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I. Nitrate Peak Integration 

The surface nitrate peaks on Na-Y and BaNa-Y, which have been identified based on 

prior assignments reported in the literature, absorb in the region from 1500 to 1300 cm-1 

and are  centered at approximately 1400 cm-1.1-6 For BaNa-Y, the nitrate peak was 

integrated from 1554 to 1241 cm-1, with the baseline defined by drawing a line from 1554 

to 1241 cm-1. A second approach was used for BaNa-Y to verify that the choice of 

baseline did not affect the rate constants obtained from the fitting procedure: The “right” 
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portion of the nitrate peak was integrated from 1342 cm-1 to 1262 cm-1, with the baseline 

defined using a line drawn from 1342 cm-1 to 1262 cm-1. For Na-Y, the nitrate peak was 

integrated from 1554 to 1360 cm-1, with a baseline defined from 1554 to 1153 cm-1.  The 

integrated areas for these nitrate peaks were divided by the integrated area of a zeolite 

framework absorption , determined by integrating  this latter absorption band  from 1263 

to 989 cm-1, with a baseline determined by a line drawn from 1263 to 985 cm-1.  By 

dividing the integrated area of the nitrate peaks by the integrated area of the zeolite 

framework absorption, the values thus obtained were quantitatively proportional to the 

absolute concentration of surface nitrates, and allowed kinetic data to be compared 

between samples.   

II. Experimental Conditions: 

Experiments were conducted at temperatures from 100 to 300 °C, with varied 

initial nitrate coverages, [NO3
-]0, and NO pressures that varied by up to a factor of 10.  

The full range of conditions studied is shown in Table S.1.  

Table S.1. Experimental Conditions Tested 

Experiment # Sample Type Temperature (°C) [NO3
-]0, a.u. [NO], torr 

16 200 8.597623 0.96 

17 200 8.430677 0.75 

18 200 8.508355 1.34 

19 200 8.743717 1.13 

21 200 8.062429 1.0 

22b 200 8.121394 1.18 

22f 200 6.35009 0.784 

30 200 5.497148 1.176 

22c 100 11.2937 0.862 

22e 100 9.524985 0.791 

22d 150 10.84154 0.785 

60 250 14.72096 1.15 

61 250 13.51955 1.08 

62 250 12.51471 1.32 

73 250 11.10562 13.4 

74 

BaNa-Y-1 

250 8.089615 0.3 
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75 250 8.887324 12.6 

77 250 2.500379 0.01 

79 250 2.289777 0.02 

80 250 3.400929 0.03 

63 300 13.93502 1.37 

71 300 3.024014 0.2 

72 300 7.606979 5 

153 250 4.876794 9.92 

154 250 3.317197 0.82 

155 250 9.745098 1.806 

158 250 4.02568 2.04 

159 250 9.014925 0.914 

160 250 5.971154 1.9 

165 250 3.654883 1.928 

161 300 6.390459 1.8778 

162 300 7.823741 2.37 

163 

BaNa-Y-2 

300 5.251259 1.4 

166 150 3.001852 1.796 

167 150 6.634371 2.232 

168 

Na-Y 
150 7.916979 3.32 

 

There are several possible sample-related sources of scatter for the quantity of 

nitrates remaining at the end time (or the end-time itself). As mentioned in Section III.A 

of the article, the Ba2+ and Na+ ions in the zeolite are the binding sites for the nitrates.7 

These nitrates likely do not all have the same binding energy, but rather are bound to sites 

which exhibit a distribution of binding energies.7  As discussed in Section V.B of the 

article, the distribution of nitrate binding energies could potentially affect the quantity of 

nitrates remaining at the end of reaction (as discussed in Section V.B of the article).  Also, 

if the nitrate distribution affects the spatial distribution of the reactants or the diffusion 

coefficient for H+,8 this could potentially lead to scatter in the end-times of reaction 

observed based on the relations in Table 1 of the article (factors which govern the end-

time of reaction are discussed in Sections V.A to V.D of the article).   

In these experiments, there are also two conditions which might lead to changes in 

the surface fractal dimension between experiments.  Prior to every experiment, the 

sample is calcined (heated to high temperatures) to remove water.  We have found that 
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the normalized saturation coverage of the nitrates in the beam path decreases on the order  

of ~5% with every calcination. We interpret this observation as indicating that the sample 

slightly dealuminates after each calcination, as nitric acid is known to leach at least 

extraframework aluminum from zeolites.9-11 Dealumination may result in slightly 

different surface fractal dimensions for different experiments.12,13  Additionally, the 

adsorbed nitrates may also change the surface fractal dimension as a function of coverage, 

as they likely occupy a volume on the same scale as NH3/NH4
+ -- and exchange of Na+ 

with NH4
+ has been shown to change the fractal dimension.13  However, as is shown in 

the article, although there is scatter in the data for the fitted end-times of reaction, 

approximating the surface fractal dimension as remaining constant during a single 

experiment and between experiments still yields relatively good agreement with 

theoretical predictions.  

 
 

III.A First-Order and Second-Order Data Fitting. 

The rate expressions that were fitted are presented in Table S.2.  In each case, it 

was necessary to assume that some nitrates were unreactive to obtain reasonable fits.  

More details on the fitting are given in Section III.C. Arrhenius plots using the average 

values for kobsA, kobsB, kobsA/[NO] and kobsB/[NO] are shown in Figure S.1.  The slope of 

linear regression is the activation energy, Ea, in Joules, while the y-intercept is the natural 

log of the pre-exponential, A, of the rate constant.  The values obtained from these linear 

fits for ln(kobsA) and ln(kobsA/[NO]) are given in Table S.1.  There were not enough data 

points to provide a reliable fit for kobsB. 
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Figure S.1: Arrhenius plots.  a) first-order kobs, b) first-order kobs/[NO], c) second-order 
kobs, d) second-order kobs/[NO].  Symbols: BaNa-Y kobsA, BaNa-Y kobsB, Na-Y kobsA, 

Na-Y kobsB.  Averaged values are plotted. The error bars shown are one standard 
deviation. 
 
 
Table S.2 Parameters for kobsA calculated from Arrhenius plots. 

[NO3
-] order Rate Form, d[NO3

-]/dt = kA= A Ea, kJ/mol 

First-order kA[(NO3
-
 )A] + kB[(NO3

-
 )B] kObsA 4 x 10

0
 s

-1
 20 

First-order kA[(NO3
-
 )A][NO] + kB[(NO3

-
 )B][NO] kObsA/[NO] 1 x 10

0
 s

-1
 20 

Second-order kA[NO3
-
 ]2 kObsA 2 x 10

-1
 a.u.

-1
 s

-1
 10 

Second-order kA[NO3
-
 ]2[NO] kObsA/[NO] 7 x 10

-2
 a.u.

-1
 s

-1
 10 

 

The standard deviations are quite large for the observed rate constants obtained 

from an  average at each temperature. This is true both when NO is included in the rate 

equation as well as when NO is excluded from the rate equation.  Despite the large 
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number of experiments performed, and the variety of conditions tested, none of the rate 

equations fit the data obviously better than when the data was fit to other rate equations: 

Instead, all rate equations tested resulted in large standard deviations for the rate 

constants extracted from multiple experimental runs, i.e. all rate constants that were 

obtained from fits gave similar error limits for the fitted values.  In addition to large 

scatter in the rate constants obtained for these models, the data showed a decrease in the 

observed rate constant with time  (i.e. --progression of reaction) for every model studied 

– that is, a plot of  nitrate depletion versus time exhibited a functional form referred to as 

a “stretched exponential” (not shown). Further, the Arrhenius plots for all of the observed 

rate constants display a very low apparent activation energy ( < 40 kJ/mol) with 

unrealistically low pre-exponentials: For a surface reaction which is not diffusion limited 

a realistic pre-exponential is expected to be on the order of 1013 to 1019 s-1.14,15 

The low apparent activation energies would in principle be consistent with the 

rate limiting step being desorption / decomposition of HNO2 (the expected product), -- as 

the desorption / decomposion of HNO2 on BaNa-Y has an activation energy of < 25 

kJ/mol.16,17 However, no HNO2 intermediate is observed at these temperatures, and such 

a mechanism would not, by itself, explain the stretched exponential behavior for the 

depletion of nitrates, or the apparent low pre-exponentials for the effective rate constant.  

 The apparent low activation energy and “stretched exponential” behavior could 

be indications of a diffusion limited reaction. The two obvious possibilities for the source 

of the diffusion limitation are the diffusion of NO into the zeolite crystals, or surface 

diffusion of the adsorbates. We showed previously that diffusion limited transport of NO 

gas molecules into the zeolite crystals (approximated as mass transport limited Fickian 
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diffusion into a sphere18), was an unlikely explanation for the observed kinetics, and also 

would not explain the depletion of nitrates observed on long time scales.19  The 

possibility of a reaction limited by diffusion of surface species is explored in the main 

article.  For thoroughness, a Taylor-Weinberg type analysis was also performed, as 

described in the following section. 

III.B. Taylor-Weinberg Analysis for First and Second-Order Models 

 Given the different kinetic regimes observed and the range of the initial coverages 

and NO pressures encompassed by the data, a Taylor-Weinberg type analysis was 

performed.20-22 This analysis assumes that the rate constant is a function of coverage, and 

allows the pre-exponential and the activation energy to vary as functions of nitrate 

coverage.   

