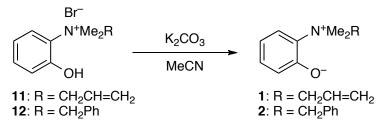
Supporting Information

Bifunctional Organocatalyst for Activation of Carbon Dioxide and Epoxide to Produce Cyclic Carbonate: Betaine as a New Catalytic Motif


Yoshihiro Tsutsumi, Kyohei Yamakawa, Masahiko Yoshida, Tadashi Ema, and Takashi Sakai* Division of Chemistry and Biochemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama 700-8530, Japan

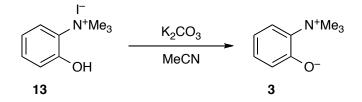
[1] Synthetic Procedures for Catalysts	S2
[2] Coupling Reaction of CO ₂ with Epoxide	\$9
[3] Synthesis of Betaine–CO ₂ Adduct and Subsequent Reaction with Epoxide	S11
[4] Optimization of Reaction Conditions Using Catalyst 1	S12
[5] ¹ H and ¹³ C NMR Spectra	S14

[1] Synthetic Procedures for Catalysts.

(1-A) Synthetic Procedure for Catalyst 1.

Allyldimethyl(2-hydroxyphenyl)ammonium bromide (11) was prepared according to the literature.¹

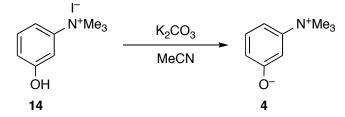
2-(Allyldimethylammonio)phenolate (1).² A mixture of **11** (800 mg, 3.10 mmol) and K₂CO₃ (514 mg, 3.72 mmol) in dry MeCN (15 mL) under N₂ was stirred at room temperature for 16 h. After filtration, the filtrate was concentrated. The product was washed with Et₂O to give **1** as a light brown powder (521 mg, 95%): mp 75–80 °C (lit.² mp 80–83 °C); ¹H NMR (400 MHz, CDCl₃) δ 3.58 (s, 6H), 5.00 (d, *J* = 7.2 Hz, 2H), 5.43–5.51 (m, 2H), 5.59–5.68 (m, 1H), 6.24 (t, *J* = 8.4 Hz, 1H), 6.84 (dd, *J* = 1.2, 8.4 Hz, 1H), 6.97 (dd, *J* = 1.2, 8.4 Hz, 1H), 7.11–7.15 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 51.6, 65.7, 108.7, 119.0, 124.9, 126.3, 126.9, 130.0, 131.2, 163.2; IR (KBr) 3006, 1645, 1591, 1479, 1451, 1402, 1310, 1134, 1076, 1042, 959, 891, 829, 749, 700 cm⁻¹; HRMS (FAB, nitrobenzyl alcohol) calcd for C₁₁H₁₆NO 178.1232, found 178.1244 (M + H).


(1-B) Synthetic Procedure for Catalyst 2.

Benzyldimethyl(2-hydroxyphenyl)ammonium bromide (12) was prepared according to the literature.¹

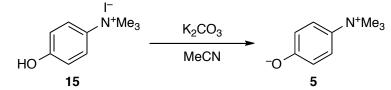
2-(Benzyldimethylammonio)phenolate (**2**).² A mixture of **12** (308 mg, 1.00 mmol) and K₂CO₃ (166 mg, 1.20 mmol) in dry MeCN (5 mL) under N₂ was stirred at room temperature for 16 h. After filtration, the filtrate was concentrated. The product was washed with Et₂O to give **2** as a white foamy solid (226 mg, 99%): mp 95–97 °C (lit.² mp 95–97 °C); ¹H NMR (400 MHz, CDCl₃) δ 3.68 (s, 6H), 5.60 (s, 2H), 6.29 (t, *J* = 7.6 Hz, 1H), 6.75 (dd, *J* = 1.6, 8.4 Hz, 1H), 7.07 (dd, *J* = 1.6, 8.4 Hz, 1H), 7.17–7.27 (m, 5H), 7.32–7.35 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 51.4, 65.3, 110.8, 119.8, 122.8, 127.9, 128.8, 129.4, 129.5, 130.9, 132.0, 160.7; IR (KBr) 3030, 2949, 2849, 2802, 1589, 1493, 1452, 1366, 1252, 1090, 1028, 937, 831, 731, 696 cm⁻¹; HRMS (FAB, nitrobenzyl alcohol) calcd for C₁₅H₁₈NO 228.1388, found 228.1405 (M + H).

