
 1

Supporting Information for

Kinetics of NO + H+ + NO3
-
�

 NO2 + HNO2 on BaNa-Y:
Evidence for a diffusion limited A + B � 0 Reaction on a Surface.

Aditya Savara and Eric Weitz*

Department of Chemistry and the Institute for Catalysis in Energy Processes,

Northwestern University, 2145 Sheridan Road, Evanston, IL 60208

* To whom correspondence should be addressed. E-mail: weitz@northwestern.edu

Outline:

I. Nitrate Peak Integration………………………………………………… 1
II. Experimental Conditions …………………………………………......... 2
III. First and Second-Order Data Fitting …………………………………… 4

A. Rate Forms and Results…………………………………………… 4
B. Taylor-Weinberg Analysis for First and Second-Order Models…. 7
C. Details and Parameters from Data Fitting and Half-life Analysis…11

IV. Spline-fitting of Alpha Plots……………………………………………..16
V. Estimating the Activation Energy for Diffusion….…………........….......19
VI. Discussion on Values Obtained for the Diffusion Coefficient…………...22
VII. Estimation of Crystallite Surface Area...…………....………………....…24
VIII. References…………….………………………………………….……....25
IX. Appendix S.1: Parameters obtained from first and second-order fits.…...27
X. Appendix S.2: Programs used in spline-fitting alpha plots………………33
XI. Appendix S.3: Alpha plots of experiments…………………………....…64

I. Nitrate Peak Integration

The surface nitrate peaks on Na-Y and BaNa-Y, which have been identified based on

prior assignments reported in the literature, absorb in the region from 1500 to 1300 cm-1

and are centered at approximately 1400 cm-1.1-6 For BaNa-Y, the nitrate peak was

integrated from 1554 to 1241 cm-1, with the baseline defined by drawing a line from 1554

to 1241 cm-1. A second approach was used for BaNa-Y to verify that the choice of

baseline did not affect the rate constants obtained from the fitting procedure: The “right”

 2

portion of the nitrate peak was integrated from 1342 cm-1 to 1262 cm-1, with the baseline

defined using a line drawn from 1342 cm-1 to 1262 cm-1. For Na-Y, the nitrate peak was

integrated from 1554 to 1360 cm-1, with a baseline defined from 1554 to 1153 cm-1. The

integrated areas for these nitrate peaks were divided by the integrated area of a zeolite

framework absorption , determined by integrating this latter absorption band from 1263

to 989 cm-1, with a baseline determined by a line drawn from 1263 to 985 cm-1. By

dividing the integrated area of the nitrate peaks by the integrated area of the zeolite

framework absorption, the values thus obtained were quantitatively proportional to the

absolute concentration of surface nitrates, and allowed kinetic data to be compared

between samples.

II. Experimental Conditions:

Experiments were conducted at temperatures from 100 to 300 °C, with varied

initial nitrate coverages, [NO3
-]0, and NO pressures that varied by up to a factor of 10.

The full range of conditions studied is shown in Table S.1.

Table S.1. Experimental Conditions Tested

Experiment # Sample Type Temperature (°C) [NO3
-]0, a.u. [NO], torr

16 200 8.597623 0.96

17 200 8.430677 0.75

18 200 8.508355 1.34

19 200 8.743717 1.13

21 200 8.062429 1.0

22b 200 8.121394 1.18

22f 200 6.35009 0.784

30 200 5.497148 1.176

22c 100 11.2937 0.862

22e 100 9.524985 0.791

22d 150 10.84154 0.785

60 250 14.72096 1.15

61 250 13.51955 1.08

62 250 12.51471 1.32

73 250 11.10562 13.4

74

BaNa-Y-1

250 8.089615 0.3

 3

75 250 8.887324 12.6

77 250 2.500379 0.01

79 250 2.289777 0.02

80 250 3.400929 0.03

63 300 13.93502 1.37

71 300 3.024014 0.2

72 300 7.606979 5

153 250 4.876794 9.92

154 250 3.317197 0.82

155 250 9.745098 1.806

158 250 4.02568 2.04

159 250 9.014925 0.914

160 250 5.971154 1.9

165 250 3.654883 1.928

161 300 6.390459 1.8778

162 300 7.823741 2.37

163

BaNa-Y-2

300 5.251259 1.4

166 150 3.001852 1.796

167 150 6.634371 2.232

168

Na-Y
150 7.916979 3.32

There are several possible sample-related sources of scatter for the quantity of

nitrates remaining at the end time (or the end-time itself). As mentioned in Section III.A

of the article, the Ba2+ and Na+ ions in the zeolite are the binding sites for the nitrates.7

These nitrates likely do not all have the same binding energy, but rather are bound to sites

which exhibit a distribution of binding energies.7 As discussed in Section V.B of the

article, the distribution of nitrate binding energies could potentially affect the quantity of

nitrates remaining at the end of reaction (as discussed in Section V.B of the article). Also,

if the nitrate distribution affects the spatial distribution of the reactants or the diffusion

coefficient for H+,8 this could potentially lead to scatter in the end-times of reaction

observed based on the relations in Table 1 of the article (factors which govern the end-

time of reaction are discussed in Sections V.A to V.D of the article).

In these experiments, there are also two conditions which might lead to changes in

the surface fractal dimension between experiments. Prior to every experiment, the

sample is calcined (heated to high temperatures) to remove water. We have found that

 4

the normalized saturation coverage of the nitrates in the beam path decreases on the order

of ~5% with every calcination. We interpret this observation as indicating that the sample

slightly dealuminates after each calcination, as nitric acid is known to leach at least

extraframework aluminum from zeolites.9-11 Dealumination may result in slightly

different surface fractal dimensions for different experiments.12,13 Additionally, the

adsorbed nitrates may also change the surface fractal dimension as a function of coverage,

as they likely occupy a volume on the same scale as NH3/NH4
+ -- and exchange of Na+

with NH4
+ has been shown to change the fractal dimension.13 However, as is shown in

the article, although there is scatter in the data for the fitted end-times of reaction,

approximating the surface fractal dimension as remaining constant during a single

experiment and between experiments still yields relatively good agreement with

theoretical predictions.

III.A First-Order and Second-Order Data Fitting.

The rate expressions that were fitted are presented in Table S.2. In each case, it

was necessary to assume that some nitrates were unreactive to obtain reasonable fits.

More details on the fitting are given in Section III.C. Arrhenius plots using the average

values for kobsA, kobsB, kobsA/[NO] and kobsB/[NO] are shown in Figure S.1. The slope of

linear regression is the activation energy, Ea, in Joules, while the y-intercept is the natural

log of the pre-exponential, A, of the rate constant. The values obtained from these linear

fits for ln(kobsA) and ln(kobsA/[NO]) are given in Table S.1. There were not enough data

points to provide a reliable fit for kobsB.

 5

Figure S.1: Arrhenius plots. a) first-order kobs, b) first-order kobs/[NO], c) second-order
kobs, d) second-order kobs/[NO]. Symbols: BaNa-Y kobsA, BaNa-Y kobsB, Na-Y kobsA,

Na-Y kobsB. Averaged values are plotted. The error bars shown are one standard
deviation.

Table S.2 Parameters for kobsA calculated from Arrhenius plots.

[NO3
-] order Rate Form, d[NO3

-]/dt = kA= A Ea, kJ/mol

First-order kA[(NO3
-
)A] + kB[(NO3

-
)B] kObsA 4 x 10

0
 s

-1
 20

First-order kA[(NO3
-
)A][NO] + kB[(NO3

-
)B][NO] kObsA/[NO] 1 x 10

0
 s

-1
 20

Second-order kA[NO3
-
]2 kObsA 2 x 10

-1
 a.u.

-1
 s

-1
 10

Second-order kA[NO3
-
]2[NO] kObsA/[NO] 7 x 10

-2
 a.u.

-1
 s

-1
 10

The standard deviations are quite large for the observed rate constants obtained

from an average at each temperature. This is true both when NO is included in the rate

equation as well as when NO is excluded from the rate equation. Despite the large

 6

number of experiments performed, and the variety of conditions tested, none of the rate

equations fit the data obviously better than when the data was fit to other rate equations:

Instead, all rate equations tested resulted in large standard deviations for the rate

constants extracted from multiple experimental runs, i.e. all rate constants that were

obtained from fits gave similar error limits for the fitted values. In addition to large

scatter in the rate constants obtained for these models, the data showed a decrease in the

observed rate constant with time (i.e. --progression of reaction) for every model studied

– that is, a plot of nitrate depletion versus time exhibited a functional form referred to as

a “stretched exponential” (not shown). Further, the Arrhenius plots for all of the observed

rate constants display a very low apparent activation energy (< 40 kJ/mol) with

unrealistically low pre-exponentials: For a surface reaction which is not diffusion limited

a realistic pre-exponential is expected to be on the order of 1013 to 1019 s-1.14,15

The low apparent activation energies would in principle be consistent with the

rate limiting step being desorption / decomposition of HNO2 (the expected product), -- as

the desorption / decomposion of HNO2 on BaNa-Y has an activation energy of < 25

kJ/mol.16,17 However, no HNO2 intermediate is observed at these temperatures, and such

a mechanism would not, by itself, explain the stretched exponential behavior for the

depletion of nitrates, or the apparent low pre-exponentials for the effective rate constant.

 The apparent low activation energy and “stretched exponential” behavior could

be indications of a diffusion limited reaction. The two obvious possibilities for the source

of the diffusion limitation are the diffusion of NO into the zeolite crystals, or surface

diffusion of the adsorbates. We showed previously that diffusion limited transport of NO

gas molecules into the zeolite crystals (approximated as mass transport limited Fickian

 7

diffusion into a sphere18), was an unlikely explanation for the observed kinetics, and also

would not explain the depletion of nitrates observed on long time scales.19 The

possibility of a reaction limited by diffusion of surface species is explored in the main

article. For thoroughness, a Taylor-Weinberg type analysis was also performed, as

described in the following section.

