d, 1H, J = 8.0 Hz), 6.77 (d, 1H, J = 8.0, 2.0 Hz), 6.62 (d, 1H, J = 2.0 Hz), 6.23 (d, 1H, J = 9.0 Hz), 4.02 (q, 2H, J = 7.0 Hz), 3.85 (s, 3H), 3.78 (d, 2H, J = 6.5 Hz), 3.67 (sep, 1H, J = 7.0 Hz), 1.27 (d,

6H, *J* = 7.0 Hz), 1.23 (t, 3H, *J* = 7.0 Hz), 0.65-0.59 (m, 2H), 0.38-0.33 (m, 2H).

Methyl 6-{ethyl-[4-isopropyl-3-(2-methylallyloxy)phenyl]amino}nicotinate (8d)

colorless oil (68%). ¹H NMR (300 MHz, CDCl₃) δ: 8.85 (d, 1H, *J* = 2.5 Hz), 7.80 (dd, 1H, *J* = 9.0, 2.5 Hz), 7.27 (d, 1H, *J* = 8.0 Hz), 6.79 (dd, 1H, *J* = 8.0, 2.0 Hz),

According to the general procedure (GP-1), 8d was obtained as a

 $\begin{array}{l} \textbf{6.66 (d, 1H, J = 2.0 Hz), 6.25 (d, 1H, J = 9.0 Hz), 5.10 (s, 1H), 4.99 (s, 1H), 4.39 (s, 2H), 4.03 (q, 2H, J = 7.0 Hz), 3.86 (s, 3H), 3.39 (sep, 1H, J) \end{array}$

= 7.0 Hz), 1.84 (s, 3H), 1.27 (d, 6H, *J* = 7.0 Hz), 1.23 (t, 3H, *J* = 7.0 Hz).

Methyl 6-{ethyl-[4-isopropyl-3-(3-methyl-but-2-enyloxy)phenyl]amino}nicotinate (8e)

According to the general procedure (GP-1), 8e was obtained as a colorless oil (58%).

¹H NMR (300 MHz, CDCl₃) δ : 8.85 (d, 1H, J = 2.5 Hz), 7.79 (dd, 1H, J = 9.0, 2.5 Hz), 7.25 (d, 1H, J = 8.0 Hz), 6.77 (dd, 1H, J = 8.0, 2.0 Hz), 6.66 (d, 1H, J = 2.0 Hz), 6.25 (dd, 1H, J = 9.0 Hz), 5.45 (m, 1H), 4.48 (d, 2H, J = 6.5 Hz), 4.03 (q, 2H, J = 7.0 Hz), 3.86 (s, 3H), 3.35 (sep, 1H, J

= 7.0 Hz), 1.77 (s, 3H), 1.69 (s, 3H), 1.24 (d, 6H, *J* = 7.0 Hz), 1.24 (t, 3H, *J* = 7.0 Hz).

Methyl 6-{ethyl-[4-isopropyl-3-(2,2,2-trifluoroethoxy)phenyl]amino}nicotinate (8f)

According to the general procedure (GP-1), **8f** was obtained as a colorless oil (67%). ¹H NMR (300 MHz, CDCl₃) δ : 8.84 (d, 1H, *J* = 2.5 Hz), 7.82 (dd, 1H, *J* = 9.0, 2.5 Hz), 7.32 (d,

1H, J = 8.0 Hz), 6.90 (d, 1H, J = 8.0, 2.0 Hz), 6.64 (d, 1H, J = 2.0 Hz), 6.24 (d, 1H, J = 9.0 Hz), 4.33 (q, 2H, J = 8.0 Hz, OCH₂), 4.03 (q, 2H, J =7.0 Hz), 3.86 (s, 3H) 3.35 (sep, 1H, J = 7.0 Hz), 1.27 (d, 6H, J = 7.0 Hz), 1.23 (t, 3H, J = 7.0 Hz).

