Supporting Information

Behavior of Ba(Co, Fe, Nb)O_{3-δ} Perovskite in CO₂-Containing Atmospheres: Degradation Mechanism and Materials Design

Jianxin Yi,^{1,*} Michael Schroeder,^{1,*} Thomas Weirich^{2,3}, Joachim Mayer²

¹ Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056, Aachen, Germany

²Central Facility for Electron Microscopy, RWTH Aachen University, Ahornstrasse 55,

52074 Aachen, Germany

³ Institute of Crystallography, RWTH Aachen University, Jaegerstrass 17-19, 52066 Aachen, Germany

Sample preparation

BaCo_{1-x-y}Fe_xNb_yO_{3- δ} (x=0.2-0.8, y=0.2-0.5) perovskite powders were synthesized by the conventional solid state reaction method. Appropriate amounts of BaCO₃, Co₃O₄, Fe₃O₄ or Fe₂O₃, and Nb₂O₅ were weighed according to the cation stoichiometry and mixed, followed by ball-milling in isopropanol. The powder mixture was calcined at 1050°C for 15 h and then 1100 °C for 15 h with intermittent grinding. The calcined powders were uni-axially pressed at 30 MPa into disk-shaped pellets, which were successively cold iso-statically pressed at 300 MPa. Sintering of the green disks was performed in air at 1200 °C for 10 h for the Co-containing compositions, or at 1350 °C for 10 h for the Co-free compositions. Polished pellets and powders from crushing the sintered ceramics were pre-equilibrated in air, annealed in flowing pure CO₂ at 900 °C, and subsequently quenched in the same atmosphere. In order to study the influence of the gas stream composition on the degradation process, annealing in 33 vol.% CO₂/O₂ was also carried out at 900 °C. In these cases, the samples were pre-equilibrated in Ar or 33 vol.% Ar/O₂, respectively.

X-ray Diffraction

Phase analysis was conducted by means of X-ray Diffraction (XRD) at a step size of 0.04° and a stepcounting time of 60 s under ambient conditions. For powder samples, a STOE STADI-P transmission diffractometer with Cu K_{α 1} radiation (λ =0.15406 nm) delivered by a curved Ge (111) primary monochromator was used. Pellet samples were investigated with a STOE Theta-Theta reflection diffractometer with Cu K_{α} radiation (λ =0.15418 nm). Both diffractometers were equipped with scintillation counter and graphite secondary monochromator. Indexing and lattice parameter refinement was performed by using a Werner's TREOR program (STOE WinXPOW).

Oxygen permeation

Oxygen permeation measurements were conducted with a home-made setup. A disk-shaped membrane was positioned between two alumina tubes and sealed to gas-tightness by gold rings. During the permeation measurements, synthetic air and Ar/CO₂ (or He/CO₂) mixtures were fed to the feed side and sweep side of the membrane, respectively. The volume flows of the feed and sweep streams were 350 ml/min and 50 ml/min, respectively. Composition of the permeate effluent was analyzed by a calibrated Balzers OmniStarTM mass spectrometer (Ar/CO₂ as sweep gas), or Agilent 7890A gas chromatograph (He/CO₂ as sweep gas). During some measurements using the mass spectrometer where pure CO_2 was used as sweep gas, a slow increase of the intensity of the oxygen (m/z=32) signal with time was observed in the mass spectrum. This behavior is ascribed to recombination of oxygen atoms generated by fragmentation of CO₂ in the ion source of the mass spectrometer. This was confirmed by a blank experiment in which pure CO₂ was fed directly into the mass spectrometer. The influence of this artifact on the results of this work is insignificant when compared with the amount of oxygen permeated through the membrane, and thus neglected. The gas chromatograph was equipped with a HP-PLOT-Q capillary column to separate CO₂ from O₂ and N₂, and a HP-PLOT-5A capillary column to separate O₂ from N₂. Gas leakage from the surrounding air through the membrane or the gold seals was monitored by measuring the N₂ signal in the permeate effluent, however, no significant leakage was observed in the present work.