For each experiment the data for the nitrate concentration as a function of time 

was fit using the function Ae-bt + Ce-dt + Ft +G (with an average R2 of 0.95), and the rate 

of nitrate depletion was evaluated as a function of coverage from these fits, at discrete 

coverages separated by intervals of 0.01 normalized integrated absorbance units (the units 

for nitrate coverage).  Using these rates, k was calculated as a function of nitrate coverage 

for kinetic models that assumed either a first-order or second-order dependence on nitrate 

coverage and that either included or excluded [NO] in the rate equation. These models 

were applied to the data from all substrates (BaNa-Y-1, BaNa-Y-2, and Na-Y). The fitted 

rate constants, as a function of absolute coverage, were found to have overlapping ranges 

for all substrates studied, so the data for all substrates were treated as one large data set 

for the Taylor-Weinberg analysis for each kinetic model.  
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 Figures S.2a and S.2b show the coverage dependent pre-exponential and 

activation energy curves obtained for k for the rate form k[NO][NO3
-]2, by using the 

Taylor-Weinberg analysis.  The pre-exponential and activation energy curves do not have 

a monotonic dependence on the nitrate coverage – similar non-monotonic dependencies 

of the pre-exponentail and activation energy on the coverage were obtained for the other 

three rate forms (see previous paragraph). The non-monotonic behavior in Figures S.2a 

and S.2b indicate that these models are unable to describe the data.  Figure S.3 shows the 

poor R2 obtained from linear fits of the Arrhenius equation to the values obtained for k 

from the k[NO][NO3
-]2 rate equation, as a function of nitrate coverage.  The rate of 

depletion is more strongly correlated with the time elapsed from the start of reaction -- 

rather than with the nitrate coverage. This behavior is as expected for a DLAB0 reaction, 

and is discussed in the main article. 
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Figure S.2 Pre-exponential and Activation energy of reaction as a function of coverage 

based on a Taylor-Weinberg analysis with the rate equation d[NO3
-]/dt=k[NO][NO3

-]2 
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Figure S.3 R2 as a function of coverage for the linear fits to the Arrhenius equation 

during the Taylor-Weinberg analysis with the rate equation d[NO3
-]/dt=k[NO][NO3

-]2 
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III.C. Details on Fitting to the First-Order and Second-Order Models: 

Surface nitrates had a rapid initial depletion (< 60 s) followed by a slower depletion at 

longer times (up to 10,000 s).  To obtain rate constants, the nitrate depletion was fitted 

with modified versions of the following rate forms, as discussed in more detail below: 

d[NO3
-]/dt = kobsA[(NO3

-
 )A]       (1) 

d[NO3
-]/dt = kobsA[(NO3

-
 )A] + kobsB[(NO3

-
 )B]   (2) 

d[NO3
-]/dt = kobsA[NO3

-
 ]

2      (3) 

Eqs 1 to 3 were modified to include the assumption that some nitrates are completely 

unreactive on exposure to NO. Thus, the following integrated rate equations were used 

for fitting the nitrate depletion data, with Eqs. 4,5,6 corresponding to Eqs. 1,2,3, 

respectively: 

0U
-

3
tk

0A
-

3
-

3 ])[(NOe])[(NO)][(NO obsA +=
−      (4) 

0U
-

3
tk

0B
-

3
tk

0A
-

3
-

3 ])[(NOe])[(NOe])[(NO)][(NO obsBobsA ++=
−−   (5) 

( ) 0U
-

3obsA
1

0A
-

3
-

3 ])[(NOtk])[(NO/1)][(NO ++=
−     (6) 

[(NO3)
-
U]0 represents nitrates which are unreactive. On BaNa-Y at lower 

temperatures (< 200 °C), Eqs. 4 and 6 yielded adequate fits for a first-order and second-

order dependence on nitrate coverage, respectively.  For the experiments performed at 

high temperatures (>250 °C) on BaNa-Y, and for the experiments at 150 °C on Na-Y, 

only Eqs 5 and 6 yielded adequate fits for first-order and second-order nitrate dependence, 

respectively. A fit was deemed inadequate if the curve fitting routine in Sigmaplot 

returned any of the following: a non-convergence error, extraordinarily large standard 

fitting errors for any parameter (i.e., a magnitude greater than the parameter itself, in this 

case errors >10,000), or a fitting dependency of >0.99 on any parameter. Each of these 
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are indications of an inaccurate and/or imprecise fit, as described in the Sigmaplot 

programming guide.23 

In addition to fitting the nitrate depletion data directly, kobsA was also obtained 

from the corresponding half-life equations derived from integrated rate laws, with the 

experimental “total” half-depletion value – the point at which half of all reactive nitrates 

are depleted – given by [NO3
-]1/2 = ([NO3

-]initial-[NO3
-]final)/2.  This approximation again 

assumes that unreactive nitrates remain after the rest of the nitrates have reacted.  In the 

case of the first-order fits described in the previous paragraph (with Equation 5), it was 

assumed that there were two parallel first-order processes, yielding two observed rate 

constants, kobsA and kobsB. During the first-order half-life analysis, the rate constant was 

taken to be reflective of only the faster first-order process, kobsA, with the effects of kobsB 

approximated as having a negligible effect on the “total half-life” obtained from the time 

at which the experimental nitrates concentration is equal to [NO3
-]1/2 (as defined above).  

This approximation, that kobsB would have a negligible contribution to the rate constant 

obtained from the “total half-life”, is reasonable given that the total nitrate depletion 

observed is dominated by the much faster initial reaction: kobsA >> kobsB and [(NO3-)A] > 

[(NO3-)B].  As can be seen by comparing Figures S.4 to S.7, nearly all of the values 

obtained from the half-life analysis are within one standard deviation of the values 

obtained from fitting equations 4 through 6.  Thus, the values for kobsA from the half-life 

analysis (this paragraph) and from the fitting analysis (previous paragraph) were 

averaged, and the final values are presented in Table S.2 (the values in Table S.2 have 

also been averaged across both of the nitrate peak areas as defined  in Section I).  
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The units for the first-order rate constants are s-1, and the units for the second-

order rate constants are a.u.-1 s-1, where a.u. are the normalized arbitrary units which arise 

from dividing the integrated area of the surface nitrate infrared peak by the integrated 

area of the zeolite framework infrared peak, as described in Section S.I. The observed 

rate constants and parameters obtained from fitting the data are included in Appendix S.1.  

The relations between these “observed rate constants” and the final “calculated rate 

constants” are shown in Table S.2 in Section III.A. For second-order rate constants, the 

observed rate constants obtained from monitoring the “right” BaNa-Y nitrate peak were 

scaled to those of the “full” BaNa-Y nitrate peak using a factor of 10.5.  This scaling was 

necessary for a direct comparison of the observed second-order rate constants, as prior to 

this scaling the observed second-order rate constants obtained from the “right” BaNa-Y 

nitrate peak and “full” BaNa-Y nitrate peak were not normalized to the same 

concentration units.   The scaling factor is based on the average quantity of reactive 

nitrates obtained from a second-order fit. This factor was obtained by dividing the 

average of the second column of Table S.4d by the average of the second column of 

Table S.4e.  As shown in Figures S.4 to S.7, for each rate equation, the values obtained 

for the rate constants were within one standard deviation regardless of the method used. 

Thus, the values presented in Table S.2 are averages of all the values obtained by both 

methods (half-life analysis and fitting) and for both peak definitions for kobsA, and, kobsB, 

kobsA/[NO], and kobsB/[NO]. 
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Figure S.4 Arrhenius plots for observed rate constants obtained from first-order fitting.  

Points are averaged values, error bars shown are one standard deviation. 

 

Figure S.5 Arrhenius plots for observed rate constants obtained from first-order half-life 

analysis. 
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Figure S.6 Arrhenius plots for observed rate constants obtained from second-order fitting.  

Points are averaged values, error bars shown are one standard deviation. 

 

Figure S.7 Arrhenius plots for observed rate constants obtained from second-order half-

life analysis. 
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IV. Spline-Fitting of Alpha Plots 

Alpha in equation 9 of the published article is obtained from the slope of a plot of 

log(1/[NO3
-]-1/[NO3

-]0) vs. log(time).  As described in Section III.C of the published 

article the theoretical value for alpha on BaNa-Y and Na-Y is expected to be αααα≈0.5.  The 

alpha plots for the different experiments are shown in Appendix S.3.  Determining the 

time region of the Zeldovich regime is a difficult spline-fitting problem – particularly due 

to the fact that the noise varies as a function of time (as mentioned in section IV of the 

article), and due to the fact that the piece-wise nature of the data is expected to change as 

an undetermined non-linear function of the experimental conditions (e.g., NO 

concentration, distribution of sites occupied, and Temperature). For more information 

about the difficulties in spline-fitting data in the presence of  noise, see for example 

“Local Linear Regression” in reference 23.24 Custom spline-fitting programs written in 

Python were used to find the onset and end-time of the Zeldovich regime. These 

programs are included in Appendix S.2, and each requires the data to be provided in a 

comma-separated values file with no column headings.  The custom written program 

named Nt2 finds the rolling slope of log(time) vs. 1/[NO3
-]-1/[NO3

-]0, and was used first 

to determine at which time the slope was best approximated as 0.5.  The custom written 

programs Ntf7 and Ntf8 were given this time as an input, and both programs then spline-

fit the data, returning the data points corresponding to the onset and end-time.  Ntf7 fits 

the linear region corresponding to the Zeldovich regime with a fixed slope (0.5) while 

Ntf8 allows the slope to vary during fitting (typically 0.4 to 0.6 after fitting).  The true 

endpoints can be generally expected to fall between these two cases.  The results from 

fitting the data are shown in Table S.3. In some experiments, the depletion of surface 
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nitrates was not monitored until the end of the Zeldovich regime, as it was not possible to 

gauge when the end-time would occur during the experiments.  Thus, in some cases, the 

true ττττf  is > the recorded ττττf. Large fitting errors result from the noise (scatter) and 

fluctuation (“waviness”) in the data (shown in the alpha plots in Appendix S.3).  The 

fitting errors for ττττf cannot be readily quantified as the magnitude of the noise and 

fluctuation varies between experiments, as well across time in the same experiment.  