(1-C) Synthetic Procedure for Catalyst 3.


(2-Hydroxyphenyl)trimethylammonium iodide (13) was prepared according to the literature.³

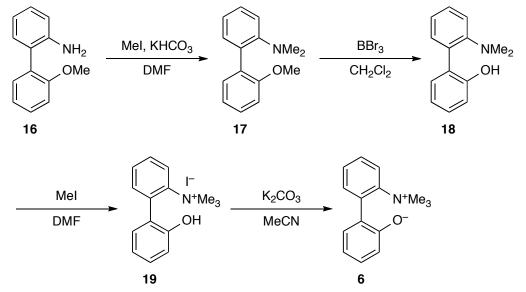
2-(Trimethylammonio)phenolate (3).⁴ A mixture of **13** (884 mg, 3.17 mmol) and K₂CO₃ (525 mg, 3.80 mmol) in dry MeCN (16 mL) under N₂ was stirred at room temperature for 16 h. After filtration, the filtrate was concentrated. The product was washed with Et₂O to give **3** as a white powder (314 mg, 66%): mp 122 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 3.57 (s, 9H), 5.96 (t, *J* = 8.0 Hz, 1H), 6.35 (d, *J* = 8.4 Hz, 1H), 6.88 (t, *J* = 8.4 Hz, 1H), 7.14 (d, *J* = 8.0 Hz, 1H); ¹³C NMR (100 MHz, DMSO- d_6) δ 53.3, 107.5, 119.6, 123.5, 130.3, 133.6, 162.9; IR (KBr) 3055, 3032, 1591, 1485, 1462, 1435, 1406, 1337, 1234, 1138, 1042, 845, 820 cm⁻¹; HRMS (FAB, nitrobenzyl alcohol) calcd for C₉H₁₄NO 152.1075, found 152.1085 (M + H).

(1-D) Synthetic Procedure for Catalyst 4.


(3-Hydroxyphenyl)trimethylammonium iodide (14) was prepared according to the literature.⁵

3-(Trimethylammonio)phenolate (4).⁶ A mixture of **14** (350 mg, 1.25 mmol) and K₂CO₃ (207 mg, 1.50 mmol) in dry MeCN (6 mL) under N₂ was stirred at room temperature for 17 h. After filtration, the filtrate was concentrated. The product was washed with Et₂O and CH₂Cl₂ to give **4** as a white powder (139 mg, 73%): mp 135–137 °C; ¹H NMR (300 MHz, DMSO-*d*₆) δ 3.39 (s, 9H), 6.09 (dd, *J* = 1.8, 8.4 Hz, 1H), 6.16 (dd, *J* = 2.7, 8.4 Hz, 1H), 6.32 (t, *J* = 2.4 Hz, 1H), 6.80 (t, *J* = 8.4 Hz, 1H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 56.4, 104.4, 108.2, 118.3, 130.1, 148.7, 165.8; IR (KBr) 3082, 2889, 1601, 1531, 1492, 1342, 1300, 1138, 945, 833, 745 cm⁻¹; HRMS (FAB, nitrobenzyl alcohol) calcd for C₉H₁₄NO 152.1075, found 152.1076 (M + H).

(1-E) Synthetic Procedure for Catalyst 5.


(4-Hydroxyphenyl)trimethylammonium iodide (15) was prepared according to the literature.³

4-(Trimethylammonio)phenolate (5).⁷ A mixture of **15** (350 mg, 1.25 mmol) and K₂CO₃ (207 mg, 1.50 mmol) in dry MeCN (6 mL) under N₂ was stirred at room temperature for 16 h. After filtration, the filtrate was concentrated. The product was washed with Et₂O to give **5** as a white powder (115 mg, 61%): mp 210 °C; ¹H NMR (300 MHz, DMSO-*d*₆) δ 3.47 (s, 9H), 6.61 (d, *J* = 9.3 Hz, 2H), 7.51 (d, *J* = 9.3 Hz, 2H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 56.8, 116.7, 121.1, 134.8, 164.5; IR (KBr) 3190, 3012, 1597, 1516, 1489, 1416, 1215, 1146, 961, 833, 644 cm⁻¹; HRMS (FAB, nitrobenzyl alcohol) calcd for C₉H₁₄NO 152.1075, found 152.1082 (M + H).