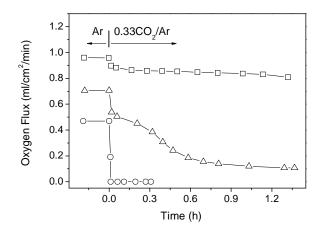


Figure S1. Time dependence of oxygen permeation flux of 1 mm thick $BaCo_{0.4}Fe_{0.4}Nb_{0.2}O_{3-\delta}$ membrane with 33%CO₂/Ar as sweep gas at (\Box) 1000 °C, (Δ) 900 °C, and (\circ) 800 °C.

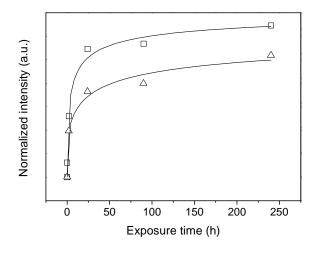


Figure S2. Intensity of the reflection (111) for $BaCO_3$ (\Box) and reflection (200) for CoO (Δ) as a function of CO₂ annealing time for $BaCo_{0.4}Fe_{0.4}Nb_{0.2}O_{3-\delta}$ powders at 900 °C. The values were normalized to that of the reflection (110) for the perovskite phase. Solid lines are guides to the eye.

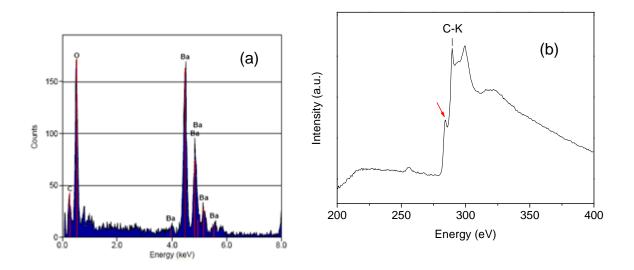


Figure S3. EDX spectrum (a) and carbon K edge EELS spectrum (b) taken from the surface layer of a $BaCo_{0.4}Fe_{0.4}Nb_{0.2}O_{3-\delta}$ membrane exposed to CO₂ at 900 °C for 2 h. The arrow in (b) shows a pre-peak of the carbon K-edge at ~ 284 EV, which is characteristic for conjugated π electron systems, e.g. the flat CO₃ anion present in BaCO₃.

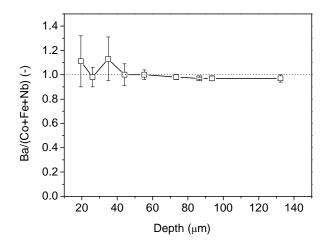


Figure S4. Atomic ratio of A-site to B-site cation of the Ba(Co,Fe,Nb)O_{3- δ} perovskite in the decomposed zone versus sample depth for the BaCo_{0.4}Fe_{0.4}Nb_{0.2}O_{3- δ} membrane annealed in CO₂ for 240 h at 900 °C. Values are normalized to that of an untreated BaCo_{0.4}Fe_{0.4}Nb_{0.2}O_{3- δ} reference.

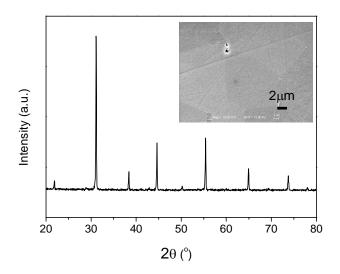


Figure S5. X-ray diffraction pattern for powders and SEM image for membrane (inset) of $BaFe_{0.5}Nb_{0.5}O_{3-\delta}$ annealed at 900 °C in CO₂ for 90 hours. The cubic perovskite structure was retained and no formation of $BaCO_3$ or other secondary phase was found.