III.B. Taylor-Weinberg Analysis for First and Second-Order Models

 Given the different kinetic regimes observed and the range of the initial coverages

and NO pressures encompassed by the data, a Taylor-Weinberg type analysis was

performed.20-22 This analysis assumes that the rate constant is a function of coverage, and

allows the pre-exponential and the activation energy to vary as functions of nitrate

coverage.

For each experiment the data for the nitrate concentration as a function of time

was fit using the function Ae-bt + Ce-dt + Ft +G (with an average R2 of 0.95), and the rate

of nitrate depletion was evaluated as a function of coverage from these fits, at discrete

coverages separated by intervals of 0.01 normalized integrated absorbance units (the units

for nitrate coverage). Using these rates, k was calculated as a function of nitrate coverage

for kinetic models that assumed either a first-order or second-order dependence on nitrate

coverage and that either included or excluded [NO] in the rate equation. These models

were applied to the data from all substrates (BaNa-Y-1, BaNa-Y-2, and Na-Y). The fitted

rate constants, as a function of absolute coverage, were found to have overlapping ranges

for all substrates studied, so the data for all substrates were treated as one large data set

for the Taylor-Weinberg analysis for each kinetic model.

 8

 Figures S.2a and S.2b show the coverage dependent pre-exponential and

activation energy curves obtained for k for the rate form k[NO][NO3
-]2, by using the

Taylor-Weinberg analysis. The pre-exponential and activation energy curves do not have

a monotonic dependence on the nitrate coverage – similar non-monotonic dependencies

of the pre-exponentail and activation energy on the coverage were obtained for the other

three rate forms (see previous paragraph). The non-monotonic behavior in Figures S.2a

and S.2b indicate that these models are unable to describe the data. Figure S.3 shows the

poor R2 obtained from linear fits of the Arrhenius equation to the values obtained for k

from the k[NO][NO3
-]2 rate equation, as a function of nitrate coverage. The rate of

depletion is more strongly correlated with the time elapsed from the start of reaction --

rather than with the nitrate coverage. This behavior is as expected for a DLAB0 reaction,

and is discussed in the main article.

 9

Figure S.2 Pre-exponential and Activation energy of reaction as a function of coverage

based on a Taylor-Weinberg analysis with the rate equation d[NO3
-]/dt=k[NO][NO3

-]2

 10

Figure S.3 R2 as a function of coverage for the linear fits to the Arrhenius equation

during the Taylor-Weinberg analysis with the rate equation d[NO3
-]/dt=k[NO][NO3

-]2

 11

III.C. Details on Fitting to the First-Order and Second-Order Models:

Surface nitrates had a rapid initial depletion (< 60 s) followed by a slower depletion at

longer times (up to 10,000 s). To obtain rate constants, the nitrate depletion was fitted

with modified versions of the following rate forms, as discussed in more detail below:

d[NO3
-]/dt = kobsA[(NO3

-
)A] (1)

d[NO3
-]/dt = kobsA[(NO3

-
)A] + kobsB[(NO3

-
)B] (2)

d[NO3
-]/dt = kobsA[NO3

-
]

2 (3)

Eqs 1 to 3 were modified to include the assumption that some nitrates are completely

unreactive on exposure to NO. Thus, the following integrated rate equations were used

for fitting the nitrate depletion data, with Eqs. 4,5,6 corresponding to Eqs. 1,2,3,

respectively:

0U
-

3
tk

0A
-

3
-

3])[(NOe])[(NO)][(NO obsA +=
− (4)

0U
-

3
tk

0B
-

3
tk

0A
-

3
-

3])[(NOe])[(NOe])[(NO)][(NO obsBobsA ++=
−− (5)

() 0U
-

3obsA
1

0A
-

3
-

3])[(NOtk])[(NO/1)][(NO ++=
− (6)

[(NO3)
-
U]0 represents nitrates which are unreactive. On BaNa-Y at lower

temperatures (< 200 °C), Eqs. 4 and 6 yielded adequate fits for a first-order and second-

order dependence on nitrate coverage, respectively. For the experiments performed at

high temperatures (>250 °C) on BaNa-Y, and for the experiments at 150 °C on Na-Y,

only Eqs 5 and 6 yielded adequate fits for first-order and second-order nitrate dependence,

respectively. A fit was deemed inadequate if the curve fitting routine in Sigmaplot

returned any of the following: a non-convergence error, extraordinarily large standard

fitting errors for any parameter (i.e., a magnitude greater than the parameter itself, in this

case errors >10,000), or a fitting dependency of >0.99 on any parameter. Each of these

 12

are indications of an inaccurate and/or imprecise fit, as described in the Sigmaplot

programming guide.23

In addition to fitting the nitrate depletion data directly, kobsA was also obtained

from the corresponding half-life equations derived from integrated rate laws, with the

experimental “total” half-depletion value – the point at which half of all reactive nitrates

are depleted – given by [NO3
-]1/2 = ([NO3

-]initial-[NO3
-]final)/2. This approximation again

assumes that unreactive nitrates remain after the rest of the nitrates have reacted. In the

case of the first-order fits described in the previous paragraph (with Equation 5), it was

assumed that there were two parallel first-order processes, yielding two observed rate

constants, kobsA and kobsB. During the first-order half-life analysis, the rate constant was

taken to be reflective of only the faster first-order process, kobsA, with the effects of kobsB

approximated as having a negligible effect on the “total half-life” obtained from the time

at which the experimental nitrates concentration is equal to [NO3
-]1/2 (as defined above).

This approximation, that kobsB would have a negligible contribution to the rate constant

obtained from the “total half-life”, is reasonable given that the total nitrate depletion

observed is dominated by the much faster initial reaction: kobsA >> kobsB and [(NO3-)A] >

[(NO3-)B]. As can be seen by comparing Figures S.4 to S.7, nearly all of the values

obtained from the half-life analysis are within one standard deviation of the values

obtained from fitting equations 4 through 6. Thus, the values for kobsA from the half-life

analysis (this paragraph) and from the fitting analysis (previous paragraph) were

averaged, and the final values are presented in Table S.2 (the values in Table S.2 have

also been averaged across both of the nitrate peak areas as defined in Section I).

 13

The units for the first-order rate constants are s-1, and the units for the second-

order rate constants are a.u.-1 s-1, where a.u. are the normalized arbitrary units which arise

from dividing the integrated area of the surface nitrate infrared peak by the integrated

area of the zeolite framework infrared peak, as described in Section S.I. The observed

rate constants and parameters obtained from fitting the data are included in Appendix S.1.

The relations between these “observed rate constants” and the final “calculated rate

constants” are shown in Table S.2 in Section III.A. For second-order rate constants, the

observed rate constants obtained from monitoring the “right” BaNa-Y nitrate peak were

scaled to those of the “full” BaNa-Y nitrate peak using a factor of 10.5. This scaling was

necessary for a direct comparison of the observed second-order rate constants, as prior to

this scaling the observed second-order rate constants obtained from the “right” BaNa-Y

nitrate peak and “full” BaNa-Y nitrate peak were not normalized to the same

concentration units. The scaling factor is based on the average quantity of reactive

nitrates obtained from a second-order fit. This factor was obtained by dividing the

average of the second column of Table S.4d by the average of the second column of

Table S.4e. As shown in Figures S.4 to S.7, for each rate equation, the values obtained

for the rate constants were within one standard deviation regardless of the method used.

Thus, the values presented in Table S.2 are averages of all the values obtained by both

methods (half-life analysis and fitting) and for both peak definitions for kobsA, and, kobsB,

kobsA/[NO], and kobsB/[NO].

 14

Figure S.4 Arrhenius plots for observed rate constants obtained from first-order fitting.

Points are averaged values, error bars shown are one standard deviation.

Figure S.5 Arrhenius plots for observed rate constants obtained from first-order half-life

analysis.

 15

Figure S.6 Arrhenius plots for observed rate constants obtained from second-order fitting.

Points are averaged values, error bars shown are one standard deviation.

Figure S.7 Arrhenius plots for observed rate constants obtained from second-order half-

life analysis.

 16

IV. Spline-Fitting of Alpha Plots

Alpha in equation 9 of the published article is obtained from the slope of a plot of

log(1/[NO3
-]-1/[NO3

-]0) vs. log(time). As described in Section III.C of the published

article the theoretical value for alpha on BaNa-Y and Na-Y is expected to be αααα≈0.5. The

alpha plots for the different experiments are shown in Appendix S.3. Determining the

time region of the Zeldovich regime is a difficult spline-fitting problem – particularly due

to the fact that the noise varies as a function of time (as mentioned in section IV of the

article), and due to the fact that the piece-wise nature of the data is expected to change as

an undetermined non-linear function of the experimental conditions (e.g., NO

concentration, distribution of sites occupied, and Temperature). For more information

about the difficulties in spline-fitting data in the presence of noise, see for example

“Local Linear Regression” in reference 23.24 Custom spline-fitting programs written in

Python were used to find the onset and end-time of the Zeldovich regime. These

programs are included in Appendix S.2, and each requires the data to be provided in a

comma-separated values file with no column headings. The custom written program

named Nt2 finds the rolling slope of log(time) vs. 1/[NO3
-]-1/[NO3

-]0, and was used first

to determine at which time the slope was best approximated as 0.5. The custom written

programs Ntf7 and Ntf8 were given this time as an input, and both programs then spline-

fit the data, returning the data points corresponding to the onset and end-time. Ntf7 fits

the linear region corresponding to the Zeldovich regime with a fixed slope (0.5) while

Ntf8 allows the slope to vary during fitting (typically 0.4 to 0.6 after fitting). The true

endpoints can be generally expected to fall between these two cases. The results from

fitting the data are shown in Table S.3. In some experiments, the depletion of surface

 17

nitrates was not monitored until the end of the Zeldovich regime, as it was not possible to

gauge when the end-time would occur during the experiments. Thus, in some cases, the

true ττττf is > the recorded ττττf. Large fitting errors result from the noise (scatter) and

fluctuation (“waviness”) in the data (shown in the alpha plots in Appendix S.3). The

fitting errors for ττττf cannot be readily quantified as the magnitude of the noise and

fluctuation varies between experiments, as well across time in the same experiment.