However, the noise and fluctuations do not appear to affect the slopes of the alpha plots 

on the scale of several orders of magnitude of time (note that x-axis in alpha plots is the 

log of time) and given that the time at which ττττf occurs is determined based on a change in 

slope in the alpha plots, we estimate that the fits to determine ττττf are accurate to an order-

of-magnitude in time, which is consistent with the scatter observed in Figures 2 and 3 of 

the published article. The ττττf values obtained from both ntf7 and ntf8 were used to produce 

the plots shown in the published article, as well as for Figure S.8 below. In Figure S.8, 

the x and y axes have the same scale, and it is clear that log(ττττf) does not correlate directly 

with [NO3
-]0. The values for [NO3

-] at ττττf shown in Figure 4 of the published article are the 

values of [NO3
-] at ττττf from ntf7, though the values obtained for [NO3

-] at ττττf from ntf8 

were very similar and are only omitted from the bar graph presented in Figure 4 of the 

published article for clarity. 
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Table S.3. Fitting Results for ττττf 

Experiment # 
Sample Type τf  from  ntf7 τf from ntf8 

[NO3
-] at τf  

from ntf7 

[NO3
-] at τf  

from ntf8 

16 2.11 2.39 6.826779 6.459968 

17 2.54 2.56 6.81372 6.791179 

18 2.77 2.77 7.839163 7.851512 

19 2.91 2.91 8.009894 8.063157 

21 2.86 2.68 6.272539 6.464358 

22b 2.92 2.91 6.688625 6.540824 

22f 2.41 2.75 10.47487 10.06647 

22c 3.09 3 9.399727 9.435376 

22e 2.82 2.77 8.959245 8.773412 

22d 2.47 2.47 6.175931 1.546477 

60 1.8 2.49 8.717328 8.428954 

61 1.74 1.74 8.351575 7.725496 

62 2.09 1.89 7.060601 7.172736 

73 0.99 0.89 10.30436 10.76006 

74 2.02 2.43 1.600681 2.393133 

75 2.02 1.92 6.631469 6.534404 

77 2.47 2.45 8.517967 8.776183 

79 2.71 2.71 8.016592 7.753558 

80 2.74 2.37 7.90324 7.972297 

63 1.785 1.785 2.26879 2.235628 

71 3.4 2.57 2.205491 1.622716 

72 

BaNa-Y-1 

1.48 1.8 2.69206 2.810496 

153 0.47 1.81 3.679977 2.934522 

154 1.92 1.89 2.281852 2.138169 

155 1.26 1.78 5.352548 5.265791 

158 1.81 1.8 2.51506 2.420105 

159 1.69 1.72 5.308052 5.408987 

160 1.76 1.86 5.016666 5.030267 

165 1.73 1.73 5.103187 4.966929 

161 2.17 1.94 5.31874 5.396961 

162 1.72 1.72 4.791448 4.67547 

163 

BaNa-Y-2 

2.24 2.92 2.023837 2.005926 

166 1.85 1.92 2.641772 2.63429 

167 1.72 1.72 3.024705 3.025137 

168 

Na-Y 
1.92 2.39 3.076942 6.067994 
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Fig. S.8. log(ττττf) vs. [NO3
-]0 with equal scaling for the x-axis and y-axis. It is clear that 

log(ττττf) does not correlate directly with [NO3
-]0 

V. Estimating the Activation Energy for Diffusion 

The temperature dependence of the calculated diffusion coefficients was analyzed 

using Relation 1 of the published article, which indicates that the end-time of the 

Zeldovich regime, ττττf, is inversely proportional to the diffusion coefficient.  Simulations 

by Argyrakis et al.25 have found that for a two dimensional surface, an order of 

magnitude estimate can be made for Rel. 1 in Table 1 of the published article, of ττττf ~ 

(0.14)2L2/D. However, this estimate assumes every encounter of A and B leads to 

reaction (peff=1).  Thus, in an actual reaction, where peff<1, the end-times would be 

expected to be longer (as discussed in the published article, Section V.C), and 

consequently the values we obtain for D from the above relation are expected to 

correspond to a lower limit for the actual value of D. As shown in Section VII of the SI, 

the surface area per crystallite used is ~< 36 cm2, which we take for L2 in Rel. 1 in Table 

1 of the published article. 
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As discussed in Section V.C of the published article, ττττf is inversely proportional 

to [NO]. Thus, to obtain the lower limit for the diffusion coefficient from the 

experimental values of ττττf, it was first necessary to normalize the ττττf values by [NO].  The 

relationship of [NO] vs. ττττf was fit to a power law, based on the dependence observed in 

the log-log plot of Figure 3 of the published article, with the result being ττττf = 

([NO]/(23.4±5.1))^(-0.51±0.07), where the error bars represent the standard errors from 

fitting. We do not ascribe any physical significance to this functional form, we use it only 

for empirical scaling between [NO] and ττττf -- which is required to compare the effective 

diffusion coefficient between different experiments. Using the fitted relationship above, 

all ττττf values were normalized to the fitted value for ττττf with [NO]=10 Torr.  The value of 

10 Torr was used as it is the highest “scale” for [NO] exposure used during experiments -

- and it showed the fastest nitrate depletion rate – thus it provides our lowest observed 

limit for the effective diffusion coefficient at each temperature. From these normalized ττττf 

values, the effective diffusion coefficient was calculated for each of the data points in 

Figure 3 using the relation ττττf ~ (0.14)2L2/D.  An Arrhenius plot was constructed from the 

calculated effective diffusion coefficients (Figure S.9, shown on the following page), 

yielding D0= 106±7 cm2 s-1 and Ea= 30 ± 30 kJ/mol where the errors represent fitting 

errors yielded by Origin’s standard error-weighted fit (this weights the importance of 

each point used in the linear regression by the inverse square of the vertical error bars 

associated with that point).  The error bars for D0 and Ea are large due to the scatter of the 

data and because the temperature range where these experiments are possible sufficiently 

narrow (a range of <200K) to make it difficult to obtain a more precise value for D0 given 

the low level of precision in determining ττττf.    
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As will be discussed in the next section, many of the individual data points for the 

diffusion coefficient (in Figure S.9) are too high to be realistic – being two orders of 

magnitude greater than 10-2 cm2 s-1. However, all raw data points -- before scaling -- 

yielded diffusion coefficients of realistic orders of magnitude, <10-2 cm2 s-1. The high 

values for the diffusion coefficient obtained from some experiments may then be artifacts 

arising from the [NO] scaling procedure: the [NO] scaling function was determined 

empirically from data with high scatter, and thus may have resulted in inaccurate scaling, 

which could in turn lead to artificially high calculated diffusion coefficients. Nonetheless, 

the [NO] scaling procedure is necessary to obtain effective diffusion coefficients from 

multiple experiments due to the relationship between ττττf and [NO] which is discussed in 

Section V.C of the published article. 
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Figure S.9 Arrhenius plot for diffusion coefficients obtained from normalized ττττf values 

for each experiment.  ττττf  values were scaled to the fitted value of ττττf  for [NO]=10 Torr. 
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VI. Discussion of the Values Obtained for the Diffusion Coefficient 

Using the procedure outlined in the previous section it was determined that, D0= 

106±7 cm2 s-1 and Ea= 30 ± 30 kJ/mol. As described in section III.C of the published 

article the value obtained for the activation energy is, as expected, near the lower end of 

the range for the activation energies for the hopping of acidic protons in zeolites,. 

However, as discussed below, the correlation between the value for D0 obtained from 

these experiments and a specific physical process is not clear.   

The value obtained for D0 is higher than would be expected for an atom or 

molecule diffusing on a surface, as D0 for such processes on surfaces is typically 10-2 to 

10-3 cm2 s-1.26,27,28 However, a possible explanation for the high value of D0 obtained 

might be found in the mechanism for proton migration in zeolites.  The low activation 

energy route for proton migration in zeolites arises from several parallel mechanisms for 

water-assisted proton-migration.29-31  Thus, proton migration in our study is not expected 

to involve only a single elementary process and, therefore, the diffusion coefficient would 

not be expected to be accurately described by an Arrhenius equation over a wide 

temperature range: Different mechanisms could dominate as the temperature changes 

over a sufficiently wide range.  Consequently, it is not surprising that our extrapolation to 

obtain D0 from an Arrhenius plot does not yield a realistic pre-exponential for the 

intrinsic diffusion coefficient.  Our extrapolation instead yields the effective pre-

exponential for an empirically observed mass-transfer diffusion coefficient. While this is 

the most likely explanation for the high D0 observed, we will also note other plausible 

explanations below.   
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A second plausible explanation is that if the disappearance of nitrates becomes 

rate-limited by the depletion of the less reactive nitrates prior to the occurrence of finite 

size effects25,32 (i.e., before the “natural” end of the Zeldovich regime) – then  the end-

time obtained from the fitting procedure would be shorter than that predicted by theory, 

leading to a larger than expected diffusion coefficient --as observed.  This would be a 

qualitative deviation from the ideal case of the DLAB0 model, as the end-time for the 

Zeldovich regime would arise from a different kinetic process than expected for a 