Methyl 6-[(3-butoxy-4-isopropylphenyl)ethylamino]nicotinate (8h)

According to the general procedure (GP-1), **8h** was obtained as a colorless oil (74%).

e ¹H NMR (300 MHz, CDCl₃) δ : 8.84 (dd, 1H, J = 2.5, 0.5 Hz), 7.79 (dd, 1H, J = 9.0, 2.5 Hz), 7.25 (d, 1H, J = 9.0 Hz), 6.76 (dd, 1H, J = 8.0, 2.0Hz), 6.65 (d, 1H, J = 2.0 Hz), 6.24 (dd, 1H, J = 9.0, 0.5 Hz), 4.03 (q, 2H, J = 7.0 Hz), 3.91 (t, 2H, J = 6.5 Hz), 3.86 (s, 3H), 3.33 (sep, 1H, J = 7.0

Hz), 1.83-1.74 (m, 2H), 1.56-1.46 (m, 2H), 1.25 (d, 6H, *J* = 7.0 Hz), 1.24 (t, 3H, *J* = 7.0 Hz) 0.99 (t, 3H, *J* = 7.5 Hz).

Methyl 6-[ethyl-(4-isopropyl-3-pentyloxyphenyl)amino]nicotinate (8i)

According to the general procedure (GP-1), **8i** was obtained as a colorless oil (77%).

¹H NMR (300 MHz, CDCl₃) δ : 8.84 (d, 1H, J = 2.5 Hz), 7.79 (dd, 1H, J = 9.0, 2.5 Hz), 7.25 (d, 1H, J = 8.0 Hz), 6.76 (dd, 1H, J = 8.0, 2.0 Hz), 6.64 (d, 1H, J = 2.0 Hz), 6.24 (d, 1H, J = 9.0 Hz), 4.03 (q, 2H, J = 7.0 Hz), 3.90 (t, 2H, J = 6.5 Hz), 3.86 (s, 3H), 3.34 (sep, 1H, J =

7.0 Hz), 1.81-1.78 (m, 2H), 1.52-1.38 (m, 4H), 1.25 (d, 6H, *J* = 7.0 Hz), 1.24 (t, 3H, *J* = 7.0 Hz), 0.94 (t, 3H, *J* = 7.0 Hz).

Methyl 6-[ethyl-(3-hexyloxy-4-isopropylphenyl)amino]nicotinate (8j)

According to the general procedure (GP-1), **8j** was obtained as a colorless oil (78%).

¹H NMR (300 MHz, CDCl₃) δ : 8.84 (d, 1H, J = 2.0 Hz), 7.79 (dd, 1H, J = 9.0, 2.0 Hz), 7.25 (d, 1H, J = 8.0 Hz), 6.76 (dd, 1H, J = 8.0, 2.0 Hz), 6.65 (d, 1H, J = 2.0 Hz), 6.25 (d, 1H, J = 9.0 Hz), 4.03 (q, 2H, J = 7.0 Hz), 3.91 (t, 2H, J = 6.5 Hz), 3.85 (s, 3H), 3.34 (sep,

1H, *J* = 7.0 Hz), 1.85-1.75 (m, 2H), 1.51-1.44 (m, 2H), 1.40-1.31 (m, 4H), 1.25 (d, 6H, *J* = 7.0 Hz), 1.24 (t, 3H, *J* = 7.0 Hz), 0.91 (t, 3H, *J* = 7.0 Hz).

Methyl 6-[(3-benzyloxy-4-isopropylphenyl)ethylamino]nicotinate (8k)

According to the general procedure (GP-1), **8k** was obtained as a colorless oil (69%).

¹H NMR (300 MHz, CDCl₃) δ : 8.84 (d, 1H, J = 2.5 Hz), 7.77 (dd, 1H, J = 9.0, 2.5 Hz), 7.43 (m, 5H), 7.29 (d, 1H, J = 8.0 Hz), 6.80 (dd, 1H, J = 8.0, 2.0 Hz), 6.73 (d, 1H, J = 2.0 Hz), 6.20 (d, 1H, J = 9.0 Hz), 5.05 (s, 2H), 4.01 (q, 2H, J = 7.0 Hz), 3.85 (s, 3H), 3.43 (sep, 1H, J = 7.0 Hz),

1.28 (d, 6H, *J* = 7.0 Hz), 1.20 (t, 3H, *J* = 7.0 Hz).