However, the noise and fluctuations do not appear to affect the slopes of the alpha plots

on the scale of several orders of magnitude of time (note that x-axis in alpha plots is the

log of time) and given that the time at which ττττf occurs is determined based on a change in

slope in the alpha plots, we estimate that the fits to determine ττττf are accurate to an order-

of-magnitude in time, which is consistent with the scatter observed in Figures 2 and 3 of

the published article. The ττττf values obtained from both ntf7 and ntf8 were used to produce

the plots shown in the published article, as well as for Figure S.8 below. In Figure S.8,

the x and y axes have the same scale, and it is clear that log(ττττf) does not correlate directly

with [NO3
-]0. The values for [NO3

-] at ττττf shown in Figure 4 of the published article are the

values of [NO3
-] at ττττf from ntf7, though the values obtained for [NO3

-] at ττττf from ntf8

were very similar and are only omitted from the bar graph presented in Figure 4 of the

published article for clarity.

 18

Table S.3. Fitting Results for ττττf

Experiment #
Sample Type τf from ntf7 τf from ntf8

[NO3
-] at τf

from ntf7

[NO3
-] at τf

from ntf8

16 2.11 2.39 6.826779 6.459968

17 2.54 2.56 6.81372 6.791179

18 2.77 2.77 7.839163 7.851512

19 2.91 2.91 8.009894 8.063157

21 2.86 2.68 6.272539 6.464358

22b 2.92 2.91 6.688625 6.540824

22f 2.41 2.75 10.47487 10.06647

22c 3.09 3 9.399727 9.435376

22e 2.82 2.77 8.959245 8.773412

22d 2.47 2.47 6.175931 1.546477

60 1.8 2.49 8.717328 8.428954

61 1.74 1.74 8.351575 7.725496

62 2.09 1.89 7.060601 7.172736

73 0.99 0.89 10.30436 10.76006

74 2.02 2.43 1.600681 2.393133

75 2.02 1.92 6.631469 6.534404

77 2.47 2.45 8.517967 8.776183

79 2.71 2.71 8.016592 7.753558

80 2.74 2.37 7.90324 7.972297

63 1.785 1.785 2.26879 2.235628

71 3.4 2.57 2.205491 1.622716

72

BaNa-Y-1

1.48 1.8 2.69206 2.810496

153 0.47 1.81 3.679977 2.934522

154 1.92 1.89 2.281852 2.138169

155 1.26 1.78 5.352548 5.265791

158 1.81 1.8 2.51506 2.420105

159 1.69 1.72 5.308052 5.408987

160 1.76 1.86 5.016666 5.030267

165 1.73 1.73 5.103187 4.966929

161 2.17 1.94 5.31874 5.396961

162 1.72 1.72 4.791448 4.67547

163

BaNa-Y-2

2.24 2.92 2.023837 2.005926

166 1.85 1.92 2.641772 2.63429

167 1.72 1.72 3.024705 3.025137

168

Na-Y
1.92 2.39 3.076942 6.067994

 19

Fig. S.8. log(ττττf) vs. [NO3
-]0 with equal scaling for the x-axis and y-axis. It is clear that

log(ττττf) does not correlate directly with [NO3
-]0

V. Estimating the Activation Energy for Diffusion

The temperature dependence of the calculated diffusion coefficients was analyzed

using Relation 1 of the published article, which indicates that the end-time of the

Zeldovich regime, ττττf, is inversely proportional to the diffusion coefficient. Simulations

by Argyrakis et al.25 have found that for a two dimensional surface, an order of

magnitude estimate can be made for Rel. 1 in Table 1 of the published article, of ττττf ~

(0.14)2L2/D. However, this estimate assumes every encounter of A and B leads to

reaction (peff=1). Thus, in an actual reaction, where peff<1, the end-times would be

expected to be longer (as discussed in the published article, Section V.C), and

consequently the values we obtain for D from the above relation are expected to

correspond to a lower limit for the actual value of D. As shown in Section VII of the SI,

the surface area per crystallite used is ~< 36 cm2, which we take for L2 in Rel. 1 in Table

1 of the published article.

 20

As discussed in Section V.C of the published article, ττττf is inversely proportional

to [NO]. Thus, to obtain the lower limit for the diffusion coefficient from the

experimental values of ττττf, it was first necessary to normalize the ττττf values by [NO]. The

relationship of [NO] vs. ττττf was fit to a power law, based on the dependence observed in

the log-log plot of Figure 3 of the published article, with the result being ττττf =

([NO]/(23.4±5.1))^(-0.51±0.07), where the error bars represent the standard errors from

fitting. We do not ascribe any physical significance to this functional form, we use it only

for empirical scaling between [NO] and ττττf -- which is required to compare the effective

diffusion coefficient between different experiments. Using the fitted relationship above,

all ττττf values were normalized to the fitted value for ττττf with [NO]=10 Torr. The value of

10 Torr was used as it is the highest “scale” for [NO] exposure used during experiments -

- and it showed the fastest nitrate depletion rate – thus it provides our lowest observed

limit for the effective diffusion coefficient at each temperature. From these normalized ττττf

values, the effective diffusion coefficient was calculated for each of the data points in

Figure 3 using the relation ττττf ~ (0.14)2L2/D. An Arrhenius plot was constructed from the

calculated effective diffusion coefficients (Figure S.9, shown on the following page),

yielding D0= 106±7 cm2 s-1 and Ea= 30 ± 30 kJ/mol where the errors represent fitting

errors yielded by Origin’s standard error-weighted fit (this weights the importance of

each point used in the linear regression by the inverse square of the vertical error bars

associated with that point). The error bars for D0 and Ea are large due to the scatter of the

data and because the temperature range where these experiments are possible sufficiently

narrow (a range of <200K) to make it difficult to obtain a more precise value for D0 given

the low level of precision in determining ττττf.

 21

As will be discussed in the next section, many of the individual data points for the

diffusion coefficient (in Figure S.9) are too high to be realistic – being two orders of

magnitude greater than 10-2 cm2 s-1. However, all raw data points -- before scaling --

yielded diffusion coefficients of realistic orders of magnitude, <10-2 cm2 s-1. The high

values for the diffusion coefficient obtained from some experiments may then be artifacts

arising from the [NO] scaling procedure: the [NO] scaling function was determined

empirically from data with high scatter, and thus may have resulted in inaccurate scaling,

which could in turn lead to artificially high calculated diffusion coefficients. Nonetheless,

the [NO] scaling procedure is necessary to obtain effective diffusion coefficients from

multiple experiments due to the relationship between ττττf and [NO] which is discussed in

Section V.C of the published article.

-0.00035 -0.00030 -0.00025 -0.00020
-4

-3

-2

-1

0

1

2

ln
(D

/c
m

2
s

-1
)

-1/RT

Figure S.9 Arrhenius plot for diffusion coefficients obtained from normalized ττττf values

for each experiment. ττττf values were scaled to the fitted value of ττττf for [NO]=10 Torr.

 22

VI. Discussion of the Values Obtained for the Diffusion Coefficient

Using the procedure outlined in the previous section it was determined that, D0=

106±7 cm2 s-1 and Ea= 30 ± 30 kJ/mol. As described in section III.C of the published

article the value obtained for the activation energy is, as expected, near the lower end of

the range for the activation energies for the hopping of acidic protons in zeolites,.

However, as discussed below, the correlation between the value for D0 obtained from

these experiments and a specific physical process is not clear.

The value obtained for D0 is higher than would be expected for an atom or

molecule diffusing on a surface, as D0 for such processes on surfaces is typically 10-2 to

10-3 cm2 s-1.26,27,28 However, a possible explanation for the high value of D0 obtained

might be found in the mechanism for proton migration in zeolites. The low activation

energy route for proton migration in zeolites arises from several parallel mechanisms for

water-assisted proton-migration.29-31 Thus, proton migration in our study is not expected

to involve only a single elementary process and, therefore, the diffusion coefficient would

not be expected to be accurately described by an Arrhenius equation over a wide

temperature range: Different mechanisms could dominate as the temperature changes

over a sufficiently wide range. Consequently, it is not surprising that our extrapolation to

obtain D0 from an Arrhenius plot does not yield a realistic pre-exponential for the

intrinsic diffusion coefficient. Our extrapolation instead yields the effective pre-

exponential for an empirically observed mass-transfer diffusion coefficient. While this is

the most likely explanation for the high D0 observed, we will also note other plausible

explanations below.