DLABO model (i.e., a different rate limiting step). Alternatively, the high value of D0 

may be a result of deviations from the ideal case of the DLAB0 limited model which are 

minor enough to still retain the essence of the model in terms of the qualitative aspects of 

kinetics that are observed. Such deviations could arise from a variety of possible 

deviations from the ideal model. These include: multiple types of nitrates with differing 

stability,33 regions of the surface that have different dimensionality, non-random initial 

conditions,33,34 a peff < 1, unusual lattice symmetry, crystal inhomogeneities and 

deviations from true random-walk behaviour (such as due to particle interactions)35. All 

of these factors could potentially affect the growth of the segregated reactant regions 

and/or the proportionality constant of Rel. 1 in Table 1 of the published article (currently 

assumed to be (0.14)2) -- and thus change the observed end-times (and consequently the 

estimated diffusion coefficient). Modifications of the current model are necessary to treat 

such effects and a more in depth understanding of the interplay among such effects could 

come from additional theoretical studies, especially given the difficulty in finding 

experimental systems that cleanly exhibit DLAB0 kinetics.33 
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VII. Estimation of Crystallite Surface Area 

With knowledge of the crystallite size, it is possible to calculate the total surface 

area per zeolite crystallite.  As mentioned earlier, the Na and Ba cations are small 

compared to the size of the zeolite supercages. Thus, the change in surface area between 

Na-Y and BaNa-Y crystallites would not be expected to be large. According to the 

supplier’s specifications sheet (-100 mesh), the zeolite crystallites were < 3.5 x 10-6 cm3 

for >90% of the crystals. Na-Y has a cubic crystal structure, with a crystallographic unit 

cell side length of ~24.6 Å for the Si/Al ratios used,36,37 leading to a crystallographic unit 

cell volume of ~15,000 Å3. From the upper bound of the volume of the crystallites used, 

this gives < 2.34 x 1014 unit cells per crystallite.  The sum of the number of framework 

atoms (Si and Al) per unit cell is 192.38  Taking the ICP obtained Si/Al ratio of 2.62 

(Section II of the published article), the density of the Na-Y used in this study is ~12700 

atomic mass units per crystallographic unit cell.  From the atomic mass per unit cell and 

the number of unit cells per crystallite, the weight per crystallite is < 4.96 x 10-6 g.  A 

surface area of ~725 m2 g-1 has been reported in the literature for a Na-Y zeolite with a 

similar Si/Al ratio as the one used in this study.39 Given a surface area of ~725 m2 g-1, the 

surface area per crystallite is < 3.6 x 10-3 m2, which is < 36 cm2. 
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Appendix S.1: Parameters obtained from first and second-order fits 

Table S.4a First-order parameters from fitting to Eqs. 4 & 5, “full nitrate peak” 

Experiment # kObsA  [(NO3
-)A]0 kObsB [(NO3

-)B]0 [(NO3
-)U]0 

16 0.0067 2.1825     5.9656 

17 0.0055 1.834     6.4968 

18 0.0057 0.587     7.8843 

19 0.0048 0.5572     8.1156 

21 0.0049 1.7704     6.3269 

22b 0.0032 1.4933     6.5145 

22f 0.0024 1.2369     5.1195 

30 0.0066 0.425     4.8015 

22c 0.0063 0.9141   10.5356 

22e 0.0047 0.703   8.8557 

22d 0.0092 1.1651     9.4498 

60 0.0685 5.3464 0.0049 0.5914 8.5674 

61 0.0496 5.2017     8.0119 

62 0.8849 2.7903 0.0361 3.5179 7.5147 

73 0.5743 2.7431 0.023 0.7108 8.1319 

74 0.0042 0.403     7.6725 

75 0.0575 0.5539 0.0072 0.7132 7.6378 

77 0.0122 0.1027 0.012 0.1217 2.2591 

79 0.0098 0.0448 0.0012 0.1184 0 

80 0.0034 0.8391 0.0001 -0.7257 3.1808 

63 0.0401 2.0996   10.6075 

71 0.0058 0.3815 0.0008 0.9762 1.4847 

72 1.3808 0.1101 0.043 0.054 0.6155 

153 0.1627 1.1413 0.0028 0.8581 2.3263 

154 0.0011 0.3838 0.0718 0.8736 2.0557 

155 0.22 4.9697 0.0015 0.9159 4.5557 

158 0.084 1.2153 0.0139 0.3862 2.4361 

159 0.0746 3.3324     5.3781 

160 0.0696 1.6535 0.0043 0.1327 1.9224 

165 0.1021 0.635 0.0025 0.3763 4.8672 

161 0.0341 1.0553 0.0017 0.6036 4.6859 

162 0.1327 2.5769 0.0027 0.845 4.8799 

163 0.0234 0.1921 0.0021 0.3249 4.6423 

166 0.0321 0.6012 0.0005 1.0843 2.9495 

167 0.9599 4.1862 0.0438 4.0392 3.2369 

168 3.4797 22.5196 0.039 5.32 3.3723 
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Table S.4b First-order parameters from fitting to Eqs. 4 & 5, “right nitrate peak” 

Experiment # kObsA  [(NO3
-)A]0 kObsB [(NO3

-)B]0 [(NO3
-)U]0 

16 0.0055 0.2173   0.8356 

17 0.0055 0.1957     0.7214 

18           

19 0.0033 0.1129     0.8126 

21 0.0043 0.1369     0.7416 

22b 0.0061 0.224     0.6815 

22f 0.0033 0.1173     0.476 

30 0.0159 0.0858     0.646 

22c 0.0038 0.0923   1.0789 

22e 0.0048 0.0466   1.0212 

22d 0.0081 0.162     0.8902 

60 0.071 0.2515 0.0039 0.1432 1.3924 

61 0.0496 5.2017     8.0119 

62 0.8016 0.6027 0.013 0.1469 0.7968 

73           

74 0.8948 0.1328 0.0048 0.1429 0.714 

75 0.6476 0.2239 0.0238 0.13 0.5263 

77 0.1291 0.0617 0.006 0.1022 0.2409 

79 0.0098 0.0448 0.0012 0.1184 0 

80 0.0022 0.1428 0.0003 0.0541 0.0577 

63 1.3145 1.1298   0.914 

71 0.0113 0.039 0.001 0.1084 0.0891 

72 1.3808 0.1101 0.043 0.054 0.6155 

153 0.8044 0.191 0.0033 0.0936 0.3181 

154 0.0997 0.0969 0.0011 0.035 0.2134 

155 0.2058 0.5502 0.0015 0.1299 0.5294 

158 0.0605 0.1244 0.0031 0.0275 0.3192 

159 0.0713 0.2789 0.0001 0.2224 0.3915 

160 0.0541 0.129 0.0034 0.018 0.1536 

165 0.077 0.0475 0.0011 0.0433 0.564 

161 0.0322 0.0741 0.0009 0.0588 0.388 

162 0.1102 0.1413 0.0016 0.0601 0.4368 

163 0.0221 0.0216 0 0.219 0.3388 

166          

167          

168          
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Table S.4c. First-order kobsA from half-Life analysis, “full peak” & “right peak” 

Experiment # kObsA “full peak”  kObsA “right peak”  

16 0.010756 0.006841 

17 0.0059 0.005741 

18 0.005636   

19 0.004633 0.004816 

21 0.004648 0.004408 

22b 0.003322 0.005693 

22f 0.002185 0.003233 

30 0.066774 0.008312 

22c 0.004503 0.004077 

22e 0.004722 0.004977 

22d 0.005876 0.006329 

60 0.059429 0.047377 

61 0.05839 0.065568 

62 0.047007 0.019804 

73 0.4658   

74 0.006361 0.012853 

75 0.025269 0.693147 

77 0.012361 0.0168 

79 0.012504 0.001995 

80 0.005203 0.001473 

63 0.049511 0.077016 

71 0.002108 0.002442 

72 0.075234 0.214511 

153 0.138629 0.346574 

154 0.048397 0.067152 

155 0.1299 0.125798 

158 0.056289 0.061054 

159 0.073403 0.049012 

160 0.061865 0.021517 

165 0.053502 0.040463 

161 0.022137 0.034657 

162 0.098481 0.058649 

163 0.004016 0.00063 

166 0.004326   

167 0.141339   

168 0.088776   
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Table S.4d Second-order parameters from fitting to Eqs. 4 & 5, “full nitrate peak” 

Experiment # kObsA  [(NO3
-)A]0 [(NO3

-)U]0 

16 0.0044 2.599428 5.7623 

17 0.0034 2.229654 6.2226 

18 0.0115 0.738225 7.7969 

19 0.0065 0.719994 7.9599 

21 0.0033 2.148228 6.0815 

22b 0.0014 2.05846 5.9822 

22f 0.0019 1.530925 4.8894 

30 0.0229 0.672179 4.7468 

22c 0.0072 1.090394 10.3905 

22e 0.0039 0.983768 8.5835 

22d 0.0121 1.376273 9.3724 

60 0.0184 6.69344 8.4802 

61 0.0053 7.473842 5.8122 

62 0.0176 5.102041 7.2212 

73 0.1614 3.234153 8.2008 

74 0.0072 0.332557 7.7276 

75 0.0211 1.258336 7.6226 

77 0.0342 0.298445 2.1865 

79 0.0421 0.226572 2.0828 

80 0.0066 0.884799 2.4618 

63 0.014 2.862869 9.9433 

71 0.0014 1.383892 1.4535 

72 0.0763 1.196602 6.3834 

153 0.0214 1.39821 2.439 

154 0.0781 1.099989 2.2489 

155 0.0602 6.153846 4.9074 

158 0.0623 1.807011 2.3983 

159 0.0409 4.253509 5.2027 

160 0.0654 0.860289 4.9427 

165 0.0635 2.110595 1.8764 

161 0.0154 1.576044 4.7492 

162 0.0407 3.206156 5.0744 

163 0.0128 0.512426 4.6222 

166 0.0376 0.914244 3.784 

167 0.0231 6.535948 3.1018 

168 0.0123 7.097232 3.0359 
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Table S.4e Second-order parameters from fitting to Eqs. 4 & 5, “right nitrate peak” 