Methyl 6-[ethyl-(4-isopropyl-3-phenethyloxyphenyl)amino]nicotinate (81)

According to the general procedure (GP-1), **81** was obtained as a colorless oil (34%).

¹H NMR (300 MHz, CDCl₃) δ : 8.83 (d, 1H, *J* = 2.5 Hz), 7.78 (dd, 1H, *J* = 9.0, 2.5 Hz), 7.32-7.22 (m, 6H), 6.76 (dd, 1H, *J* = 8.0, 2.0 Hz), 6.63 (d, 1H, *J* = 2.0 Hz), 6.22 (d, 1H, *J* = 9.0 Hz), 4.12 (t, 2H, *J* = 6.5 Hz), 4.00 (q, 2H, *J* = 7.0 Hz), 3.85 (s, 3H), 3.31 (sep, 1H, *J* = 7.0 Hz), 3.11 (t, 2H, *J* = 6.5

Hz), 1.21 (t, 3H, *J* = 7.0 Hz), 1.21 (d, 6H, *J* = 7.0 Hz).

Methyl 6-{ethyl-[4-isopropyl-3-(3-phenylpropoxy)phenyl]amino}nicotinate (8m)

According to the general procedure (GP-1), 8m was obtained as a colorless oil (86%).

¹H NMR (300 MHz, CDCl₃) δ : 8.83 (d, 1H, J = 2.5 Hz), 7.78 (dd, 1H, J = 9.0, 2.5 Hz), 7.31-7.19 (m, 6H), 6.77 (dd, 1H, J = 8.0, 2.0 Hz), 6.61 (d, 1H, J = 2.0 Hz), 6.23 (d, 1H, J = 9.0 Hz), 4.02 (q, 2H, J = 7.0 Hz), 3.93 (t, 2H, J = 6.0 Hz), 3.86 (s, 3H), 3.37 (sep, 1H, J = 7.0 Hz),

2.84 (t, 2H, *J* = 8.0 Hz), 2.18-2.08 (m, 2H), 1.28 (d, 6H, *J* = 7.0 Hz), 1.22 (t, 3H, *J* = 7.0 Hz).

General Procedure for Synthesis of 5c-f, 5h-m (GP-2)

To a solution of each intermediate (1.0 mmol) in MeOH (10 mL) were added 2 N NaOH (4.0 mL) and THF (3.0 mL). The reaction mixture was stirred at 60 °C for 1 hr, then neutralized with 1 N HCl (12 mL). The mixture was poured into water (40 mL) and extracted with EtOAc (3×20 mL). The organic layer was washed with water and brine, and dried over MgSO₄. The solution was evaporated under reduced pressure and the

residue was recrystallized to yield the desired product.

6-[(3-Cyclopropylmethoxy-4-isopropylphenyl)-ethylamino]nicotinic acid (5c)

According to the general procedure (GP-2), **5c** was obtained by re-crystallization from MeOH in 31% yield as colorless needles. Mp 176.5-177.0 °C. IR (KBr) cm⁻¹: 1681 (CO). ¹H NMR (300 MHz,