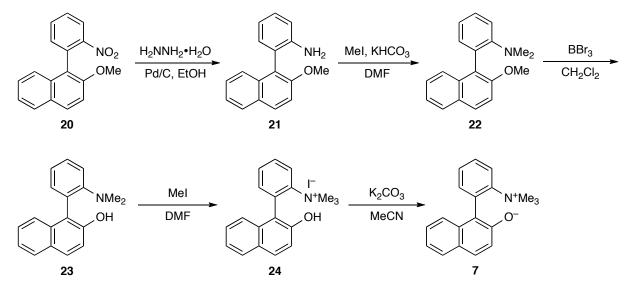
(1-F) Synthetic Procedure for Catalyst 6.

2-Amino-2'-methoxybiphenyl (16) was prepared according to the literature.⁸

2-(*N*,*N*-**Dimethylamino**)-**2'**-**methoxybiphenyl** (**17**). A mixture of **16** (6.71 g, 33.7 mmol), KHCO₃ (7.09 g, 70.8 mmol), and MeI (5.3 mL, 84 mmol) in DMF (50 mL) under N₂ was stirred at room temperature for 5 h. After addition of H₂O (10 mL), the product was extracted with CH₂Cl₂ (30 mL × 3). The combined organic layers were dried over MgSO₄, and concentrated. Purification by silica gel column chromatography (hexane/EtOAc (5:1)) gave 17 as a colorless oil (6.92 g, 90%): ¹H NMR (600 MHz, CDCl₃) δ 2.53 (s, 6H), 3.79 (s, 3H), 6.97–7.01 (m, 3H), 7.05 (d, *J* = 8.4 Hz, 1H), 7.18 (dd, *J* = 1.8, 7.8 Hz, 1H), 7.26–7.29 (m, 2H), 7.31 (d, *J* = 7.8 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 43.2, 55.5, 111.2, 117.7, 120.5, 120.7, 127.9, 128.0, 130.7, 131.0, 131.1, 132.2, 151.8, 156.4; IR (neat) 3046, 2938, 2831, 2778,

1590, 1502, 1482, 1459, 1428, 1320, 1258, 1232, 1122, 1052, 1029, 1004, 947, 755, 736 cm⁻¹; Anal. Calcd for C₁₅H₁₇NO: C, 79.26; H, 7.54; N, 6.16. Found: C, 79.36; H, 7.60; N, 5.82.

2-(*N*,*N*-Dimethylamino)-2'-hydroxybiphenyl (18). A solution of BBr₃ in dry CH₂Cl₂ (1.0 M, 36 mL, 36 mmol) was added dropwise to a solution of **17** (6.92 g, 30.4 mmol) in dry CH₂Cl₂ (90 mL) under N₂ in an ice bath over 5 min. The mixture was stirred at room temperature for 22 h. After addition of H₂O (10 mL) and adjustment to pH 7 by using 10% NaOH, the product was extracted with CH₂Cl₂ (20 mL × 3). The combined organic layers were dried over MgSO₄, and concentrated. Purification by silica gel column chromatography (hexane/EtOAc (5:1)) gave **18** as a white solid (6.21 g, 96%): mp 53–55 °C; ¹H NMR (600 MHz, CDCl₃) δ 2.72 (s, 6H), 7.00 (dt, *J* = 1.2, 7.8 Hz, 1H), 7.04 (dd, *J* = 1.2, 7.8 Hz, 1H), 7.21–7.24 (m, 2H), 7.30 (ddd, *J* = 1.8, 7.2, 7.8 Hz, 1H), 7.37–7.41 (m, 2H), 7.44 (dd, *J* = 1.8, 7.8 Hz, 1H), 10.89 (br s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 43.5, 118.1, 118.8, 120.4, 124.6, 128.1, 128.4, 129.0, 130.7, 133.5, 134.6, 148.2, 155.2; IR (KBr) 3018, 2953, 2845, 2783, 1599, 1493, 1474, 1460, 1429, 1296, 1267, 1236, 1153, 1042, 932, 764, 729 cm⁻¹; Anal. Calcd for C₁₄H₁₅NO: C, 78.84; H, 7.09; N, 6.57. Found: C, 78.68; H, 7.15; N, 6.19.