Experiment # kObsA  [(NO3
-)A]0 [(NO3

-)U]0 kObsA Scaled* 

16 0.0322 0.259727 0.7219 0.003203 

17 0.0313 0.23758 0.6918 0.003985 

18        

19 0.0177 0.156723 0.77 0.001496 

21 0.0347 0.168175 0.7204 0.003313 

22b 0.6249 0.286262 0.022 0.050565 

22f 0.0321 0.14454 0.4596 0.003909 

30        

22c 0.0384 0.114151 1.0609 0.004253 

22e 0.0855 0.0579 1.0115 0.010321 

22d 0.0694 0.189186 0.8769 0.008441 

60 0.1632 0.356037 1.4292 0.01355 

61 0.0964 0.305446 0.921 0.008523 

62 0.1893 0.287679 0.7865 0.013693 

73        

74 0.0346 0.177873 0.6895 0.011012 

75 0.5552 0.266852 0.529 0.004207 

77 0.103 0.130842 0.2375 0.983466 

79 0.024 0.166492 0 0.114579 

80 0.01 0.205141 0.052 0.031827 

63 0.0259 0.327579 0.6601 0.001805 

71 0.0198 0.144527 0.0892 0.009453 

72 2.324 0.117849 0.6148 0.04438 

153 0.1506 0.121202 0.3254 0.00145 

154 1.2263 0.121683 0.2328 0.142792 

155 0.4384 0.669792 0.582 0.023178 

158 0.5158 0.164802 0.3203 0.024142 

159 0.3092 0.351667 0.5722 0.032301 

160 0.3906 0.066669 0.577 0.019629 

165 0.5188 0.164258 0.1515 0.025693 

161 0.1586 0.113421 0.4027 0.008064 

162 0.5072 0.173792 0.4549 0.020434 

163 0.2418 0.034638 0.5422 0.016491 

166        

167        

168        
* The scaled kobsA is obtained by dividing kobsA by 10.5, see text for details. 
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Table S.4f. Second-order kobsA from half-life analysis, “full peak” & “right peak” 

Experiment # kObsA “full peak”  kObsA “right peak” kObsA “right peak” scaled*  

16 0.00571 0.03787 0.003616 

17 0.004246 0.039396 0.003762 

18 0.012054    

19 0.009523 0.044693 0.004267 

21 0.003769 0.03573 0.003412 

22b 0.003694 0.035542 0.003394 

22f 0.002533 0.033151 0.003165 

30 0.130179 0.099725 0.009522 

22c 0.006305 0.034722 0.003315 

22e 0.011159 0.134002 0.012795 

22d 0.006338 0.062846 0.006001 

60 0.013474 0.109156 0.010422 

61 0.016538 0.209689 0.020022 

62 0.01243 0.042984 0.004104 

73 0.219404    

74 0.021402 0.080698 0.007705 

75 0.029134 2.753061 0.262868 

77 0.073391 0.170043 0.016236 

79 0.092399 0.016071 0.001534 

80 0.008492 0.010478 0.001001 

63 0.040816 0.584795 0.055837 

71 0.002003 0.022084 0.002109 

72 0.088546 2.831193 0.270328 

153 0.076277 1.699187 0.162242 

154 0.052501 0.618294 0.059036 

155 0.034606 0.270245 0.025804 

158 0.049186 0.481904 0.046013 

159 0.025884 0.191202 0.018256 

160 0.079449 0.318383 0.0304 

165 0.0443 0.40427 0.038601 

161 0.018333 0.26095 0.024916 

162 0.036572 0.416322 0.039751 

163 0.007857 0.011319 0.001081 

166 0.003457    

167 0.026435    

168 0.012404    
* The scaled kobsA is obtained by dividing kobsA by 10.5, see text for details. 
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Appendix S.2: Programs used in spline-fitting alpha plots. 

Program nt2.  Example command: python nt2.py -s 0.01 -i 0.5 -f 16.csv -o 16nt2.csv 

#finds the rolling slope w/ points evenly distributed across time after 

import sys 

import getopt 

import math 

 

class Point: 

 def __init__(self, line, xp, yp): 

  self.line = line 

  self.x = xp 

  self.y = yp 

  self.xs = str(self.x) 

  self.ys = str(self.y) 

  

def findYintercept(points, slope): 

 ''' return the y-intercept 

  

  yintercept = Avg(y) - slope*Avg(x)  

  

 ''' 

 n = len(points) 

 avgx = 0 

 avgy = 0 

 for i in points: 

  avgx = avgx + i.x 

  avgy = avgy + i.y 

 avgx = avgx / n 
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 avgy = avgy / n 

  

 yintercept = avgy - (slope * avgx) 

  

 #print " ".join([point.xs + ", " + point.ys for point in points]) 

 #print "Avgx: " + str(avgx) + "   Avgy: " + str(avgy) + "   Slope: " + str(slope) 

 #print "yint: " + str(yintercept) 

 #print "-----------------------" 

  

 return yintercept 

  

 

def findslope(points): 

 ''' returns the slope from the following 

  

  slope = n(Summation(x * y)) - Summation(x)Summation(y) 

      / n(Summation(x**2)) - (Summation(x))**2 

  

 ''' 

 n = len(points) 

  

 crossSum = 0   # Summation(x * y) 

 xSum = 0    # Summation(x)  

 ySum = 0    # Summation(y) 

 xsquareSum = 0  # Summation(x**2) 

 for i in points: 

  crossSum = crossSum + (i.x * i.y) 

  xSum = xSum + i.x 
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  ySum = ySum + i.y 

  xsquareSum = xsquareSum + pow(i.x,2) 

   

 #print " ".join([point.xs + ", " + point.ys for point in points]) 

 slope = ( (n * crossSum) - (xSum * ySum) ) / ( (n * xsquareSum) - pow(xSum,2) )   

  

  

 #print slope 

 #print "" 

 return slope 

 

def printOutput(outfile, lines): 

 delim = "," 

  

 toprint = [] 

 toprint.append( delim.join(["LogTime", "Slope", "Y-Intercept"]) ) 

 for i in lines: 

  toprint.append( delim.join([str(i[0]), str(i[1]), str(i[2])]) ) 

   

 if outfile == "": 

  for line in toprint: 

   print line 

 else: 

  file = open(outfile, "w") 

  for line in toprint: 

   file.write(line + "\n") 

  file.close() 
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def main(argv): 

 filename = "" 

 fitsize = 0 

 outfile = "outDefault.txt" 

 FirstPoint = 0 

 extraPoints = 3 

  

 try: 

  opts, args = getopt.getopt(argv, "f:i:s:o:", ["file=","interval=","step=","output="]) 

 except getopt.GetoptError: 

  usage() 

  sys.exit(2) 

 

 for opt, arg in opts: 

  if opt in ("-f", "--file"): 

   filename = arg 

  elif opt in ("-i", "--interval"): 

   interval = float(arg) 

  elif opt in ("-s", "--step"): 

   step = float(arg) 

  elif opt in ("-o", "--output"): 

   outfile = arg 

  else: 

   print "You need to specify an option" 

   sys.exit() 
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 file = open(filename) 

 lines = file.readlines() 

  

 data = [] 

 output = [] 

  

 for index, line in enumerate(lines): 

  line = line.rstrip("\n") 

  pointsText = line.split(",") 

  #pointsFloat = [float(pointsText[0]), float(pointsText[1])] 

  data.append(Point(index, float(pointsText[0]), float(pointsText[1]))) 

 

 CurrentTimeMin = 0 - (interval/2) 

 CurrentTimeMax = CurrentTimeMin + interval 

 #first time range centers around 0 

 

 while extraPoints > 1: 

  FirstPoint = 0 

  fitsize = 0 

  extraPointCounter = 0 

  #FirstPoint & fitsize start at zero, and are reset with every iteration 

  for index, point in enumerate(data): 

   if data[index].x < CurrentTimeMin: 

    FirstPoint = FirstPoint + 1 

    #The starting of the linear fit will be increased by 1 point for every 

point before it. 

   if data[index].x < CurrentTimeMax: 

    if data[index].x > CurrentTimeMin: 
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     fitsize = fitsize + 1  

   if data[index].x == CurrentTimeMax:   

    if data[index].x > CurrentTimeMin: 

     fitsize = fitsize + 1 

    #if the point is in the range, then the fitsize is increased by 1 - 

indicating that a point is added. 

   if data[index].x > CurrentTimeMax - (interval/2): 

    extraPointCounter = extraPointCounter + 1 

     #the above finds the correct fitsize when starting at first point, 

and then adds 1 for every point 

     #so if only 2 points were in the first interval, it would go from 

fitsize = 0 to fitsize = 2 

  #after finding the fitsize, the program has to find the slope & y-intercept and add them to 

the output array 

  if fitsize > 1: 

   slope = findslope(data[FirstPoint:FirstPoint+fitsize]) 

   yintercept = findYintercept(data[FirstPoint:FirstPoint+fitsize],slope) 

   CurrentTime = CurrentTimeMin + interval/2 

   output.append([CurrentTime, slope, yintercept,]) 

   #only find slope etc. if there are enough points 

  CurrentTimeMin = CurrentTimeMin + step 

  CurrentTimeMax = CurrentTimeMin + interval 

  #now the min and max for the time interval being looked at are increased by the step. 

  extraPoints = extraPointCounter 

    #then the program has to loop back to searching in every point w/in 

new interval, 

    #unless the extraPointCounter is not greater than 1, which is checked 

here. 
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 printOutput(outfile, output) 

  

 

if __name__ == "__main__": 

 main(sys.argv[1:]) 
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Program ntf7 Example command:   

python ntf7.py -s 0.01 -i 0.5 -f 16.csv -o 16ntf7.csv -g 1.85 

 

#finds the range of the linear region, assuming slope 0.5 

#includes having to provide a guess of the middle of the range, and an initial interval size, 

#Based on next points (via interval) having to be w/in 2 local linear fit ResidualStDev of range's fit 

#has new "Final Max" and "Final Min" functions. 