 23

A second plausible explanation is that if the disappearance of nitrates becomes

rate-limited by the depletion of the less reactive nitrates prior to the occurrence of finite

size effects25,32 (i.e., before the “natural” end of the Zeldovich regime) – then the end-

time obtained from the fitting procedure would be shorter than that predicted by theory,

leading to a larger than expected diffusion coefficient --as observed. This would be a

qualitative deviation from the ideal case of the DLAB0 model, as the end-time for the

Zeldovich regime would arise from a different kinetic process than expected for a

DLABO model (i.e., a different rate limiting step). Alternatively, the high value of D0

may be a result of deviations from the ideal case of the DLAB0 limited model which are

minor enough to still retain the essence of the model in terms of the qualitative aspects of

kinetics that are observed. Such deviations could arise from a variety of possible

deviations from the ideal model. These include: multiple types of nitrates with differing

stability,33 regions of the surface that have different dimensionality, non-random initial

conditions,33,34 a peff < 1, unusual lattice symmetry, crystal inhomogeneities and

deviations from true random-walk behaviour (such as due to particle interactions)35. All

of these factors could potentially affect the growth of the segregated reactant regions

and/or the proportionality constant of Rel. 1 in Table 1 of the published article (currently

assumed to be (0.14)2) -- and thus change the observed end-times (and consequently the

estimated diffusion coefficient). Modifications of the current model are necessary to treat

such effects and a more in depth understanding of the interplay among such effects could

come from additional theoretical studies, especially given the difficulty in finding

experimental systems that cleanly exhibit DLAB0 kinetics.33

 24

VII. Estimation of Crystallite Surface Area

With knowledge of the crystallite size, it is possible to calculate the total surface

area per zeolite crystallite. As mentioned earlier, the Na and Ba cations are small

compared to the size of the zeolite supercages. Thus, the change in surface area between

Na-Y and BaNa-Y crystallites would not be expected to be large. According to the

supplier’s specifications sheet (-100 mesh), the zeolite crystallites were < 3.5 x 10-6 cm3

for >90% of the crystals. Na-Y has a cubic crystal structure, with a crystallographic unit

cell side length of ~24.6 Å for the Si/Al ratios used,36,37 leading to a crystallographic unit

cell volume of ~15,000 Å3. From the upper bound of the volume of the crystallites used,

this gives < 2.34 x 1014 unit cells per crystallite. The sum of the number of framework

atoms (Si and Al) per unit cell is 192.38 Taking the ICP obtained Si/Al ratio of 2.62

(Section II of the published article), the density of the Na-Y used in this study is ~12700

atomic mass units per crystallographic unit cell. From the atomic mass per unit cell and

the number of unit cells per crystallite, the weight per crystallite is < 4.96 x 10-6 g. A

surface area of ~725 m2 g-1 has been reported in the literature for a Na-Y zeolite with a

similar Si/Al ratio as the one used in this study.39 Given a surface area of ~725 m2 g-1, the

surface area per crystallite is < 3.6 x 10-3 m2, which is < 36 cm2.

 25

References:

 (1) Szanyi, J.; Kwak, J. H.; Moline, R. A.; Peden, C. H. F. Physical Chemistry

Chemical Physics 2003, 5, 4045.
 (2) Chao, C. C.; Lunsford, J. H. Journal of the American Chemical Society
1971, 93, 71.
 (3) Szanyi, J.; Kwak, J. H.; Peden, C. H. F. Journal of Physical Chemistry B
2004, 108, 3746.
 (4) Szanyi, J.; Kwak, J. H.; Burton, S.; Rodriguez, J. A.; Peden, C. H. F.
Journal of Electron Spectroscopy and Related Phenomena 2006, 150, 164.
 (5) Li, G. H.; Larsen, S. C.; Grassian, V. H. Journal of Molecular Catalysis A
2005, 227, 25.
 (6) Li, G. H.; Jones, C. A.; Grassian, V. H.; Larsen, S. C. Journal of Catalysis
2005, 234, 401.
 (7) Savara, A.; Sachtler, W. M. H.; Weitz, E. Applied Catalysis B 2009, 90,
120.
 (8) Kärger, J.; Ruthven, D. M. Diffusion in zeolites and other microporous

solids; Wiley: New York, 1992.
 (9) Giudici, R.; Kouwenhoven, H. W.; Prins, R. Applied Catalysis a-General
2000, 203, 101.
 (10) Gola, A.; Rebours, B.; Milazzo, E.; Lynch, J.; Benazzi, E.; Lacombe, S.;
Delevoye, L.; Fernandez, C. Microporous and Mesoporous Materials 2000, 40, 73.
 (11) Yoshida, A.; Nakamoto, H.; Okanishi, K.; Tsuru, T.; Takahashi, H.
Bulletin of the Chemical Society of Japan 1982, 55, 581.
 (12) Lima, E. J.; Bosch, P.; Lara, V. H.; Bulbulian, S. Chemistry of Materials
2004, 16, 2255.
 (13) Erdem-Senatalar, A.; Tatlier, M. Chaos Solitons & Fractals 2000, 11, 953.
 (14) Zhdanov, V. P.; Pavlicek, J.; Knor, Z. Catalysis Reviews-Science and

Engineering 1988, 30, 501.
 (15) Lombardo, S. J.; Bell, A. T. Surface Science Reports 1991, 13, 1.
 (16) Yeom, Y. H.; Henao, J.; Li, M. J.; Sachtler, W. M. H.; Weitz, E. Journal

of Catalysis 2005, 231, 181.
 (17) Savara, A.; Sachtler, W. M. H.; Weitz, E. Applied Catalysis B 2008,
Submitted.
 (18) Foley, N. J.; Thomas, K. M.; Forshaw, P. L.; Stanton, D.; Norman, P. R.
Langmuir 1997, 13, 2083.
 (19) Savara, A.; Weitz, E. Abstracts of Papers of the American Chemical

Society 2006, 231.
 (20) Taylor, J. L.; Weinberg, W. H. Surface Science 1978, 78, 259.
 (21) Masel, R. I. Principles of adsorption and reaction on solid surfaces;
Wiley: New York, 1996.
 (22) King, D. A.; Madey, T. E.; Yates, J. T. Journal of Chemical Physics 1971,
55, 3236.
 (23) SigmaPlot 5.0 : programming guide; SPSS Inc.: Chicago, Illinois, 1998.
 (24) Takezawa, K. Introduction to nonparametric regression; Wiley-
Interscience: Hoboken NJ, 2006.

 26

 (25) Argyrakis, P.; Kopelman, R.; Lindenberg, K. Chemical Physics 1993, 177,
693.
 (26) Seebauer, E. G.; Allen, C. E. Progress in Surface Science 1995, 49, 265.
 (27) Wang, X. R.; Xiao, X. D.; Zhang, Z. Y. Surface Science 2002, 512, L361.
 (28) Karl J. Sladek, E. R. G., Raymond F. Baddour. Industrial & Engineering

Chemistry Fundamentals 1974 13, 100.
 (29) Ryder, J. A.; Chakraborty, A. K.; Bell, A. T. Journal of Physical

Chemistry B 2000, 104, 6998.
 (30) Ernsberger, F. M. Journal of the American Ceramic Society 1983, 66, 747.
 (31) Martucci, A.; Parodi, I.; Simoncic, P.; Armbruster, T.; Alberti, A.
Microporous and Mesoporous Materials 2009, 123, 15.
 (32) Lin, A.; Kopelman, R.; Argyrakis, P. Physical Review E 1996, 53, 1502.
 (33) Monson, E.; Kopelman, R. Physical Review E 2004, 69, 021103.
 (34) Sancho, J. M.; Romero, A. H.; Lindenberg, K.; Sagues, F.; Reigada, R.;
Lacasta, A. M. Journal of Physical Chemistry 1996, 100, 19066.
 (35) Oshanin, G.; Sokolov, I. M.; Argyrakis, P.; Blumen, A. Journal of

Chemical Physics 1996, 105, 6304.
 (36) Dempsey, W.; Kuhl, G. H.; Olson, D. H. Journal of Physical Chemistry
1969, 73, 387.
 (37) Hriljac, J. A.; Eddy, M. M.; Cheetham, A. K.; Donohue, J. A.; Ray, G. J.
Journal of Solid State Chemistry 1993, 106, 66.
 (38) Yeom, Y. H.; Jang, S. B.; Kim, Y.; Song, S. H.; Seff, K. Journal of

Physical Chemistry B 1997, 101, 6914.
 (39) Langmi, H. W.; Walton, A.; Al-Mamouri, M. M.; Johnson, S. R.; Book,
D.; Speight, J. D.; Edwards, P. P.; Gameson, I.; Anderson, P. A.; Harris, I. R. Journal of

Alloys and Compounds 2003, 356, 710.

 27

Appendix S.1: Parameters obtained from first and second-order fits

Table S.4a First-order parameters from fitting to Eqs. 4 & 5, “full nitrate peak”

Experiment # kObsA [(NO3
-)A]0 kObsB [(NO3

-)B]0 [(NO3
-)U]0

16 0.0067 2.1825 5.9656

17 0.0055 1.834 6.4968

18 0.0057 0.587 7.8843

19 0.0048 0.5572 8.1156

21 0.0049 1.7704 6.3269

22b 0.0032 1.4933 6.5145

22f 0.0024 1.2369 5.1195

30 0.0066 0.425 4.8015

22c 0.0063 0.9141 10.5356

22e 0.0047 0.703 8.8557

22d 0.0092 1.1651 9.4498

60 0.0685 5.3464 0.0049 0.5914 8.5674

61 0.0496 5.2017 8.0119

62 0.8849 2.7903 0.0361 3.5179 7.5147

73 0.5743 2.7431 0.023 0.7108 8.1319

74 0.0042 0.403 7.6725

75 0.0575 0.5539 0.0072 0.7132 7.6378

77 0.0122 0.1027 0.012 0.1217 2.2591

79 0.0098 0.0448 0.0012 0.1184 0

80 0.0034 0.8391 0.0001 -0.7257 3.1808

63 0.0401 2.0996 10.6075

71 0.0058 0.3815 0.0008 0.9762 1.4847

72 1.3808 0.1101 0.043 0.054 0.6155

153 0.1627 1.1413 0.0028 0.8581 2.3263

154 0.0011 0.3838 0.0718 0.8736 2.0557

155 0.22 4.9697 0.0015 0.9159 4.5557

158 0.084 1.2153 0.0139 0.3862 2.4361

159 0.0746 3.3324 5.3781

160 0.0696 1.6535 0.0043 0.1327 1.9224

165 0.1021 0.635 0.0025 0.3763 4.8672

161 0.0341 1.0553 0.0017 0.6036 4.6859

162 0.1327 2.5769 0.0027 0.845 4.8799

163 0.0234 0.1921 0.0021 0.3249 4.6423

166 0.0321 0.6012 0.0005 1.0843 2.9495

167 0.9599 4.1862 0.0438 4.0392 3.2369

168 3.4797 22.5196 0.039 5.32 3.3723

 28

Table S.4b First-order parameters from fitting to Eqs. 4 & 5, “right nitrate peak”

