Supporting Information

S1 - SAXS data of templating microemulsions

The SAXS measurements were performed on a SAXSess high-flux small-angle X-ray scattering instrument (Anton Paar, Austria), attached to a PW3830 X-ray generator (PANalytical) with a sealed-tube anode (Cu Kα wavelength of 0.1542 nm). The generator was operated at 40 kV and 50 mA. The SAXSess camera was equipped with a line collimator block and all measurements were performed at vacuum conditions for an intense and monochromatic primary beam with low background. A semitransparent beam stop was used to enable the measurements of an attenuated primary beam for the exact definition of the zero scattering vector and transmission correction. Vacuum-tight refillable quartz capillaries (1 mm diameter, sample volume $\leq 100 \ \mu$ L) were used in order to determine the size and shape of the w/o- microemulsion containing the metal salts and the reducing agent. All experiments were performed at T_{were} . The sample temperature was controlled with a thermostatted sample holder unit (TCS 120, Anton Paar). The 2-D scattered intensities were recorded on a CCD detector (Princeton Instruments) and were converted via SAXSQuant software (Anton Paar) to one dimensional scattering curves as a function of the magnitude of the scattering vector $q = (4\pi/\lambda)\sin(\theta/2)$, where θ is the total scattering angle. All intensities were transmission-calibrated by normalizing the attenuated primary intensity at q = 0 to unity and were corrected the background scattering from the capillary and the solvent (octane).

SAXS was used in order to measure the diameter of the w/o- microemulsions containing 13 mM of H₂PtCl₆ + 13 mM of Pb(NO₃)₂, 13 mM of H₂PtCl₆ + 13 mM of Bi(NO₃)₃ and 320 mM of NaBH₄ at T_{wefb} . The droplet diameter of the w/o- microemulsion containing the metal salts and the reducing agent are presented in Table A1. In Figure A1 the scattering curves of w/o- microemulsions are presented in a double logarithmic plot. In all samples, an initial slope of zero was observed indicating that the w/o- microemulsions have a globular shape. The diameter of the droplets was determined by Guinier extrapolation (extrapolation to zero angle, q = 0.06 - 0.4 nm⁻¹) assuming that the droplets are homogeneous spheres.

Table S1. Diameter of the w/o-microemulsions at $w_A = 0.08$ containing the metal salts and the reducing agent determined by SAXS.

Metal Salts	w/o- microemulsion diameter / nm
13 mM H ₂ PtCl ₆ : 13 mM Pb(NO ₃) ₂	26.2 ± 1.0
13 mM H ₂ PtCl ₆ : 13 mM Bi(NO ₃) ₃	26.5 ± 1.0
320 mM NaBH ₄	25.0 ± 1.0

Figure S1. (a) SAXS curves of the w/o- microemulsion containing (…)13 mM H₂PtCl₆ : 13 mM Pb(NO₃)₂, (–)13 mM H₂PtCl₆ : 13 mM Bi(NO₃)₃ and (– –) 320 mM NaBH₄ at $w_A = 0.08$.

S2 - EDX analysis

Sample 1a / nm ²	Pt:Pb atomic ratio	Sample 1b / nm ²	Pt:Pb atomic ratio	Sample 1c / nm ²	Pt:Pb atomic ratio	
20	12:88	5	9:91	100	55:45	
20	72:28	200	65 : 35	10	72: 28	
200	68:32	10	20:80	20	63:37	
5	74 : 26	10	70:30	20	73:27	
20	69:31	20	59:41	10	62:38	
20	66 : 34			15	66 : 34	
				50	9: 91	
Sample 1d / n	Sample 1d / nm ² P atom		tio Sample 1e / nm ²		Pt:Pb atomic ratio	
100	55	5 : 45	10		50 : 50	
10	57	': 43	15		50 : 50	
20	65	65 : 35			39 : 61	
20	63	63 : 37			59:41	
10	65	65 : 35			61 : 38	
15	66	66 : 34			52:48	
20	64	64 : 36			50:50	
50	5	: 95	30		61 : 38	
			20		47:53	
			20		48:52	
			20		40 : 60	
			50		5:95	

Table S2. EDX analysis of the atomic composition of samples 1a, 1b, 1c, 1d, 1e (s. Table 1).

Sample 2a / nm ²	Pt:Bi atomic ratio	Sample 2b / nm ²	Pt:Bi atomic ratio	Sample 2c / nm ²	Pt:Bi atomic ratio
10	81:19	10	46 : 54	20	40:60
10	75:25	10	50:50	10	21:79
10	87:13	20	56 : 44	15	38:62
10	85:15	5	49:51	8	43:57
10	87:13	10	52:48	20	64 : 36
20	81:19	20	47:53	10	60:40
20	63:37	20	50:50	15	43:57
10	86:14	3	50:50	10	64 : 36
5	90:10			10	59:41

Table S3. EDX analysis of the atomic composition of samples 2a, 2b and 2c (s. Table 1).