#("Final Max" & Min are when total residuals double so fit starts getting really bad.) 

import sys 

import getopt 

import math 

 

class Point: 

 def __init__(self, line, xp, yp): 

  self.line = line 

  self.x = xp 

  self.y = yp 

  self.xs = str(self.x) 

  self.ys = str(self.y) 

  

def findYintercept(points, slope): 

 ''' return the y-intercept 

  

  yintercept = Avg(y) - slope*Avg(x)  

  

 ''' 

 n = len(points) 

 avgx = 0 
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 avgy = 0 

 for i in points: 

  avgx = avgx + i.x 

  avgy = avgy + i.y 

 avgx = avgx / n 

 avgy = avgy / n 

  

 yintercept = avgy - (slope * avgx) 

  

 #print " ".join([point.xs + ", " + point.ys for point in points]) 

 #print "Avgx: " + str(avgx) + "   Avgy: " + str(avgy) + "   Slope: " + str(slope) 

 #print "yint: " + str(yintercept) 

 #print "-----------------------" 

  

 return yintercept 

  

 

def findslope(points): 

 ''' returns the slope from the following 

  

  slope = n(Summation(x * y)) - Summation(x)Summation(y) 

      / n(Summation(x**2)) - (Summation(x))**2 

  

 ''' 

 n = len(points) 

  

 crossSum = 0   # Summation(x * y) 

 xSum = 0    # Summation(x)  
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 ySum = 0    # Summation(y) 

 xsquareSum = 0  # Summation(x**2) 

 for i in points: 

  crossSum = crossSum + (i.x * i.y) 

  xSum = xSum + i.x 

  ySum = ySum + i.y 

  xsquareSum = xsquareSum + pow(i.x,2) 

   

 #print " ".join([point.xs + ", " + point.ys for point in points]) 

 slope = ( (n * crossSum) - (xSum * ySum) ) / ( (n * xsquareSum) - pow(xSum,2) )   

  

 #print slope 

 #print "" 

 return slope 

 

def findCorrelation(points): 

 ''' returns the corrrelation of the best fit line 

 ''' 

 n = len(points) 

 crossSum = 0   # Summation(x * y) 

 xSum = 0    # Summation(x)  

 ySum = 0    # Summation(y) 

 xsquareSum = 0  # Summation(x**2) 

 xVariance = 0 

 yVariance = 0 

 for i in points: 

  crossSum = crossSum + ( i.x * i.y ) 

  xSum = xSum + i.x 
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  ySum = ySum + i.y 

 #Note: below, xSum/n is just the average of x. Same for y. 

 for i in points:  

  xVariance = xVariance + ( i.x - xSum/n )**2 

  yVariance = yVariance + ( i.y - ySum/n )**2 

  CrossVariance = ( i.x - xSum/n)*( i.y - ySum/n) 

 correlation = (CrossVariance**2/(xVariance*yVariance))**0.5 

 return correlation 

 

def findResidualStDev(points, slope, yintercept): 

 ''' returns the corrrelation of the best fit line 

 ''' 

 n = len(points) 

  

 crossSum = 0   # Summation(x * y) 

 xSum = 0    # Summation(x)  

 ySum = 0    # Summation(y) 

 xsquareSum = 0  # Summation(x**2) 

 yResidualSumSq = 0.0 

 #Below finds the sum of the y residuals, necessary to find the standard deviation of the residuals. 

 #the "average" value is the predicted point of the line, given by slope*x + b, or 

slope*i.x+yintercept 

 #the squaring and square rooting is to get the absolute value. 

 for i in points: 

  yResidualSumSq = yResidualSumSq + (i.y - (slope*i.x + yintercept))**2 

  

 ResidualStDev = (yResidualSumSq/(n-1))**0.5 

 return ResidualStDev 
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def checkInterval(IntervalPoints, LocalResidualStDev,slope,yintercept): 

 ''' checks the points given versus the line fed, 

  fits the interval to a linear fit, and assumes at least 1 point of the interval must be within 

  2 ResidualStDev of the local area. 

 ''' 

 Counter=1 

 for i in IntervalPoints: 

  if 2*LocalResidualStDev > ((i.y - (slope*i.x + yintercept))**2)**0.5: 

   Counter = 0  

 #If any of the interval's points have residuals within 2 local Standard Deviations of the fed line 

(line to compare) 

 #the Counter will be set to 0 (indicating that the interval is okay). 

 return Counter 

 

def printOutput(outfile, lines): 

 delim = "," 

  

 toprint = [] 

 toprint.append( delim.join(["Onset", "Endset", "slope", "Y-Intercept", "StDev", "R^2" ]) ) 

 for i in lines: 

  toprint.append( delim.join([str(i[0]), str(i[1]), str(i[2]),str(i[3]), str(i[4]), str(i[5])]) ) 

   

 if outfile == "": 

  for line in toprint: 

   print line 

 else: 

  file = open(outfile, "w") 
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  for line in toprint: 

   file.write(line + "\n") 

  file.close() 

  

  

 

def main(argv): 

 filename = "" 

 fitsize = 0 

 outfile = "outDefault.txt" 

 FirstPoint = 0 

 extraPoints = 3 

 PointsToCheck = 5 

 #EndMax and EndMin are counters, when they reach 1, the extrapoint counter will be turned off 

for that end. 

 EndMax = 0 

 EndMin = 0 

  

 try: 

  opts, args = getopt.getopt(argv, "f:g:i:s:o:", 

["file=","guess=","interval=","step=","output="]) 

 except getopt.GetoptError: 

  usage() 

  sys.exit(2) 

 

 for opt, arg in opts: 

  if opt in ("-f", "--file"): 

   filename = arg 
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  elif opt in ("-i", "--interval"): 

   interval = float(arg) 

  elif opt in ("-g", "--guess"): 

   guess = float(arg)  

  elif opt in ("-s", "--step"): 

   step = float(arg) 

  elif opt in ("-o", "--output"): 

   outfile = arg 

  else: 

   print "You need to specify an option" 

   sys.exit() 

    

 file = open(filename) 

 lines = file.readlines() 

  

 data = [] 

 output = [] 

  

 for index, line in enumerate(lines): 

  line = line.rstrip("\n") 

  pointsText = line.split(",") 

  #pointsFloat = [float(pointsText[0]), float(pointsText[1])] 

  data.append(Point(index, float(pointsText[0]), float(pointsText[1]))) 

 

 CurrentTimeMin = guess - (interval/2) 

 CurrentTimeMax = CurrentTimeMin + interval 

 #first time range centers around 0 
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 while extraPoints > 0: 

  FirstPoint = 0 

  fitsize = 0 

  extraPointCounter = 0 

  PointsBeforeMin = 0 

  PointsAfterMin = 0 

  PointsBeforeMax = 0 

  PointsAfterMax = 0 

  #FirstPoint & fitsize start at zero, and are reset with every iteration 

  for index, point in enumerate(data): 

   if data[index].x < CurrentTimeMin: 

    FirstPoint = FirstPoint + 1 

    #The starting of the linear fit will be increased by 1 point for every 

point before it. 

   if data[index].x < CurrentTimeMax: 

    if data[index].x > CurrentTimeMin: 

     fitsize = fitsize + 1  

   if data[index].x == CurrentTimeMax:   

    fitsize = fitsize + 1 

    #if the point is in the range, then the fitsize is increased by 1 - 

indicating that a point is added. 

   if data[index].x > CurrentTimeMax: 

    if EndMax == 0: 

     extraPointCounter = extraPointCounter + 1 

   if data[index].x < CurrentTimeMin: 

    if EndMin == 0: 

     extraPointCounter = extraPointCounter + 1    
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     #the above finds the correct fitsize when starting at first point, 

and then adds 1 for every point 

     #so if only 2 points were in the first interval, it would go from 

fitsize = 0 to fitsize = 2 

   if data[index].x > CurrentTimeMin - interval/2: 

    if data[index].x < CurrentTimeMin: 

     PointsBeforeMin = PointsBeforeMin + 1 

   if data[index].x < CurrentTimeMin + interval/2: 

    if data[index].x >= CurrentTimeMin: 

     PointsAfterMin = PointsAfterMin + 1 

   if data[index].x > CurrentTimeMax - interval/2: 

    if data[index].x <= CurrentTimeMax : 

     PointsBeforeMax = PointsBeforeMax + 1 

   if data[index].x < CurrentTimeMax + interval/2: 

    if data[index].x > CurrentTimeMax : 

     PointsAfterMax = PointsAfterMax + 1 

   #The above counters are used to determine the ranges for fitting to check the 

upcoming ranges 

     #before the Min Time and after the Max Time 

  slope = 0.5 

  yintercept = findYintercept(data[FirstPoint:(FirstPoint+fitsize)+1],slope) 

  ResidualStDev = findResidualStDev(data[FirstPoint:(FirstPoint+fitsize)+1], slope, 

yintercept) 

  # for defined point ranges, upper point of range doesn't count, but if passing "points" then 

doesn't matter. 