Experiment # kObsA [(NO3
-)A]0 kObsB [(NO3

-)B]0 [(NO3
-)U]0

16 0.0055 0.2173 0.8356

17 0.0055 0.1957 0.7214

18

19 0.0033 0.1129 0.8126

21 0.0043 0.1369 0.7416

22b 0.0061 0.224 0.6815

22f 0.0033 0.1173 0.476

30 0.0159 0.0858 0.646

22c 0.0038 0.0923 1.0789

22e 0.0048 0.0466 1.0212

22d 0.0081 0.162 0.8902

60 0.071 0.2515 0.0039 0.1432 1.3924

61 0.0496 5.2017 8.0119

62 0.8016 0.6027 0.013 0.1469 0.7968

73

74 0.8948 0.1328 0.0048 0.1429 0.714

75 0.6476 0.2239 0.0238 0.13 0.5263

77 0.1291 0.0617 0.006 0.1022 0.2409

79 0.0098 0.0448 0.0012 0.1184 0

80 0.0022 0.1428 0.0003 0.0541 0.0577

63 1.3145 1.1298 0.914

71 0.0113 0.039 0.001 0.1084 0.0891

72 1.3808 0.1101 0.043 0.054 0.6155

153 0.8044 0.191 0.0033 0.0936 0.3181

154 0.0997 0.0969 0.0011 0.035 0.2134

155 0.2058 0.5502 0.0015 0.1299 0.5294

158 0.0605 0.1244 0.0031 0.0275 0.3192

159 0.0713 0.2789 0.0001 0.2224 0.3915

160 0.0541 0.129 0.0034 0.018 0.1536

165 0.077 0.0475 0.0011 0.0433 0.564

161 0.0322 0.0741 0.0009 0.0588 0.388

162 0.1102 0.1413 0.0016 0.0601 0.4368

163 0.0221 0.0216 0 0.219 0.3388

166

167

168

 29

Table S.4c. First-order kobsA from half-Life analysis, “full peak” & “right peak”

Experiment # kObsA “full peak” kObsA “right peak”

16 0.010756 0.006841

17 0.0059 0.005741

18 0.005636

19 0.004633 0.004816

21 0.004648 0.004408

22b 0.003322 0.005693

22f 0.002185 0.003233

30 0.066774 0.008312

22c 0.004503 0.004077

22e 0.004722 0.004977

22d 0.005876 0.006329

60 0.059429 0.047377

61 0.05839 0.065568

62 0.047007 0.019804

73 0.4658

74 0.006361 0.012853

75 0.025269 0.693147

77 0.012361 0.0168

79 0.012504 0.001995

80 0.005203 0.001473

63 0.049511 0.077016

71 0.002108 0.002442

72 0.075234 0.214511

153 0.138629 0.346574

154 0.048397 0.067152

155 0.1299 0.125798

158 0.056289 0.061054

159 0.073403 0.049012

160 0.061865 0.021517

165 0.053502 0.040463

161 0.022137 0.034657

162 0.098481 0.058649

163 0.004016 0.00063

166 0.004326

167 0.141339

168 0.088776

 30

Table S.4d Second-order parameters from fitting to Eqs. 4 & 5, “full nitrate peak”

Experiment # kObsA [(NO3
-)A]0 [(NO3

-)U]0

16 0.0044 2.599428 5.7623

17 0.0034 2.229654 6.2226

18 0.0115 0.738225 7.7969

19 0.0065 0.719994 7.9599

21 0.0033 2.148228 6.0815

22b 0.0014 2.05846 5.9822

22f 0.0019 1.530925 4.8894

30 0.0229 0.672179 4.7468

22c 0.0072 1.090394 10.3905

22e 0.0039 0.983768 8.5835

22d 0.0121 1.376273 9.3724

60 0.0184 6.69344 8.4802

61 0.0053 7.473842 5.8122

62 0.0176 5.102041 7.2212

73 0.1614 3.234153 8.2008

74 0.0072 0.332557 7.7276

75 0.0211 1.258336 7.6226

77 0.0342 0.298445 2.1865

79 0.0421 0.226572 2.0828

80 0.0066 0.884799 2.4618

63 0.014 2.862869 9.9433

71 0.0014 1.383892 1.4535

72 0.0763 1.196602 6.3834

153 0.0214 1.39821 2.439

154 0.0781 1.099989 2.2489

155 0.0602 6.153846 4.9074

158 0.0623 1.807011 2.3983

159 0.0409 4.253509 5.2027

160 0.0654 0.860289 4.9427

165 0.0635 2.110595 1.8764

161 0.0154 1.576044 4.7492

162 0.0407 3.206156 5.0744

163 0.0128 0.512426 4.6222

166 0.0376 0.914244 3.784

167 0.0231 6.535948 3.1018

168 0.0123 7.097232 3.0359

 31

Table S.4e Second-order parameters from fitting to Eqs. 4 & 5, “right nitrate peak”

Experiment # kObsA [(NO3
-)A]0 [(NO3

-)U]0 kObsA Scaled*

16 0.0322 0.259727 0.7219 0.003203

17 0.0313 0.23758 0.6918 0.003985

18

19 0.0177 0.156723 0.77 0.001496

21 0.0347 0.168175 0.7204 0.003313

22b 0.6249 0.286262 0.022 0.050565

22f 0.0321 0.14454 0.4596 0.003909

30

22c 0.0384 0.114151 1.0609 0.004253

22e 0.0855 0.0579 1.0115 0.010321

22d 0.0694 0.189186 0.8769 0.008441

60 0.1632 0.356037 1.4292 0.01355

61 0.0964 0.305446 0.921 0.008523

62 0.1893 0.287679 0.7865 0.013693

73

74 0.0346 0.177873 0.6895 0.011012

75 0.5552 0.266852 0.529 0.004207

77 0.103 0.130842 0.2375 0.983466

79 0.024 0.166492 0 0.114579

80 0.01 0.205141 0.052 0.031827

63 0.0259 0.327579 0.6601 0.001805

71 0.0198 0.144527 0.0892 0.009453

72 2.324 0.117849 0.6148 0.04438

153 0.1506 0.121202 0.3254 0.00145

154 1.2263 0.121683 0.2328 0.142792

155 0.4384 0.669792 0.582 0.023178

158 0.5158 0.164802 0.3203 0.024142

159 0.3092 0.351667 0.5722 0.032301

160 0.3906 0.066669 0.577 0.019629

165 0.5188 0.164258 0.1515 0.025693

161 0.1586 0.113421 0.4027 0.008064

162 0.5072 0.173792 0.4549 0.020434

163 0.2418 0.034638 0.5422 0.016491

166

167

168
* The scaled kobsA is obtained by dividing kobsA by 10.5, see text for details.

 32

Table S.4f. Second-order kobsA from half-life analysis, “full peak” & “right peak”

Experiment # kObsA “full peak” kObsA “right peak” kObsA “right peak” scaled*

16 0.00571 0.03787 0.003616

17 0.004246 0.039396 0.003762

18 0.012054

19 0.009523 0.044693 0.004267

21 0.003769 0.03573 0.003412

22b 0.003694 0.035542 0.003394

22f 0.002533 0.033151 0.003165

30 0.130179 0.099725 0.009522

22c 0.006305 0.034722 0.003315

22e 0.011159 0.134002 0.012795

22d 0.006338 0.062846 0.006001

60 0.013474 0.109156 0.010422

61 0.016538 0.209689 0.020022

62 0.01243 0.042984 0.004104

73 0.219404

74 0.021402 0.080698 0.007705

75 0.029134 2.753061 0.262868

77 0.073391 0.170043 0.016236

79 0.092399 0.016071 0.001534

80 0.008492 0.010478 0.001001

63 0.040816 0.584795 0.055837

71 0.002003 0.022084 0.002109

72 0.088546 2.831193 0.270328

153 0.076277 1.699187 0.162242

154 0.052501 0.618294 0.059036

155 0.034606 0.270245 0.025804

158 0.049186 0.481904 0.046013

159 0.025884 0.191202 0.018256

160 0.079449 0.318383 0.0304

165 0.0443 0.40427 0.038601

161 0.018333 0.26095 0.024916

162 0.036572 0.416322 0.039751

163 0.007857 0.011319 0.001081

166 0.003457

167 0.026435

168 0.012404
* The scaled kobsA is obtained by dividing kobsA by 10.5, see text for details.

 33

Appendix S.2: Programs used in spline-fitting alpha plots.

Program nt2. Example command: python nt2.py -s 0.01 -i 0.5 -f 16.csv -o 16nt2.csv

#finds the rolling slope w/ points evenly distributed across time after

import sys

import getopt

import math

class Point:

 def __init__(self, line, xp, yp):

 self.line = line

 self.x = xp

 self.y = yp

 self.xs = str(self.x)

 self.ys = str(self.y)

def findYintercept(points, slope):

 ''' return the y-intercept

 yintercept = Avg(y) - slope*Avg(x)

 '''

 n = len(points)

 avgx = 0

 avgy = 0

 for i in points:

 avgx = avgx + i.x

 avgy = avgy + i.y

 avgx = avgx / n

 34

 avgy = avgy / n

 yintercept = avgy - (slope * avgx)

 #print " ".join([point.xs + ", " + point.ys for point in points])

 #print "Avgx: " + str(avgx) + " Avgy: " + str(avgy) + " Slope: " + str(slope)

 #print "yint: " + str(yintercept)

 #print "-----------------------"

 return yintercept

def findslope(points):

 ''' returns the slope from the following

 slope = n(Summation(x * y)) - Summation(x)Summation(y)

 / n(Summation(x**2)) - (Summation(x))**2

 '''

 n = len(points)

 crossSum = 0 # Summation(x * y)

 xSum = 0 # Summation(x)

 ySum = 0 # Summation(y)

 xsquareSum = 0 # Summation(x**2)

 for i in points:

 crossSum = crossSum + (i.x * i.y)

 xSum = xSum + i.x

 35

 ySum = ySum + i.y

 xsquareSum = xsquareSum + pow(i.x,2)

 #print " ".join([point.xs + ", " + point.ys for point in points])

 slope = ((n * crossSum) - (xSum * ySum)) / ((n * xsquareSum) - pow(xSum,2))