 $\begin{array}{l} \text{Mp Proof 1776} \quad \text{e. Int (HDP) enity Proof (CO): In Pariat (COC) MPL,} \\ \text{DMSO-}d_6) \; \delta: \; 8.66 \; (\text{d}, \; 1\text{H}, \; J = 2.5 \; \text{Hz}), \; 7.78 \; (\text{dd}, \; 1\text{H}, \; J = 9.0, \; 2.5 \; \text{Hz}), \\ \text{7.29 } (\text{d}, \; 1\text{H}, \; J = 8.5 \; \text{Hz}), \; 6.81\text{-}6.79 \; (\text{m}, \; 2\text{H}), \; 6.24 \; (\text{d}, \; 1\text{H}, \; J = 9.0 \; \text{Hz}), \; 3.97 \\ (\text{q}, \; 2\text{H}, \; J = 7.0 \; \text{Hz}), \; 3.83 \; (\text{d}, \; 2\text{H}, \; J = 6.5 \; \text{Hz}), \; 1.22 \; (\text{d}, \; 6\text{H}, \; J = 7.0 \; \text{Hz}), \end{array}$

1.13 (t, 3H, J = 7.0 Hz), 0.59-0.53 (m, 2H), 0.35-0.30 (m, 2H). FAB-MS m/z: 355 [M + H]⁺. Anal. (C₂₁H₂₆N₂O₃) C, H, N.

6-{Ethyl-[4-isopropyl-3-(2-methylallyloxy)phenyl]amino}nicotinic acid (5d)

According to the general procedure (GP-2), **5d** was obtained by re-crystallization from MeOH in 51% yield as colorless needles. Mp 162.0-163.5 °C. IR (KBr) cm⁻¹: 1677 (CO). ¹H NMR (300 MHz, DMSO- d_6) δ : 12.49 (br s, 1H), 8.67 (d, 1H, J = 2.5 Hz), 7.78 (dd, 1H, J = 9.0, 2.5 Hz), 7.51 (d, 1H, J = 8.0 Hz), 6.84-6.81 (m, 2H), 6.25 (d, 1H, J = 9.0 Hz), 5.08 (s, 1H), 4.96 (s, 1H), 4.47 (s, 2H), 3.98 (q, 2H, J = 7.0

Hz), 3.30 (sep, 1H, J = 7.0 Hz), 1.78 (s, 3H), 1.22 (d, 6H, J = 7.0 Hz), 1.14 (t, 3H, J = 7.0 Hz). FAB-MS m/z: 355 [M + H]⁺. Anal. (C₂₁H₂₆N₂O₃) C, H, N..

6-{Ethyl-[4-isopropyl-3-(3-methyl-but-2-enyloxy)phenyl]amino}nicotinic acid (5e)

According to the general procedure (GP-2), **5e** was obtained by re-crystallization from MeOH in 51% yield as colorless needles.

e Mp 139.5-141.0 °C. IR (KBr) cm⁻¹: 1680 (CO). ¹H NMR (300 MHz, DMSO- d_6) δ: 12.46 (br s, 1H), 8.67 (d, 1H, J = 2.5 Hz), 7.78 (dd, 1H, J = 9.0, 2.5 Hz), 7.28 (d, 1H, J = 8.0 Hz), 6.85 (d, 1H, J = 2.0 Hz), 6.81 (dd, 1H, J = 8.0, 2.0 Hz), 6.25 (d, 1H, J = 9.0 Hz), 5.41 (t, 1H, J = 6.5

Hz), 4.53 (d, 2H, J = 6.5 Hz), 3.98 (q, 2H, J = 7.0 Hz), 3.25 (sep, 1H, J = 7.0 Hz), 1.73 (s, 3H), 1.66 (s, 3H), 1.19 (d, 6H, J = 7.0 Hz), 1.14 (t, 3H, J = 7.0 Hz). FAB-MS m/z: 369 [M + H]⁺. Anal. (C₂₂H₂₈N₂O₃) C, H, N.

6-{Ethyl-[4-isopropyl-3-(2,2,2-trifluoroethoxy)phenyl]amino}nicotinic acid (5f)

According to the general procedure (GP-2), **5f** was obtained by re-crystallization from EtOAc/n-hexane in 43% yield as yellow needles.