  # So for the point ranges defined above, there is always an extra +1 for the upper point. 

  #The "Final" max and min are if the total residuals would more than double. 

  PotentialMinRange = data[FirstPoint-PointsBeforeMin:(FirstPoint+fitsize)+1] 
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  FinalEndMin = 2*ResidualStDev - findResidualStDev(PotentialMinRange, 

findslope(PotentialMinRange), findYintercept(PotentialMinRange,findslope(PotentialMinRange))) 

  PotentialMaxRange = data[FirstPoint:(FirstPoint+fitsize+PointsAfterMax)+1] 

  FinalEndMax = 2*ResidualStDev - findResidualStDev(PotentialMaxRange, 

findslope(PotentialMaxRange), findYintercept(PotentialMaxRange,findslope(PotentialMaxRange))) 

 

  if FinalEndMax < 0: 

   EndMax = 0 

  if FinalEndMin < 0: 

   EndMin=0 

 

  #below checks upperpoints and lower points, then changes Min & Max accordingly 

(assuming Final Max & Min not reached) 

  if FinalEndMin > 0: 

   LocalRange = data[FirstPoint-PointsBeforeMin:(FirstPoint+PointsAfterMin)+1] 

   LocalResidualStDev = findResidualStDev(LocalRange, findslope(LocalRange), 

findYintercept(LocalRange,findslope(LocalRange))) 

   EndMin=checkInterval(data[FirstPoint-

PointsBeforeMin:(FirstPoint)+1],LocalResidualStDev, slope,yintercept) 

  if FinalEndMax > 0: 

   LocalRange = data[FirstPoint+fitsize-

PointsBeforeMax:(FirstPoint+fitsize+PointsAfterMax)+1] 

   LocalResidualStDev = findResidualStDev(LocalRange, findslope(LocalRange), 

findYintercept(LocalRange,findslope(LocalRange))) 

  

 EndMax=checkInterval(data[FirstPoint+fitsize:(FirstPoint+fitsize+PointsAfterMax)+1],LocalResi

dualStDev,slope,yintercept) 
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  #above, the EndMax and EndMin are checked, to see if it should be increased or not (if 

it's not ended). 

   #Then, below it's either increased or not. 

  if EndMax == 0: 

   CurrentTimeMax = CurrentTimeMax + step 

  if EndMin == 0: 

   CurrentTimeMin = CurrentTimeMin - step 

  #now the min and max for the time interval being looked at are increased by the step if 

their next points are okay 

  #otherwise they have no change and the loop starts again. 

  UpperPointInt = data[FirstPoint-PointsBeforeMin:(FirstPoint+PointsAfterMin)+1] 

  LowerPointInt = data[FirstPoint+fitsize-

PointsBeforeMax:(FirstPoint+fitsize+PointsAfterMax)+1] 

  LowerPointsResidualStDev = findResidualStDev(LowerPointInt, 

findslope(LowerPointInt), findYintercept(LowerPointInt,findslope(LowerPointInt))) 

  UpperPointsResidualStDev = findResidualStDev(UpperPointInt, 

findslope(UpperPointInt), findYintercept(UpperPointInt,findslope(UpperPointInt))) 

  correlation = findCorrelation(data[FirstPoint:(FirstPoint+fitsize)+1]) 

  output.append([CurrentTimeMin, CurrentTimeMax, slope, yintercept, 

LowerPointsResidualStDev, UpperPointsResidualStDev])  

  extraPoints = extraPointCounter 

    #then the program has to loop back to searching in every point w/in 

new interval, 

    #unless the extraPointCounter is not greater than 1, which is checked 

here. 

 #The Current Time Min, fitsize & first point will be whereever they were on the final loop of 

above 

 #The correlation and range will be determined from them. 
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 output.append([CurrentTimeMin, CurrentTimeMax, slope, yintercept, ResidualStDev, 

correlation])  

 slope = findslope(data[FirstPoint:(FirstPoint+fitsize)+1]) 

 correlation = findCorrelation(data[FirstPoint:(FirstPoint+fitsize)+1]) 

 yintercept = findYintercept(data[FirstPoint:(FirstPoint+fitsize)+1],slope) 

 ResidualStDev = findResidualStDev(data[FirstPoint:(FirstPoint+fitsize)+1], slope, yintercept) 

 #the final output consists of the Onset, Endset, the slope, y-intercept, the residual's standard 

deviation, and the Correlation Coeff 

 output.append([CurrentTimeMin, CurrentTimeMax, slope, yintercept, ResidualStDev, 

correlation])  

 printOutput(outfile, output) 

  

 

if __name__ == "__main__": 

 main(sys.argv[1:]) 
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Program ntf8. Example command:   

python ntf8.py -s 0.01 -i 0.5 -f 16.csv -o 16ntf7.csv -g 1.85 

#includes having to provide a guess of the middle of the range, and an initial interval size, 

#Based on next points (via interval) having to be w/in 2 local linear fit ResidualStDev of range's fit 

#has new "Final Max" and "Final Min" functions. 

#("Final Max" & Min are when total residuals double so fit starts getting really bad.) 

import sys 

import getopt 

import math 

 

class Point: 

 def __init__(self, line, xp, yp): 

  self.line = line 

  self.x = xp 

  self.y = yp 

  self.xs = str(self.x) 

  self.ys = str(self.y) 

  

def findYintercept(points, slope): 

 ''' return the y-intercept 

  

  yintercept = Avg(y) - slope*Avg(x)  

  

 ''' 

 n = len(points) 

 avgx = 0 

 avgy = 0 

 for i in points: 
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  avgx = avgx + i.x 

  avgy = avgy + i.y 

 avgx = avgx / n 

 avgy = avgy / n 

  

 yintercept = avgy - (slope * avgx) 

  

 #print " ".join([point.xs + ", " + point.ys for point in points]) 

 #print "Avgx: " + str(avgx) + "   Avgy: " + str(avgy) + "   Slope: " + str(slope) 

 #print "yint: " + str(yintercept) 

 #print "-----------------------" 

  

 return yintercept 

  

 

def findslope(points): 

 ''' returns the slope from the following 

  

  slope = n(Summation(x * y)) - Summation(x)Summation(y) 

      / n(Summation(x**2)) - (Summation(x))**2 

  

 ''' 

 n = len(points) 

  

 crossSum = 0   # Summation(x * y) 

 xSum = 0    # Summation(x)  

 ySum = 0    # Summation(y) 

 xsquareSum = 0  # Summation(x**2) 
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 for i in points: 

  crossSum = crossSum + (i.x * i.y) 

  xSum = xSum + i.x 

  ySum = ySum + i.y 

  xsquareSum = xsquareSum + pow(i.x,2) 

   

 #print " ".join([point.xs + ", " + point.ys for point in points]) 

 slope = ( (n * crossSum) - (xSum * ySum) ) / ( (n * xsquareSum) - pow(xSum,2) )   

  

 #print slope 

 #print "" 

 return slope 

 

def findCorrelation(points): 

 ''' returns the corrrelation of the best fit line 

 ''' 

 n = len(points) 

 crossSum = 0   # Summation(x * y) 

 xSum = 0    # Summation(x)  

 ySum = 0    # Summation(y) 

 xsquareSum = 0  # Summation(x**2) 

 xVariance = 0 

 yVariance = 0 

 for i in points: 

  crossSum = crossSum + ( i.x * i.y ) 

  xSum = xSum + i.x 

  ySum = ySum + i.y 

 #Note: below, xSum/n is just the average of x. Same for y. 
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 for i in points:  

  xVariance = xVariance + ( i.x - xSum/n )**2 

  yVariance = yVariance + ( i.y - ySum/n )**2 

  CrossVariance = ( i.x - xSum/n)*( i.y - ySum/n) 

 correlation = (CrossVariance**2/(xVariance*yVariance))**0.5 

 return correlation 

 

def findResidualStDev(points, slope, yintercept): 

 ''' returns the corrrelation of the best fit line 

 ''' 

 n = len(points) 

  

 crossSum = 0   # Summation(x * y) 

 xSum = 0    # Summation(x)  

 ySum = 0    # Summation(y) 

 xsquareSum = 0  # Summation(x**2) 

 yResidualSumSq = 0.0 

 #Below finds the sum of the y residuals, necessary to find the standard deviation of the residuals. 