 #print slope

 #print ""

 return slope

def printOutput(outfile, lines):

 delim = ","

 toprint = []

 toprint.append(delim.join(["LogTime", "Slope", "Y-Intercept"]))

 for i in lines:

 toprint.append(delim.join([str(i[0]), str(i[1]), str(i[2])]))

 if outfile == "":

 for line in toprint:

 print line

 else:

 file = open(outfile, "w")

 for line in toprint:

 file.write(line + "\n")

 file.close()

 36

def main(argv):

 filename = ""

 fitsize = 0

 outfile = "outDefault.txt"

 FirstPoint = 0

 extraPoints = 3

 try:

 opts, args = getopt.getopt(argv, "f:i:s:o:", ["file=","interval=","step=","output="])

 except getopt.GetoptError:

 usage()

 sys.exit(2)

 for opt, arg in opts:

 if opt in ("-f", "--file"):

 filename = arg

 elif opt in ("-i", "--interval"):

 interval = float(arg)

 elif opt in ("-s", "--step"):

 step = float(arg)

 elif opt in ("-o", "--output"):

 outfile = arg

 else:

 print "You need to specify an option"

 sys.exit()

 37

 file = open(filename)

 lines = file.readlines()

 data = []

 output = []

 for index, line in enumerate(lines):

 line = line.rstrip("\n")

 pointsText = line.split(",")

 #pointsFloat = [float(pointsText[0]), float(pointsText[1])]

 data.append(Point(index, float(pointsText[0]), float(pointsText[1])))

 CurrentTimeMin = 0 - (interval/2)

 CurrentTimeMax = CurrentTimeMin + interval

 #first time range centers around 0

 while extraPoints > 1:

 FirstPoint = 0

 fitsize = 0

 extraPointCounter = 0

 #FirstPoint & fitsize start at zero, and are reset with every iteration

 for index, point in enumerate(data):

 if data[index].x < CurrentTimeMin:

 FirstPoint = FirstPoint + 1

 #The starting of the linear fit will be increased by 1 point for every

point before it.

 if data[index].x < CurrentTimeMax:

 if data[index].x > CurrentTimeMin:

 38

 fitsize = fitsize + 1

 if data[index].x == CurrentTimeMax:

 if data[index].x > CurrentTimeMin:

 fitsize = fitsize + 1

 #if the point is in the range, then the fitsize is increased by 1 -

indicating that a point is added.

 if data[index].x > CurrentTimeMax - (interval/2):

 extraPointCounter = extraPointCounter + 1

 #the above finds the correct fitsize when starting at first point,

and then adds 1 for every point

 #so if only 2 points were in the first interval, it would go from

fitsize = 0 to fitsize = 2

 #after finding the fitsize, the program has to find the slope & y-intercept and add them to

the output array

 if fitsize > 1:

 slope = findslope(data[FirstPoint:FirstPoint+fitsize])

 yintercept = findYintercept(data[FirstPoint:FirstPoint+fitsize],slope)

 CurrentTime = CurrentTimeMin + interval/2

 output.append([CurrentTime, slope, yintercept,])

 #only find slope etc. if there are enough points

 CurrentTimeMin = CurrentTimeMin + step

 CurrentTimeMax = CurrentTimeMin + interval

 #now the min and max for the time interval being looked at are increased by the step.

 extraPoints = extraPointCounter

 #then the program has to loop back to searching in every point w/in

new interval,

 #unless the extraPointCounter is not greater than 1, which is checked

here.

 39

 printOutput(outfile, output)

if __name__ == "__main__":

 main(sys.argv[1:])

 40

Program ntf7 Example command:

python ntf7.py -s 0.01 -i 0.5 -f 16.csv -o 16ntf7.csv -g 1.85

#finds the range of the linear region, assuming slope 0.5

#includes having to provide a guess of the middle of the range, and an initial interval size,

#Based on next points (via interval) having to be w/in 2 local linear fit ResidualStDev of range's fit

#has new "Final Max" and "Final Min" functions.

#("Final Max" & Min are when total residuals double so fit starts getting really bad.)

import sys

import getopt

import math

class Point:

 def __init__(self, line, xp, yp):

 self.line = line

 self.x = xp

 self.y = yp

 self.xs = str(self.x)

 self.ys = str(self.y)

def findYintercept(points, slope):

 ''' return the y-intercept

 yintercept = Avg(y) - slope*Avg(x)

 '''

 n = len(points)

 avgx = 0

 41

 avgy = 0

 for i in points:

 avgx = avgx + i.x

 avgy = avgy + i.y

 avgx = avgx / n

 avgy = avgy / n

 yintercept = avgy - (slope * avgx)

 #print " ".join([point.xs + ", " + point.ys for point in points])

 #print "Avgx: " + str(avgx) + " Avgy: " + str(avgy) + " Slope: " + str(slope)

 #print "yint: " + str(yintercept)

 #print "-----------------------"

 return yintercept

def findslope(points):

 ''' returns the slope from the following

 slope = n(Summation(x * y)) - Summation(x)Summation(y)

 / n(Summation(x**2)) - (Summation(x))**2

 '''

 n = len(points)

 crossSum = 0 # Summation(x * y)

 xSum = 0 # Summation(x)

 42

 ySum = 0 # Summation(y)

 xsquareSum = 0 # Summation(x**2)

 for i in points:

 crossSum = crossSum + (i.x * i.y)

 xSum = xSum + i.x

 ySum = ySum + i.y

 xsquareSum = xsquareSum + pow(i.x,2)

 #print " ".join([point.xs + ", " + point.ys for point in points])

 slope = ((n * crossSum) - (xSum * ySum)) / ((n * xsquareSum) - pow(xSum,2))

 #print slope

 #print ""

 return slope

def findCorrelation(points):

 ''' returns the corrrelation of the best fit line

 '''

 n = len(points)

 crossSum = 0 # Summation(x * y)

 xSum = 0 # Summation(x)

 ySum = 0 # Summation(y)

 xsquareSum = 0 # Summation(x**2)

 xVariance = 0

 yVariance = 0

 for i in points:

 crossSum = crossSum + (i.x * i.y)

 xSum = xSum + i.x

 43

 ySum = ySum + i.y

 #Note: below, xSum/n is just the average of x. Same for y.

 for i in points:

 xVariance = xVariance + (i.x - xSum/n)**2

 yVariance = yVariance + (i.y - ySum/n)**2

 CrossVariance = (i.x - xSum/n)*(i.y - ySum/n)

 correlation = (CrossVariance**2/(xVariance*yVariance))**0.5

 return correlation

def findResidualStDev(points, slope, yintercept):

 ''' returns the corrrelation of the best fit line

 '''

 n = len(points)

 crossSum = 0 # Summation(x * y)

 xSum = 0 # Summation(x)

 ySum = 0 # Summation(y)

 xsquareSum = 0 # Summation(x**2)

 yResidualSumSq = 0.0

 #Below finds the sum of the y residuals, necessary to find the standard deviation of the residuals.

 #the "average" value is the predicted point of the line, given by slope*x + b, or

slope*i.x+yintercept

 #the squaring and square rooting is to get the absolute value.

 for i in points:

 yResidualSumSq = yResidualSumSq + (i.y - (slope*i.x + yintercept))**2

 ResidualStDev = (yResidualSumSq/(n-1))**0.5

 return ResidualStDev

 44

def checkInterval(IntervalPoints, LocalResidualStDev,slope,yintercept):

 ''' checks the points given versus the line fed,

 fits the interval to a linear fit, and assumes at least 1 point of the interval must be within

 2 ResidualStDev of the local area.

 '''

 Counter=1

 for i in IntervalPoints:

 if 2*LocalResidualStDev > ((i.y - (slope*i.x + yintercept))**2)**0.5:

 Counter = 0

 #If any of the interval's points have residuals within 2 local Standard Deviations of the fed line

(line to compare)

 #the Counter will be set to 0 (indicating that the interval is okay).

 return Counter

def printOutput(outfile, lines):

 delim = ","

 toprint = []

 toprint.append(delim.join(["Onset", "Endset", "slope", "Y-Intercept", "StDev", "R^2"]))

 for i in lines:

 toprint.append(delim.join([str(i[0]), str(i[1]), str(i[2]),str(i[3]), str(i[4]), str(i[5])]))

 if outfile == "":

 for line in toprint:

 print line

 else:

 file = open(outfile, "w")

 45

 for line in toprint:

 file.write(line + "\n")

 file.close()

def main(argv):

 filename = ""

 fitsize = 0

 outfile = "outDefault.txt"

 FirstPoint = 0

 extraPoints = 3

 PointsToCheck = 5

 #EndMax and EndMin are counters, when they reach 1, the extrapoint counter will be turned off

for that end.

