Supporting Information

Platinum Nanoparticle Functionalized CNTs as Nanoscaffolds and Catalysts to Enhance the Dehydrogenation of Ammonia-Borane

S. F. Li, Y. H Guo, W.W. Sun, D. L. Sun, X. B. Yu*

Department of Material Science, Fudan University, Shanghai 200433, China

* To whom correspondence should be addressed. Phone and Fax: +86-21-5566 4581.

E-mail: <u>yuxuebin@fudan.edu.cn</u>

Figure S1. NH_3 coordinated with AB upon the time under 1.5 bar NH_3 at 0 °C. A maximum of 1.7 mol NH_3 is coordinated with per mol AB within 70 min.

Figure S2. Photos of AB, liquid $AB \cdot xNH_3$ and the liquid $AB \cdot xNH_3$ exposed to air for various time at room temperature. After filling 1 bar of ammonia in the AB at 0 °C, a liquid $AB \cdot xNH_3$ was formed immediately. Exposure of the liquid $AB \cdot xNH_3$ to air at room temperature for 30 min results in the reformed AB powder.

Figure S3. EDS spectra of Pt@CNTs. It gives a Pt content of 10 wt.%.

FigureS4. BET results about the pore size distributions for Pt@CNTs and loaded AB/Pt@CNTs. The inset shows the corresponding N_2 absorption-desorption isotherms at -196 °C.

FigureS5. Volumetric release for quantitative measurements of gas evolution from the pristine AB and the ball-milled AB. The heating rate is 5 $^{\circ}$ C min⁻¹.

The weight loss of the ball-milled AB is 57.3 wt.% (The weight loss was calculated by (initial weight of AB – terminated weight) / initial weight of AB.), which is comparable with that of the pristine AB 60.2 wt.% in Figure 3(b). This result confirms that ball milling has little improvement on depressing the emission of the poisonous by-product borazine.

Figure S6. Volumetric release for quantitative measurements of gas evolution from the pristine AB and the ball-milled AB with 1 mol% PtCl₂. The heating rate is 5 °C min⁻¹. For calculation of gas release, PtCl₂ is excluded from the composites.

Figure S7. Volumetric release for quantitative measurements of gas evolution from the pristine AB, ball milled AB/CNTs, ball milled AB/Pt@CNTs and loaded AB/Pt@CNTs. The heating rate is 5 °C min⁻¹. For calculation of gas release, Pt/CNTs is excluded from the composites.

Figure S8. Volumetric release for quantitative measurements of gas evolution from the loaded samples with mass ratios (AB: Pt/CNTs) of 5:1, 2:1, 1:1 and 1:2, respectively. The heating rate is 5 $^{\circ}$ C min⁻¹. These samples were directly prepared by the "ammonia-deliquescence" method without a pretreatment of ball milling. For calculation of gas release, Pt/CNTs is excluded from the composites.

Figure S9. Dependence of hydrogen purity with the Pt@CNTs content in the loaded AB/Pt@CNTs samples.

Figure S10. SEM image of the loaded AB/Pt@CNTs with a mass ratio of 5:1.