 #the "average" value is the predicted point of the line, given by slope*x + b, or 

slope*i.x+yintercept 

 #the squaring and square rooting is to get the absolute value. 

 for i in points: 

  yResidualSumSq = yResidualSumSq + (i.y - (slope*i.x + yintercept))**2 

  

 ResidualStDev = (yResidualSumSq/(n-1))**0.5 

 return ResidualStDev 

 

def checkInterval(IntervalPoints, LocalResidualStDev,slope,yintercept): 
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 ''' checks the points given versus the line fed, 

  fits the interval to a linear fit, and assumes at least 1 point of the interval must be within 

  2 ResidualStDev of the local area. 

 ''' 

 Counter=1 

 for i in IntervalPoints: 

  if 2*LocalResidualStDev > ((i.y - (slope*i.x + yintercept))**2)**0.5: 

   Counter = 0  

 #If any of the interval's points have residuals within 2 local Standard Deviations of the fed line 

(line to compare) 

 #the Counter will be set to 0 (indicating that the interval is okay). 

 return Counter 

 

def printOutput(outfile, lines): 

 delim = "," 

  

 toprint = [] 

 toprint.append( delim.join(["Onset", "Endset", "slope", "Y-Intercept", "StDev", "R^2" ]) ) 

 for i in lines: 

  toprint.append( delim.join([str(i[0]), str(i[1]), str(i[2]),str(i[3]), str(i[4]), str(i[5])]) ) 

   

 if outfile == "": 

  for line in toprint: 

   print line 

 else: 

  file = open(outfile, "w") 

  for line in toprint: 

   file.write(line + "\n") 
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  file.close() 

  

  

 

def main(argv): 

 filename = "" 

 fitsize = 0 

 outfile = "outDefault.txt" 

 FirstPoint = 0 

 extraPoints = 3 

 PointsToCheck = 5 

 #EndMax and EndMin are counters, when they reach 1, the extrapoint counter will be turned off 

for that end. 

 EndMax = 0 

 EndMin = 0 

  

 try: 

  opts, args = getopt.getopt(argv, "f:g:i:s:o:", 

["file=","guess=","interval=","step=","output="]) 

 except getopt.GetoptError: 

  usage() 

  sys.exit(2) 

 

 for opt, arg in opts: 

  if opt in ("-f", "--file"): 

   filename = arg 

  elif opt in ("-i", "--interval"): 

   interval = float(arg) 
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  elif opt in ("-g", "--guess"): 

   guess = float(arg)  

  elif opt in ("-s", "--step"): 

   step = float(arg) 

  elif opt in ("-o", "--output"): 

   outfile = arg 

  else: 

   print "You need to specify an option" 

   sys.exit() 

    

 file = open(filename) 

 lines = file.readlines() 

  

 data = [] 

 output = [] 

  

 for index, line in enumerate(lines): 

  line = line.rstrip("\n") 

  pointsText = line.split(",") 

  #pointsFloat = [float(pointsText[0]), float(pointsText[1])] 

  data.append(Point(index, float(pointsText[0]), float(pointsText[1]))) 

 

 CurrentTimeMin = guess - (interval/2) 

 CurrentTimeMax = CurrentTimeMin + interval 

 #first time range centers around 0 

 

 while extraPoints > 0: 

  FirstPoint = 0 
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  fitsize = 0 

  extraPointCounter = 0 

  PointsBeforeMin = 0 

  PointsAfterMin = 0 

  PointsBeforeMax = 0 

  PointsAfterMax = 0 

  #FirstPoint & fitsize start at zero, and are reset with every iteration 

  for index, point in enumerate(data): 

   if data[index].x < CurrentTimeMin: 

    FirstPoint = FirstPoint + 1 

    #The starting of the linear fit will be increased by 1 point for every 

point before it. 

   if data[index].x < CurrentTimeMax: 

    if data[index].x > CurrentTimeMin: 

     fitsize = fitsize + 1  

   if data[index].x == CurrentTimeMax:   

    fitsize = fitsize + 1 

    #if the point is in the range, then the fitsize is increased by 1 - 

indicating that a point is added. 

   if data[index].x > CurrentTimeMax: 

    if EndMax == 0: 

     extraPointCounter = extraPointCounter + 1 

   if data[index].x < CurrentTimeMin: 

    if EndMin == 0: 

     extraPointCounter = extraPointCounter + 1    

     #the above finds the correct fitsize when starting at first point, 

and then adds 1 for every point 
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     #so if only 2 points were in the first interval, it would go from 

fitsize = 0 to fitsize = 2 

   if data[index].x > CurrentTimeMin - interval/2: 

    if data[index].x < CurrentTimeMin: 

     PointsBeforeMin = PointsBeforeMin + 1 

   if data[index].x < CurrentTimeMin + interval/2: 

    if data[index].x >= CurrentTimeMin: 

     PointsAfterMin = PointsAfterMin + 1 

   if data[index].x > CurrentTimeMax - interval/2: 

    if data[index].x <= CurrentTimeMax : 

     PointsBeforeMax = PointsBeforeMax + 1 

   if data[index].x < CurrentTimeMax + interval/2: 

    if data[index].x > CurrentTimeMax : 

     PointsAfterMax = PointsAfterMax + 1 

   #The above counters are used to determine the ranges for fitting to check the 

upcoming ranges 

     #before the Min Time and after the Max Time 

  slope = findslope(data[FirstPoint:(FirstPoint+fitsize)+1]) 

  yintercept = findYintercept(data[FirstPoint:(FirstPoint+fitsize)+1],slope) 

  ResidualStDev = findResidualStDev(data[FirstPoint:(FirstPoint+fitsize)+1], slope, 

yintercept) 

  # for defined point ranges, upper point of range doesn't count, but if passing "points" then 

doesn't matter. 

  # So for the point ranges defined above, there is always an extra +1 for the upper point. 

  #The "Final" max and min are if the total residuals would more than double. 

  PotentialMinRange = data[FirstPoint-PointsBeforeMin:(FirstPoint+fitsize)+1] 

  FinalEndMin = 2*ResidualStDev - findResidualStDev(PotentialMinRange, 

findslope(PotentialMinRange), findYintercept(PotentialMinRange,findslope(PotentialMinRange))) 
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  PotentialMaxRange = data[FirstPoint:(FirstPoint+fitsize+PointsAfterMax)+1] 

  FinalEndMax = 2*ResidualStDev - findResidualStDev(PotentialMaxRange, 

findslope(PotentialMaxRange), findYintercept(PotentialMaxRange,findslope(PotentialMaxRange))) 

 

  if FinalEndMax < 0: 

   EndMax = 0 

  if FinalEndMin < 0: 

   EndMin=0 

 

  #below checks upperpoints and lower points, then changes Min & Max accordingly 

(assuming Final Max & Min not reached) 

  if FinalEndMin > 0: 

   LocalRange = data[FirstPoint-PointsBeforeMin:(FirstPoint+PointsAfterMin)+1] 

   LocalResidualStDev = findResidualStDev(LocalRange, findslope(LocalRange), 

findYintercept(LocalRange,findslope(LocalRange))) 

   EndMin=checkInterval(data[FirstPoint-

PointsBeforeMin:(FirstPoint)+1],LocalResidualStDev, slope,yintercept) 

  if FinalEndMax > 0: 

   LocalRange = data[FirstPoint+fitsize-

PointsBeforeMax:(FirstPoint+fitsize+PointsAfterMax)+1] 

   LocalResidualStDev = findResidualStDev(LocalRange, findslope(LocalRange), 

findYintercept(LocalRange,findslope(LocalRange))) 

  

 EndMax=checkInterval(data[FirstPoint+fitsize:(FirstPoint+fitsize+PointsAfterMax)+1],LocalResi

dualStDev,slope,yintercept) 

  #above, the EndMax and EndMin are checked, to see if it should be increased or not (if 

it's not ended). 

   #Then, below it's either increased or not. 
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  if EndMax == 0: 

   CurrentTimeMax = CurrentTimeMax + step 

  if EndMin == 0: 

   CurrentTimeMin = CurrentTimeMin - step 

  #now the min and max for the time interval being looked at are increased by the step if 

their next points are okay 

  #otherwise they have no change and the loop starts again. 

  UpperPointInt = data[FirstPoint-PointsBeforeMin:(FirstPoint+PointsAfterMin)+1] 

  LowerPointInt = data[FirstPoint+fitsize-

PointsBeforeMax:(FirstPoint+fitsize+PointsAfterMax)+1] 

  LowerPointsResidualStDev = findResidualStDev(LowerPointInt, 

findslope(LowerPointInt), findYintercept(LowerPointInt,findslope(LowerPointInt))) 

  UpperPointsResidualStDev = findResidualStDev(UpperPointInt, 

findslope(UpperPointInt), findYintercept(UpperPointInt,findslope(UpperPointInt))) 

  correlation = findCorrelation(data[FirstPoint:(FirstPoint+fitsize)+1]) 

  output.append([CurrentTimeMin, CurrentTimeMax, slope, yintercept, 

LowerPointsResidualStDev, UpperPointsResidualStDev])  

  extraPoints = extraPointCounter 

    #then the program has to loop back to searching in every point w/in 

new interval, 

    #unless the extraPointCounter is not greater than 1, which is checked 

here. 

 #The Current Time Min, fitsize & first point will be whereever they were on the final loop of 

above 

 #The correlation and range will be determined from them. 

 output.append([CurrentTimeMin, CurrentTimeMax, slope, yintercept, ResidualStDev, 

correlation])  

 slope = findslope(data[FirstPoint:(FirstPoint+fitsize)+1]) 
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 correlation = findCorrelation(data[FirstPoint:(FirstPoint+fitsize)+1]) 

 yintercept = findYintercept(data[FirstPoint:(FirstPoint+fitsize)+1],slope) 

 ResidualStDev = findResidualStDev(data[FirstPoint:(FirstPoint+fitsize)+1], slope, yintercept) 

 #the final output consists of the Onset, Endset, the slope, y-intercept, the residual's standard 

deviation, and the Correlation Coeff 

 output.append([CurrentTimeMin, CurrentTimeMax, slope, yintercept, ResidualStDev, 

correlation])  

 printOutput(outfile, output) 

  

 

if __name__ == "__main__": 

 main(sys.argv[1:]) 
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Appendix S.3: Alpha plots of experiments.  
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