 EndMax = 0

 EndMin = 0

 try:

 opts, args = getopt.getopt(argv, "f:g:i:s:o:",

["file=","guess=","interval=","step=","output="])

 except getopt.GetoptError:

 usage()

 sys.exit(2)

 for opt, arg in opts:

 if opt in ("-f", "--file"):

 filename = arg

 46

 elif opt in ("-i", "--interval"):

 interval = float(arg)

 elif opt in ("-g", "--guess"):

 guess = float(arg)

 elif opt in ("-s", "--step"):

 step = float(arg)

 elif opt in ("-o", "--output"):

 outfile = arg

 else:

 print "You need to specify an option"

 sys.exit()

 file = open(filename)

 lines = file.readlines()

 data = []

 output = []

 for index, line in enumerate(lines):

 line = line.rstrip("\n")

 pointsText = line.split(",")

 #pointsFloat = [float(pointsText[0]), float(pointsText[1])]

 data.append(Point(index, float(pointsText[0]), float(pointsText[1])))

 CurrentTimeMin = guess - (interval/2)

 CurrentTimeMax = CurrentTimeMin + interval

 #first time range centers around 0

 47

 while extraPoints > 0:

 FirstPoint = 0

 fitsize = 0

 extraPointCounter = 0

 PointsBeforeMin = 0

 PointsAfterMin = 0

 PointsBeforeMax = 0

 PointsAfterMax = 0

 #FirstPoint & fitsize start at zero, and are reset with every iteration

 for index, point in enumerate(data):

 if data[index].x < CurrentTimeMin:

 FirstPoint = FirstPoint + 1

 #The starting of the linear fit will be increased by 1 point for every

point before it.

 if data[index].x < CurrentTimeMax:

 if data[index].x > CurrentTimeMin:

 fitsize = fitsize + 1

 if data[index].x == CurrentTimeMax:

 fitsize = fitsize + 1

 #if the point is in the range, then the fitsize is increased by 1 -

indicating that a point is added.

 if data[index].x > CurrentTimeMax:

 if EndMax == 0:

 extraPointCounter = extraPointCounter + 1

 if data[index].x < CurrentTimeMin:

 if EndMin == 0:

 extraPointCounter = extraPointCounter + 1

 48

 #the above finds the correct fitsize when starting at first point,

and then adds 1 for every point

 #so if only 2 points were in the first interval, it would go from

fitsize = 0 to fitsize = 2

 if data[index].x > CurrentTimeMin - interval/2:

 if data[index].x < CurrentTimeMin:

 PointsBeforeMin = PointsBeforeMin + 1

 if data[index].x < CurrentTimeMin + interval/2:

 if data[index].x >= CurrentTimeMin:

 PointsAfterMin = PointsAfterMin + 1

 if data[index].x > CurrentTimeMax - interval/2:

 if data[index].x <= CurrentTimeMax :

 PointsBeforeMax = PointsBeforeMax + 1

 if data[index].x < CurrentTimeMax + interval/2:

 if data[index].x > CurrentTimeMax :

 PointsAfterMax = PointsAfterMax + 1

 #The above counters are used to determine the ranges for fitting to check the

upcoming ranges

 #before the Min Time and after the Max Time

 slope = 0.5

 yintercept = findYintercept(data[FirstPoint:(FirstPoint+fitsize)+1],slope)

 ResidualStDev = findResidualStDev(data[FirstPoint:(FirstPoint+fitsize)+1], slope,

yintercept)

 # for defined point ranges, upper point of range doesn't count, but if passing "points" then

doesn't matter.

 # So for the point ranges defined above, there is always an extra +1 for the upper point.

 #The "Final" max and min are if the total residuals would more than double.

 PotentialMinRange = data[FirstPoint-PointsBeforeMin:(FirstPoint+fitsize)+1]

 49

 FinalEndMin = 2*ResidualStDev - findResidualStDev(PotentialMinRange,

findslope(PotentialMinRange), findYintercept(PotentialMinRange,findslope(PotentialMinRange)))

 PotentialMaxRange = data[FirstPoint:(FirstPoint+fitsize+PointsAfterMax)+1]

 FinalEndMax = 2*ResidualStDev - findResidualStDev(PotentialMaxRange,

findslope(PotentialMaxRange), findYintercept(PotentialMaxRange,findslope(PotentialMaxRange)))

 if FinalEndMax < 0:

 EndMax = 0

 if FinalEndMin < 0:

 EndMin=0

 #below checks upperpoints and lower points, then changes Min & Max accordingly

(assuming Final Max & Min not reached)

 if FinalEndMin > 0:

 LocalRange = data[FirstPoint-PointsBeforeMin:(FirstPoint+PointsAfterMin)+1]

 LocalResidualStDev = findResidualStDev(LocalRange, findslope(LocalRange),

findYintercept(LocalRange,findslope(LocalRange)))

 EndMin=checkInterval(data[FirstPoint-

PointsBeforeMin:(FirstPoint)+1],LocalResidualStDev, slope,yintercept)

 if FinalEndMax > 0:

 LocalRange = data[FirstPoint+fitsize-

PointsBeforeMax:(FirstPoint+fitsize+PointsAfterMax)+1]

 LocalResidualStDev = findResidualStDev(LocalRange, findslope(LocalRange),

findYintercept(LocalRange,findslope(LocalRange)))

 EndMax=checkInterval(data[FirstPoint+fitsize:(FirstPoint+fitsize+PointsAfterMax)+1],LocalResi

dualStDev,slope,yintercept)

 50

 #above, the EndMax and EndMin are checked, to see if it should be increased or not (if

it's not ended).

 #Then, below it's either increased or not.

 if EndMax == 0:

 CurrentTimeMax = CurrentTimeMax + step

 if EndMin == 0:

 CurrentTimeMin = CurrentTimeMin - step

 #now the min and max for the time interval being looked at are increased by the step if

their next points are okay

 #otherwise they have no change and the loop starts again.

 UpperPointInt = data[FirstPoint-PointsBeforeMin:(FirstPoint+PointsAfterMin)+1]

 LowerPointInt = data[FirstPoint+fitsize-

PointsBeforeMax:(FirstPoint+fitsize+PointsAfterMax)+1]

 LowerPointsResidualStDev = findResidualStDev(LowerPointInt,

findslope(LowerPointInt), findYintercept(LowerPointInt,findslope(LowerPointInt)))

 UpperPointsResidualStDev = findResidualStDev(UpperPointInt,

findslope(UpperPointInt), findYintercept(UpperPointInt,findslope(UpperPointInt)))

 correlation = findCorrelation(data[FirstPoint:(FirstPoint+fitsize)+1])

 output.append([CurrentTimeMin, CurrentTimeMax, slope, yintercept,

LowerPointsResidualStDev, UpperPointsResidualStDev])

 extraPoints = extraPointCounter

 #then the program has to loop back to searching in every point w/in

new interval,

 #unless the extraPointCounter is not greater than 1, which is checked

here.

 #The Current Time Min, fitsize & first point will be whereever they were on the final loop of

above

 #The correlation and range will be determined from them.

 51

 output.append([CurrentTimeMin, CurrentTimeMax, slope, yintercept, ResidualStDev,

correlation])

 slope = findslope(data[FirstPoint:(FirstPoint+fitsize)+1])

 correlation = findCorrelation(data[FirstPoint:(FirstPoint+fitsize)+1])

 yintercept = findYintercept(data[FirstPoint:(FirstPoint+fitsize)+1],slope)

 ResidualStDev = findResidualStDev(data[FirstPoint:(FirstPoint+fitsize)+1], slope, yintercept)

 #the final output consists of the Onset, Endset, the slope, y-intercept, the residual's standard

deviation, and the Correlation Coeff

 output.append([CurrentTimeMin, CurrentTimeMax, slope, yintercept, ResidualStDev,

correlation])

 printOutput(outfile, output)

if __name__ == "__main__":

 main(sys.argv[1:])

 52

Program ntf8. Example command:

python ntf8.py -s 0.01 -i 0.5 -f 16.csv -o 16ntf7.csv -g 1.85

#includes having to provide a guess of the middle of the range, and an initial interval size,

#Based on next points (via interval) having to be w/in 2 local linear fit ResidualStDev of range's fit

#has new "Final Max" and "Final Min" functions.

#("Final Max" & Min are when total residuals double so fit starts getting really bad.)

import sys

import getopt

import math

class Point:

 def __init__(self, line, xp, yp):

 self.line = line

 self.x = xp

 self.y = yp

 self.xs = str(self.x)

 self.ys = str(self.y)

def findYintercept(points, slope):

 ''' return the y-intercept

 yintercept = Avg(y) - slope*Avg(x)

 '''

 n = len(points)

 avgx = 0

 avgy = 0

 for i in points:

 53

 avgx = avgx + i.x

 avgy = avgy + i.y

 avgx = avgx / n

 avgy = avgy / n

 yintercept = avgy - (slope * avgx)

 #print " ".join([point.xs + ", " + point.ys for point in points])

 #print "Avgx: " + str(avgx) + " Avgy: " + str(avgy) + " Slope: " + str(slope)

 #print "yint: " + str(yintercept)

 #print "-----------------------"

 return yintercept

def findslope(points):

 ''' returns the slope from the following

 slope = n(Summation(x * y)) - Summation(x)Summation(y)

 / n(Summation(x**2)) - (Summation(x))**2

 '''

 n = len(points)

 crossSum = 0 # Summation(x * y)

 xSum = 0 # Summation(x)

 ySum = 0 # Summation(y)

 xsquareSum = 0 # Summation(x**2)

 54

 for i in points:

 crossSum = crossSum + (i.x * i.y)

 xSum = xSum + i.x

 ySum = ySum + i.y

 xsquareSum = xsquareSum + pow(i.x,2)

 #print " ".join([point.xs + ", " + point.ys for point in points])

 slope = ((n * crossSum) - (xSum * ySum)) / ((n * xsquareSum) - pow(xSum,2))

 #print slope

 #print ""

 return slope

def findCorrelation(points):

 ''' returns the corrrelation of the best fit line

 '''

 n = len(points)

 crossSum = 0 # Summation(x * y)

 xSum = 0 # Summation(x)

 ySum = 0 # Summation(y)

 xsquareSum = 0 # Summation(x**2)

 xVariance = 0

 yVariance = 0

 for i in points:

 crossSum = crossSum + (i.x * i.y)

 xSum = xSum + i.x

 ySum = ySum + i.y

 #Note: below, xSum/n is just the average of x. Same for y.

 55

 for i in points:

 xVariance = xVariance + (i.x - xSum/n)**2

 yVariance = yVariance + (i.y - ySum/n)**2

 CrossVariance = (i.x - xSum/n)*(i.y - ySum/n)

 correlation = (CrossVariance**2/(xVariance*yVariance))**0.5

 return correlation

def findResidualStDev(points, slope, yintercept):

 ''' returns the corrrelation of the best fit line

 '''

 n = len(points)

 crossSum = 0 # Summation(x * y)

 xSum = 0 # Summation(x)

 ySum = 0 # Summation(y)

 xsquareSum = 0 # Summation(x**2)

 yResidualSumSq = 0.0

 #Below finds the sum of the y residuals, necessary to find the standard deviation of the residuals.