Mp 180.0-181.0 °C. IR (KBr) cm⁻¹: 1668 (CO). ¹H NMR (300 MHz, DMSO- d_6) δ : 12.51 (br s, 1H), 8.67 (d, 1H, J = 2.5 Hz), 7.80 (dd, 1H, J = 9.0, 2.5 Hz), 7.35 (d, 1H, J = 8.0 Hz), 7.02 (d,

6-[(3-Butoxy-4-isopropylphenyl)-ethylamino]nicotinic acid (5h)

According to the general procedure (GP-2), **5h** was obtained by re-crystallization from EtOAc/*n*-hexane in 99% yield as a white powder.

Mp. 159.0-161.0 °C. IR (KBr) cm⁻¹: 1683 (CO). ¹H NMR (300 MHz, DMSO- d_6) δ : 12.49 (s, 1H), 8.67 (dd, 1H, J = 2.5, 0.5 Hz), 7.79 (dd, 1H, J = 9.0, 2.5 Hz), 7.28 (d, 1H, J = 7.5 Hz), 6.83-6.79 (m, 2H), 6.25 (dd,

1H, J = 9.0, 0.5 Hz), 3.98 (q, 2H, J = 7.0 Hz), 3.95 (t, 2H, J = 6.0 Hz) 3.26 (sep, 1H, J = 7.0 Hz), 1.76-1.67 (m, 2H), 1.53-1.40 (m, 2H), 1.20 (d, 6H, J = 7.0 Hz), 1.14 (t, 3H, J = 7.0 Hz), 0.94 (t, 3H, J = 7.5 Hz). FAB-MS m/z: 357 [M + H]⁺. Anal. (C₂₁H₂₈N₂O₃) C, H, N.

6-[Ethyl-(4-isopropyl-3-pentyloxyphenyl)amino]nicotinic acid (5i)

According to the general procedure (GP-2), **5i** was obtained by re-crystallization from EtOAc/*n*-hexane in 99% yield as a white powder.

Mp 141.0-142.0 °C. IR (KBr) cm⁻¹: 1684 (CO). ¹H NMR (300 MHz, DMSO- d_6) δ : 12.49 (s, 1H), 8.67 (dd, 1H, J = 2.5, 0.5 Hz), 7.78 (dd, 1H, J = 9.0, 2.5 Hz), 7.28 (d, 1H, J = 7.5 Hz), 6.82-6.80 (m, 2H), 6.24

(d, 1H, J = 9.0 Hz), 3.99-3.93 (m, 4H), 3.28 (sep, 1H, J = 7.0 Hz), 1.75-1.68 (m, 2H), 1.45-1.31 (m, 4H), 1.20 (d, 6H, J = 7.0 Hz), 1.14 (t, 3H, J = 7.0 Hz), 0.89 (t, 3H, J = 7.0 Hz). FAB-MS m/z: 371 [M + H]⁺. Anal. (C₂₂H₃₀N₂O₃) C, H, N.

6-[Ethyl-(3-hexyloxy-4-isopropylphenyl)amino]nicotinic acid (5j)

According to the general procedure (GP-2), **5j** was obtained by re-crystallization from MeOH in 79% yield as colorless needles.

Mp 113.0-114.0 °C. IR (KBr) cm⁻¹: 1684 (CO). ¹H NMR (300 MHz, DMSO- d_6) δ : 12.48 (br s, 1H), 8.66 (d, 1H, J = 2.5 Hz), 7.78 (dd, 1H, J = 9.0, 2.5 Hz), 7.28 (d, 1H, J = 8.5 Hz), 6.87-6.76 (m, 2H), 6.24 (d, 1H, J = 9.0 Hz), 4.01-3.92 (m, 3H), 3.27 (q, 2H, J =

7.0 Hz), 1.74-1.70 (m, 2H), 1.47-1.42 (m, 2H), 1.34-1.27 (m, 4H), 1.20 (d, 6H, J = 7.0 Hz), 1.14

(t, 3H, J = 7.0 Hz), 0.87 (t, 3H, J = 7.0 Hz). FAB-MS m/z: 385 [M + H]⁺. Anal. (C₂₃H₃₂N₂O₃) C, H, N.