2-(2-Hydroxyphenyl)phenyltrimethylammonium iodide (19). A mixture of **18** (6.34 g, 29.7 mmol) and MeI (5.7 mL, 91 mmol) in dry DMF (30 mL) under N₂ was stirred at 40 °C for 3 d. After removal of DMF, recrystallization from MeOH/Et₂O gave **19** as colorless crystals (7.84 g, 74%): mp 186–187 °C; ¹H NMR (600 MHz, DMSO- d_6) δ 3.50 (s, 9H), 6.95 (dt, J = 1.2, 7.2 Hz, 1H), 7.00 (d, J = 7.8 Hz, 1H), 7.17 (dd, J = 1.8, 7.8 Hz, 1H), 7.24 (dd, J = 1.8, 7.2 Hz, 1H), 7.32–7.35 (m, 1H), 7.58 (dt, J = 1.2, 7.2 Hz, 1H), 7.63 (ddd, J = 1.8, 7.2, 8.4 Hz, 1H), 8.04 (d, J = 8.4 Hz, 1H), 10.02 (s, 1H); ¹³C NMR (150 MHz, DMSO- d_6) δ 57.3, 116.2, 119.5, 121.8, 127.0, 129.5, 130.1, 130.5, 131.3, 132.5, 135.7, 144.9, 154.1; IR (KBr) 3204, 3063, 3032, 1587, 1487, 1447, 1269, 1198, 1111, 1088, 847, 772 cm⁻¹; Anal. Calcd for C₁₅H₁₈NOI: C, 50.72; H, 5.11; N, 3.94. Found: C, 51.09; H, 5.14; N, 3.55.

2-(2-Trimethylammoniophenyl)phenolate (6). A mixture of **19** (945 mg, 2.66 mmol) and K₂CO₃ (393 mg, 2.84 mmol) in dry MeCN (13 mL) under N₂ was stirred at room temperature overnight. After filtration and concentration, the product was washed with Et₂O to give **6** as a white powder (567 mg, 94%): mp 150 °C (dec); ¹H NMR (600 MHz, DMSO- d_6) δ 3.55 (s, 9H), 6.51 (t, J = 7.2 Hz, 1H), 6.59 (d, J = 7.8 Hz, 1H), 6.98 (dd, J = 1.8, 7.8 Hz, 1H), 7.03–7.05 (m, 1H), 7.12 (dd, J = 2.4, 7.2 Hz, 1H), 7.50–7.55 (m, 2H), 7.96 (dd, J = 1.2, 7.8 Hz, 1H); ¹³C NMR (150 MHz, methanol- d_4) δ 58.6, 117.6, 119.6, 122.0, 129.2, 130.3, 131.2, 131.4, 132.1, 136.0, 137.6, 146.4, 160.6; IR (KBr) 3063, 3026, 1622, 1593, 1483, 1306, 1150, 1049, 1003, 941, 851, 768, 613, 563 cm⁻¹; HRMS (FAB, nitrobenzyl alcohol) calcd for

C₁₅H₁₈NO 228.1383, found 228.1390 (M + H).

(1-G) Synthetic Procedure for Catalyst 7.

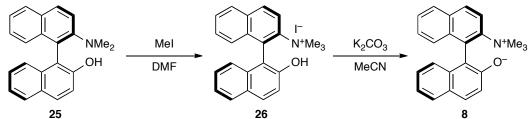
2-Methoxy-1-(2-nitrophenyl)naphthalene (20) was prepared according to the literature.⁹