 #the "average" value is the predicted point of the line, given by slope*x + b, or

slope*i.x+yintercept

 #the squaring and square rooting is to get the absolute value.

 for i in points:

 yResidualSumSq = yResidualSumSq + (i.y - (slope*i.x + yintercept))**2

 ResidualStDev = (yResidualSumSq/(n-1))**0.5

 return ResidualStDev

def checkInterval(IntervalPoints, LocalResidualStDev,slope,yintercept):

 56

 ''' checks the points given versus the line fed,

 fits the interval to a linear fit, and assumes at least 1 point of the interval must be within

 2 ResidualStDev of the local area.

 '''

 Counter=1

 for i in IntervalPoints:

 if 2*LocalResidualStDev > ((i.y - (slope*i.x + yintercept))**2)**0.5:

 Counter = 0

 #If any of the interval's points have residuals within 2 local Standard Deviations of the fed line

(line to compare)

 #the Counter will be set to 0 (indicating that the interval is okay).

 return Counter

def printOutput(outfile, lines):

 delim = ","

 toprint = []

 toprint.append(delim.join(["Onset", "Endset", "slope", "Y-Intercept", "StDev", "R^2"]))

 for i in lines:

 toprint.append(delim.join([str(i[0]), str(i[1]), str(i[2]),str(i[3]), str(i[4]), str(i[5])]))

 if outfile == "":

 for line in toprint:

 print line

 else:

 file = open(outfile, "w")

 for line in toprint:

 file.write(line + "\n")

 57

 file.close()

def main(argv):

 filename = ""

 fitsize = 0

 outfile = "outDefault.txt"

 FirstPoint = 0

 extraPoints = 3

 PointsToCheck = 5

 #EndMax and EndMin are counters, when they reach 1, the extrapoint counter will be turned off

for that end.

 EndMax = 0

 EndMin = 0

 try:

 opts, args = getopt.getopt(argv, "f:g:i:s:o:",

["file=","guess=","interval=","step=","output="])

 except getopt.GetoptError:

 usage()

 sys.exit(2)

 for opt, arg in opts:

 if opt in ("-f", "--file"):

 filename = arg

 elif opt in ("-i", "--interval"):

 interval = float(arg)

 58

 elif opt in ("-g", "--guess"):

 guess = float(arg)

 elif opt in ("-s", "--step"):

 step = float(arg)

 elif opt in ("-o", "--output"):

 outfile = arg

 else:

 print "You need to specify an option"

 sys.exit()

 file = open(filename)

 lines = file.readlines()

 data = []

 output = []

 for index, line in enumerate(lines):

 line = line.rstrip("\n")

 pointsText = line.split(",")

 #pointsFloat = [float(pointsText[0]), float(pointsText[1])]

 data.append(Point(index, float(pointsText[0]), float(pointsText[1])))

 CurrentTimeMin = guess - (interval/2)

 CurrentTimeMax = CurrentTimeMin + interval

 #first time range centers around 0

 while extraPoints > 0:

 FirstPoint = 0

 59

 fitsize = 0

 extraPointCounter = 0

 PointsBeforeMin = 0

 PointsAfterMin = 0

 PointsBeforeMax = 0

 PointsAfterMax = 0

 #FirstPoint & fitsize start at zero, and are reset with every iteration

 for index, point in enumerate(data):

 if data[index].x < CurrentTimeMin:

 FirstPoint = FirstPoint + 1

 #The starting of the linear fit will be increased by 1 point for every

point before it.

 if data[index].x < CurrentTimeMax:

 if data[index].x > CurrentTimeMin:

 fitsize = fitsize + 1

 if data[index].x == CurrentTimeMax:

 fitsize = fitsize + 1

 #if the point is in the range, then the fitsize is increased by 1 -

indicating that a point is added.

 if data[index].x > CurrentTimeMax:

 if EndMax == 0:

 extraPointCounter = extraPointCounter + 1

 if data[index].x < CurrentTimeMin:

 if EndMin == 0:

 extraPointCounter = extraPointCounter + 1

 #the above finds the correct fitsize when starting at first point,

and then adds 1 for every point

 60

 #so if only 2 points were in the first interval, it would go from

fitsize = 0 to fitsize = 2

 if data[index].x > CurrentTimeMin - interval/2:

 if data[index].x < CurrentTimeMin:

 PointsBeforeMin = PointsBeforeMin + 1

 if data[index].x < CurrentTimeMin + interval/2:

 if data[index].x >= CurrentTimeMin:

 PointsAfterMin = PointsAfterMin + 1

 if data[index].x > CurrentTimeMax - interval/2:

 if data[index].x <= CurrentTimeMax :

 PointsBeforeMax = PointsBeforeMax + 1

 if data[index].x < CurrentTimeMax + interval/2:

 if data[index].x > CurrentTimeMax :

 PointsAfterMax = PointsAfterMax + 1

 #The above counters are used to determine the ranges for fitting to check the

upcoming ranges

 #before the Min Time and after the Max Time

 slope = findslope(data[FirstPoint:(FirstPoint+fitsize)+1])

 yintercept = findYintercept(data[FirstPoint:(FirstPoint+fitsize)+1],slope)

 ResidualStDev = findResidualStDev(data[FirstPoint:(FirstPoint+fitsize)+1], slope,

yintercept)

 # for defined point ranges, upper point of range doesn't count, but if passing "points" then

doesn't matter.

 # So for the point ranges defined above, there is always an extra +1 for the upper point.

 #The "Final" max and min are if the total residuals would more than double.

 PotentialMinRange = data[FirstPoint-PointsBeforeMin:(FirstPoint+fitsize)+1]

 FinalEndMin = 2*ResidualStDev - findResidualStDev(PotentialMinRange,

findslope(PotentialMinRange), findYintercept(PotentialMinRange,findslope(PotentialMinRange)))

 61

 PotentialMaxRange = data[FirstPoint:(FirstPoint+fitsize+PointsAfterMax)+1]

 FinalEndMax = 2*ResidualStDev - findResidualStDev(PotentialMaxRange,

findslope(PotentialMaxRange), findYintercept(PotentialMaxRange,findslope(PotentialMaxRange)))

 if FinalEndMax < 0:

 EndMax = 0

 if FinalEndMin < 0:

 EndMin=0

 #below checks upperpoints and lower points, then changes Min & Max accordingly

(assuming Final Max & Min not reached)

 if FinalEndMin > 0:

 LocalRange = data[FirstPoint-PointsBeforeMin:(FirstPoint+PointsAfterMin)+1]

 LocalResidualStDev = findResidualStDev(LocalRange, findslope(LocalRange),

findYintercept(LocalRange,findslope(LocalRange)))

 EndMin=checkInterval(data[FirstPoint-

PointsBeforeMin:(FirstPoint)+1],LocalResidualStDev, slope,yintercept)

 if FinalEndMax > 0:

 LocalRange = data[FirstPoint+fitsize-

PointsBeforeMax:(FirstPoint+fitsize+PointsAfterMax)+1]

 LocalResidualStDev = findResidualStDev(LocalRange, findslope(LocalRange),

findYintercept(LocalRange,findslope(LocalRange)))

 EndMax=checkInterval(data[FirstPoint+fitsize:(FirstPoint+fitsize+PointsAfterMax)+1],LocalResi

dualStDev,slope,yintercept)

 #above, the EndMax and EndMin are checked, to see if it should be increased or not (if

it's not ended).

 #Then, below it's either increased or not.

 62

 if EndMax == 0:

 CurrentTimeMax = CurrentTimeMax + step

 if EndMin == 0:

 CurrentTimeMin = CurrentTimeMin - step

 #now the min and max for the time interval being looked at are increased by the step if

their next points are okay

 #otherwise they have no change and the loop starts again.

 UpperPointInt = data[FirstPoint-PointsBeforeMin:(FirstPoint+PointsAfterMin)+1]

 LowerPointInt = data[FirstPoint+fitsize-

PointsBeforeMax:(FirstPoint+fitsize+PointsAfterMax)+1]

 LowerPointsResidualStDev = findResidualStDev(LowerPointInt,

findslope(LowerPointInt), findYintercept(LowerPointInt,findslope(LowerPointInt)))

 UpperPointsResidualStDev = findResidualStDev(UpperPointInt,

findslope(UpperPointInt), findYintercept(UpperPointInt,findslope(UpperPointInt)))

 correlation = findCorrelation(data[FirstPoint:(FirstPoint+fitsize)+1])

 output.append([CurrentTimeMin, CurrentTimeMax, slope, yintercept,

LowerPointsResidualStDev, UpperPointsResidualStDev])

 extraPoints = extraPointCounter

 #then the program has to loop back to searching in every point w/in

new interval,

 #unless the extraPointCounter is not greater than 1, which is checked

here.

 #The Current Time Min, fitsize & first point will be whereever they were on the final loop of

above

 #The correlation and range will be determined from them.

 output.append([CurrentTimeMin, CurrentTimeMax, slope, yintercept, ResidualStDev,

correlation])

 slope = findslope(data[FirstPoint:(FirstPoint+fitsize)+1])

 63

 correlation = findCorrelation(data[FirstPoint:(FirstPoint+fitsize)+1])

 yintercept = findYintercept(data[FirstPoint:(FirstPoint+fitsize)+1],slope)

 ResidualStDev = findResidualStDev(data[FirstPoint:(FirstPoint+fitsize)+1], slope, yintercept)

 #the final output consists of the Onset, Endset, the slope, y-intercept, the residual's standard

deviation, and the Correlation Coeff

 output.append([CurrentTimeMin, CurrentTimeMax, slope, yintercept, ResidualStDev,

correlation])

 printOutput(outfile, output)

if __name__ == "__main__":

 main(sys.argv[1:])

 64

Appendix S.3: Alpha plots of experiments.

 65

 66

 67

 68

 69

 70

 71

 72

 73

 74

 75

 76

 77

 78

 79

 80

 81

 82

 83

 84

 85

 86

 87

 88

 89

 90

 91

 92

 93

 94

 95

 96

 97

 98