6-[(3-Benzyloxy-4-isopropylphenyl)-ethylamino]nicotinic acid (5k)

According to the general procedure (GP-2), 5k was obtained by re-crystallization from MeOH in 37% yield as colorless needles.

(d, 6H, J = 7.0 Hz), 1.12 (t, 3H, J = 7.0 Hz). FAB-MS m/z: 391 [M + H]⁺. Anal. (C₂₄H₂₆N₂O₃) C, H, N.

6-[Ethyl-(4-isopropyl-3-phenethyloxyphenyl)amino]nicotinic acid (51)

According to the general procedure (GP-2), **51** was obtained by re-crystallization from MeOH in 21% yield as colorless needles.

Mp 183.0-184.0 °C. IR (KBr) cm⁻¹: 1677 (CO). ¹H NMR (300 MHz, DMSO-*d*₆) δ: 12.47 (br s, 1H), 8.66 (d, 1H, *J* = 2.5 Hz), 7.77 (dd, 1H, *J* = 9.0, 2.5 Hz), 7.31-7.21 (m, 5H), 7.26 (d, 1H, *J* = 8.0 Hz), 6.85 (d, 1H, *J* = 2.0 Hz), 6.80 (dd, 1H, *J* = 8.0, 2.0 Hz), 6.23 (d, 1H, *J* = 9.0 Hz), 4.17 (t,

2H, J = 6.5 Hz), 3.97 (q, 2H, J = 7.0 Hz), 3.19 (sep, 1H, J = 7.0 Hz), 3.04 (t, 2H, J = 6.5 Hz), 1.13 (d, 6H, J = 7.0 Hz), 1.13 (t, 3H, J = 7.0 Hz). FAB-MS m/z: 405 [M + H]⁺. Anal. (C₂₅H₂₈N₂O₃) C, H, N.

6-{Ethyl-[4-isopropyl-3-(3-phenylpropoxy)phenyl]amino}nicotinic acid (5m)

According to the general procedure (GP-2), **5m** was obtained by re-crystallization from MeOH in 77% yield as colorless needles. Mp 154.5-156.5 °C. IR (KBr) cm⁻¹: 1683 (CO). ¹H NMR (300 MHz, DMSO- d_6) δ : 8.65 (d, 1H, J = 2.0 Hz), 7.75 (dd, 1H, J = 9.0, 2.0 Hz), 7.30-7.14 (m, 6H), 6.81-6.77 (m, 2H), 6.23 (d, 1H, J = 8.5 Hz), 3.98-3.93 (m, 4H), 2.76 (t, 2H, J = 8.0 Hz), 2.06-2.01 (m, 2H), 1.23

(d, 6H, J = 7.0 Hz), 1.14 (t, 3H, J = 7.0 Hz). FAB-MS m/z: 419 [M + H]⁺. Anal. (C₂₆H₃₀N₂O₃) C, H, N.

Luciferase Reporter Gene Assay

Culture of COS-1 cells.

COS-1 cells were maintained in Dulbecco's modified Eagle's medium supplemented with 10% FBS in a humidified atmosphere of 5% CO₂ at 37 °C.

Luciferase reporter gene assay.

Luciferase reporter gene assays were performed using COS-1 cells transfected with three kinds of vectors, containing a receptor subtype cDNA, a luciferase reporter gene under the control of the appropriate RXR response element, and secreted alkaline phosphatase (SEAP) gene as a background. CRBPII-tk-Luc, tk-PPREx3-Luc, or tk-rBARx3-Luc reporter for RXR, PPAR, LXR and plasmid DNA, respectively, was purified with a QIA filter Plasmid Midi kit. For heterodimer assay, RXRa (0.5 e.q.), a receptor subtype (PPARy or LXRa, 0.5 e.q.) and partner response element (4 e.q.) were used. COS-1 cells were transfected with QIA Effectene Transfection reagent according to the supplier's protocol. Test compound solutions whose DMSO concentrations were below 1% were added to the suspension of transfected cells, which were seeded at about 4×10^4 cells/mL in 96-well white plates. For vehicle and positive controls, the same volume of DMSO and LGD1069 (1) or TIPP-703⁴ or carba-T0901317⁵ solution in DMSO were added, respectively. After incubation in a humidified atmosphere of 5% CO₂ at 37 °C for 18 h, some of the medium was used for SEAP and the remaining cells were used for luciferase reporter gene assays with a Steady-Glo Luciferase Assay system (Promega) according to the supplier's protocol. The luciferase activities were normalized using secreted alkaline phosphatase (SEAP) activities. The assays were carried out in triplicate three times.

