Supporting Information

S1-SAXS data of templating microemulsions

The SAXS measurements were performed on a SAXSess high-flux small-angle X-ray scattering instrument (Anton Paar, Austria), attached to a PW3830 X-ray generator (PANalytical) with a sealed-tube anode ($\mathrm{Cu} \mathrm{K} \alpha$ wavelength of 0.1542 nm). The generator was operated at 40 kV and 50 mA . The SAXSess camera was equipped with a line collimator block and all measurements were performed at vacuum conditions for an intense and monochromatic primary beam with low background. A semitransparent beam stop was used to enable the measurements of an attenuated primary beam for the exact definition of the zero scattering vector and transmission correction. Vacuum-tight refillable quartz capillaries (1 mm diameter, sample volume $\leq 100 \mu \mathrm{~L}$) were used in order to determine the size and shape of the w/o- microemulsion containing the metal salts and the reducing agent. All experiments were performed at $T_{\text {wefb. }}$. The sample temperature was controlled with a thermostatted sample holder unit (TCS 120, Anton Paar). The 2-D scattered intensities were recorded on a CCD detector (Princeton Instruments) and were converted via SAXSQuant software (Anton Paar) to one dimensional scattering curves as a function of the magnitude of the scattering vector $q=(4 \pi / \lambda) \sin (\theta / 2)$, where θ is the total scattering angle. All intensities were transmission-calibrated by normalizing the attenuated primary intensity at $q=0$ to unity and were corrected the background scattering from the capillary and the solvent (octane).

SAXS was used in order to measure the diameter of the w/o- microemulsions containing 13 mM of $\mathrm{H}_{2} \mathrm{PtCl}_{6}+13 \mathrm{mM}$ of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}, 13 \mathrm{mM}$ of $\mathrm{H}_{2} \mathrm{PtCl}_{6}+13 \mathrm{mM}$ of $\mathrm{Bi}\left(\mathrm{NO}_{3}\right)_{3}$ and 320 mM of NaBH_{4} at $T_{\text {wefb. }}$. The droplet diameter of the w/o- microemulsion containing the metal salts and the reducing agent are presented in Table A1. In Figure A1 the scattering curves of w/o- microemulsions are presented in a double logarithmic plot. In all samples, an initial slope of zero was observed indicating that the w/o- microemulsions have a globular shape. The diameter of the droplets was determined by Guinier extrapolation (extrapolation to zero angle, $q=0.06-0.4 \mathrm{~nm}^{-1}$) assuming that the droplets are homogeneous spheres.

Table S1. Diameter of the w/o-microemulsions at $w_{\mathrm{A}}=0.08$ containing the metal salts and the reducing agent determined by SAXS.

Metal Salts	w/o- microemulsion diameter / nm
$13 \mathrm{mM} \mathrm{H}_{2} \mathrm{PtCl}_{6}: 13 \mathrm{mM} \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$	26.2 ± 1.0
$13 \mathrm{mM} \mathrm{H}_{2} \mathrm{PtCl}_{6}: 13 \mathrm{mM} \mathrm{Bi}\left(\mathrm{NO}_{3}\right)_{3}$	26.5 ± 1.0
$320 \mathrm{mM} \mathrm{NaBH}_{4}$	25.0 ± 1.0

Figure S1. (a) SAXS curves of the w/o- microemulsion containing (\cdots) $13 \mathrm{mM} \mathrm{H}_{2} \mathrm{PtCl}_{6}$: $13 \mathrm{mM} \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2},(-) 13 \mathrm{mM} \mathrm{H}_{2} \mathrm{PtCl}_{6}: 13 \mathrm{mM} \mathrm{Bi}\left(\mathrm{NO}_{3}\right)_{3}$ and $(--) 320 \mathrm{mM} \mathrm{NaBH}_{4}$ at w_{A} $=0.08$.

S2-EDX analysis

Table S2. EDX analysis of the atomic composition of samples 1a, 1b, 1c, 1d, 1e (s. Table 1).

$\begin{aligned} & \text { Sample 1a } \\ & / \mathrm{nm}^{2} \end{aligned}$	$\begin{gathered} \mathrm{Pt}: \mathrm{Pb} \\ \text { atomic ratio } \end{gathered}$	$\begin{gathered} \text { Sample 1b } \\ / \mathbf{n m}^{2} \end{gathered}$	Pt:Pb atomic ratio	$\begin{aligned} & \text { Sample 1c } \\ & / \mathbf{n m}^{2} \end{aligned}$	$\begin{gathered} \mathrm{Pt}: \mathrm{Pb} \\ \text { atomic ratio } \end{gathered}$
20	12:88	5	9:91	100	55:45
20	$72: 28$	200	65:35	10	72: 28
200	68:32	10	$20: 80$	20	$63: 37$
20		10		20	
5	74:26	10	$70: 30$	20	73: 27
20	69:31	20	59:41	10	62:38
20	66:34			15	66:34
				50	9:91
Sample 1d/	$\begin{gathered} \mathrm{Pt}: \mathrm{Pb} \\ \text { atomic ratio } \end{gathered}$		Sample 1e/ $\mathrm{nm}^{\mathbf{2}}$		Pt:Pb atomic ratio
100		45	10		50: 50
10			15		50:50
20		35	5		39:61
20		37	10		59:41
10		35	10		61:38
15		34	20		52: 48
20		36	20		50 : 50
50			30		61:38
			20		47: 53
			20		48:52
			20		40:60
			50		5:95

Table S3. EDX analysis of the atomic composition of samples $2 \mathrm{a}, 2 \mathrm{~b}$ and 2 c (s. Table 1).

Sample 2a $/ \mathbf{n m}^{2}$	$\mathbf{P t}: \mathbf{B i}$ atomic ratio	Sample 2b $/ \mathbf{n m}^{2}$	$\mathbf{P t}: \mathbf{B i}$ atomic ratio	Sample 2c $/ \mathbf{n m}^{2}$	$\mathbf{P t}: \mathbf{B i}$ atomic ratio
10	$81: 19$	10	$46: 54$	20	$40: 60$
10	$75: 25$	10	$50: 50$	10	$21: 79$
10	$87: 13$	20	$56: 44$	15	$38: 62$
10	$85: 15$	5	$49: 51$	8	$43: 57$
10	$87: 13$	10	$52: 48$	20	$64: 36$
20	$81: 19$	20	$47: 53$	10	$60: 40$
20	$63: 37$	20	$50: 50$	15	$43: 57$
10	$86: 14$	3	$50: 50$	10	$64: 36$
5	$90: 10$			10	$59: 41$