1-(2-Aminophenyl)-2-methoxynaphthalene (**21**).⁹ Hydrazine monohydrate (80%, 12.5 mL) was added dropwise to a mixture of **20** (5.59 g, 20.0 mmol) and Pd/C (10% (w/w), 2.76 g) in EtOH (60 mL) at 50 °C over 25 min. The mixture was heated at reflux for 12 h. After filtration and concentration, the product was extracted with CH₂Cl₂ (30 mL × 3). The combined organic layers were dried over Na₂SO₄, and concentrated. Purification by silica gel column chromatography (hexane/EtOAc (7:1)–(2:1)) gave **21** as white crystals (4.18 g, 84%): mp 84.5–86 °C; ¹H NMR (600 MHz, CDCl₃) δ 3.34 (br s, 2H), 3.88 (s, 3H), 6.88 (d, *J* = 7.8 Hz, 1H), 6.92 (dt, *J* = 1.2, 7.2 Hz, 1H), 7.11 (dd, *J* = 1.2, 7.2 Hz, 1H), 7.27 (dt, *J* = 1.2, 7.8 Hz, 1H), 7.35–7.38 (m, 2H), 7.40 (d, *J* = 9.0 Hz, 1H), 7.44–7.47 (m, 1H), 7.83–7.85 (m, 1H), 7.92 (d, *J* = 9.0 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 56.7, 113.9, 115.4, 118.4, 121.3, 121.8, 123.7, 125.0, 126.6, 127.9, 128.6, 129.2, 129.5, 131.7, 133.3, 144.7, 154.4; IR (KBr) 3450, 3364, 3017, 2937, 2829, 1618, 1591, 1506, 1495, 1454, 1273, 1252, 1065, 810, 748 cm⁻¹; HRMS (FAB, nitrobenzyl alcohol) calcd for C₁₇H₁₆NO 250.1232, found 250.1243 (M + H).

1-[2-(*N*,*N*-Dimethylamino)phenyl]-2-methoxynaphthalene (22). A mixture of 21 (3.73 g, 15.0 mmol), KHCO₃ (3.30 g, 33.0 mmol), and MeI (2.3 mL, 38 mmol) in dry DMF (30 mL) under N₂ was stirred at room temperature for 4 h. After addition of H₂O (20 mL), the product was extracted with hexane/EtOAc (1:1) (40 mL × 3), and the combined organic layers were washed with H₂O (30 mL), dried over Na₂SO₄, and concentrated. Purification by silica gel column chromatography (hexane/EtOAc (10:1)) gave 22 as a white solid (3.65 g, 88%): mp 78–79 °C; ¹H NMR (600 MHz, CDCl₃) δ 2.46 (s, 6H), 3.89 (s, 3H), 7.06 (t, *J* = 6.6 Hz, 1H), 7.13–7.16 (m, 2H), 7.30–7.34 (m, 2H), 7.38–7.40 (m, 3H), 7.81 (dd, *J* = 1.8, 7.2 Hz, 1H),

7.88 (d, J = 9.0 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 43.2, 56.6, 113.9, 117.8, 121.0, 123.4, 125.3, 125.7, 126.0, 127.7, 128.2, 128.7, 129.0, 129.1, 133.0, 133.0, 152.8, 153.6; IR (KBr) 3047, 2937, 2822, 2768, 1618, 1591, 1508, 1493, 1464, 1448, 1431, 1331, 1313, 1269, 1256, 1144, 1069, 1049, 941, 806, 770, 758 cm⁻¹; HRMS (FAB, nitrobenzyl alcohol) calcd for C₁₉H₂₀NO 278.1545, found 278.1557 (M + H).

1-[2-(*N***,N-Dimethylamino)phenyl]-2-hydroxynaphthalene (23).** A solution of BBr₃ in dry CH₂Cl₂ (1.0 M, 12 mL, 12 mmol) was added to a solution of **22** (2.77 g, 10.0 mmol) in dry CH₂Cl₂ (20 mL) under N₂ in an ice bath. The mixture was stirred at room temperature for 9 h. After adjustment to pH 7 by using 10% NaOH, the product was extracted with CH₂Cl₂ (30 mL × 3). The combined organic layers were dried over Na₂SO₄, and concentrated. Purification by silica gel column chromatography (hexane/EtOAc (10:1)) gave **23** as a white solid (2.33 g, 89%): mp 123.5–124.5 °C; ¹H NMR (600 MHz, CDCl₃) δ 2.70 (s, 6H), 7.16 (dt, *J* = 1.2, 7.2 Hz, 1H), 7.28 (dd, *J* = 1.2, 8.4 Hz, 1H), 7.28 (d, *J* = 8.4 Hz, 1H), 7.34 (ddd, *J* = 1.2, 6.6, 8.4 Hz, 1H), 7.41–7.43 (m, 2H), 7.79 (d, *J* = 9.0 Hz, 2H), 7.83 (dd, *J* = 1.8, 7.8 Hz, 1H), 10.01 (br s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 43.5, 118.1, 120.6, 121.0, 122.9, 123.1, 125.3, 126.0, 128.1, 128.4, 129.3, 129.9, 130.6, 133.3, 135.3, 149.9, 152.0; IR (KBr) 3017, 2953, 2883, 2837, 1618, 1591, 1489, 1466, 1456, 1333, 1238, 1178, 1153, 1096, 988, 924, 820, 770, 756, 673 cm⁻¹; HRMS (FAB, nitrobenzyl alcohol) calcd for C₁₈H₁₈NO 264.1388, found 264.1376 (M + H).