REFERENCES:

- Boehm, M.F.; Zhang, L.; Badea, B.A.; White, S.K.; Mais, D.E.; Berger, E.; Suto, C.M.; Goldman, M.E.; Heyman, R.A. Synthesis and structure-activity relationships of novel retinoid X receptor-selective retinoids. *J. Med. Chem.* **1994**, *37*, 2930-2941.
- (2) Fujii, S.; Ohsawa, F.; Yamada, S.; Shinozaki, R.; Fukai, R.; Makishima, M.; Enomoto, S.; Tai, A.; Kakuta, H. Modification at the acidic domain of RXR agonists has little effect on permissive RXR-heterodimer activation. *Bioorg. Med. Chem. Lett.* **2010**, *in press.*
- (3) Takamatsu, K.; Takano, A.; Yakushiji, N.; Morohashi, K.; Morishita, K.; Matsuura, N.; Makishima, M.; Tai, A.; Sasaki, K.; Kakuta, H. The first potent subtype-selective retinoid X receptor (RXR) agonist possessing a 3-isopropoxy-4-isopropylphenylamino moiety, NEt-3IP (RXRalpha/beta-dual agonist). *ChemMedChem* **2008**, *3*, 780-787.
- (4) Kasuga, J.; Oyama, T.; Hirakawa, Y.; Makishima, M.; Morikawa, K.; Hashimoto, Y.; Miyachi, H. Improvement of the transactivation activity of phenylpropanoic acid-type

peroxisome proliferator-activated receptor pan agonists: effect of introduction of fluorine at the linker part. *Bioorg. Med. Chem. Lett.* **2008**, *18*, 4525-8.

(5) Aoyama, A.; Aoyama, H.; Dodo, K.; Makishima, M.; Hashimoto, Y.; Miyachi, H. LXR antagonists with a 5-substituted phenanthridin-6-one skeleton: Synthesis and LXR transrepression activities of conformationally restricted Carba-T0901317 analogs. *Heterocycles* 2008, 76, 137-142.

compound	Formula	Calculated			Found		
		С	Н	Ν	С	Н	Ν
5c	$C_{21}H_{26}N_2O_3$	71.16	7.39	7.90	71.12	7.30	7.87
5d	$C_{21}H_{26}N_2O_3$	71.16	7.39	7.90	71.21	7.51	7.86
5e	$C_{22}H_{28}N_2O_3$	71.71	7.66	7.60	71.48	7.64	7.48
5f	$C_{19}H_{21}N_2O_3F_3$	59.68	5.54	7.33	59.47	5.62	7.11
5h	$C_{21}H_{28}N_2O_3$	70.76	7.92	7.86	70.60	8.02	7.83
5i	$C_{22}H_{30}N_2O_3$	71.32	8.16	7.56	71.14	8.27	7.61
5j	$C_{23}H_{32}N_2O_3$	71.84	8.39	7.29	71.68	8.41	7.23
5k	$C_{24}H_{26}N_2O_3$	73.82	6.71	7.17	73.82	6.85	7.10
51	$C_{25}H_{28}N_2O_3$	74.23	6.98	6.93	74.16	7.09	6.85
5m	$C_{26}H_{30}N_2O_3$	74.61	7.22	6.69	74.84	7.36	6.63

Table S1. Combustion analysis data for compounds 5c–5m