2-(2-Hydroxy-1-naphthyl)phenyltrimethylammonium iodide (24). A mixture of **23** (1.84 g, 7.00 mmol) and MeI (1.3 mL, 21 mmol) in dry DMF (7 mL) under N₂ was stirred at 40 °C for 3 d. After removal of DMF, recrystallization from MeOH/Et₂O gave **24** as a white solid (2.49 g, 88%): mp 192–193 °C; ¹H NMR (600 MHz, DMSO- d_6) δ 3.45 (s, 9H), 6.98 (d, J = 7.8 Hz, 1H), 7.15 (dd, J = 1.8, 7.8 Hz, 1H), 7.33 (d, J = 9.0 Hz, 1H), 7.35 (ddd, J = 1.2, 7.2, 8.4 Hz, 1H), 7.40 (ddd, J = 1.2, 7.2, 8.4 Hz, 1H), 7.65 (dt, J = 1.2, 7.2 Hz, 1H), 7.72 (ddd, J = 1.8, 7.2, 9.0 Hz, 1H), 7.91 (d, J = 7.8 Hz, 1H), 7.98 (d, J = 9.0 Hz, 1H), 8.14 (d, J = 9.0 Hz, 1H), 10.39 (br s, 1H); ¹³C NMR (150 MHz, DMSO- d_6) δ 56.8, 118.5, 118.6, 122.4, 123.4, 124.4, 127.6, 128.1, 128.5, 129.9, 130.3, 130.8, 131.1, 133.5, 136.4, 146.0, 152.1; IR (KBr) 3179, 3063, 3011, 1622, 1506, 1489, 1429, 1340, 1273, 984, 947, 820, 760, 745 cm⁻¹; HRMS (FAB, nitrobenzyl alcohol) calcd for C₁₉H₂₀NO 278.1545, found 278.1558 (M – I).

1-(2-Trimethylammoniophenyl)-2-naphtholate (7). A mixture of **24** (405 mg, 1.00 mmol) and K₂CO₃ (166 mg, 1.20 mmol) in dry MeCN (7 mL) under N₂ was stirred at room temperature overnight. After filtration and concentration, the product was washed with Et₂O to give **7** as a yellow powder (238 mg, 86%): mp 123–125 °C; ¹H NMR (600 MHz, CDCl₃) δ 3.60 (s, 9H), 6.76 (d, *J* = 8.4 Hz, 1H), 7.16 (dt, *J* = 1.2, 7.2 Hz, 1H), 7.22–7.23 (m, 2H), 7.28

(d, J = 9.0 Hz, 1H), 7.47 (dt, J = 1.2, 7.2 Hz, 1H), 7.51 (ddd, J = 1.8, 7.2, 9.0 Hz, 1H), 7.66 (d, J = 9.0 Hz, 1H), 7.71 (d, J = 7.2 Hz, 1H), 7.91 (d, J = 7.8 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 57.5, 117.6, 120.8, 121.2, 122.1, 122.9, 126.6, 128.2, 129.2, 130.5, 130.8, 133.4, 134.3, 137.7, 145.9, 158.5; IR (KBr) 3055, 1616, 1587, 1489, 1421, 1366, 1340, 1275, 1234, 988, 951, 826, 756 cm⁻¹; HRMS (FAB, nitrobenzyl alcohol) calcd for C₁₉H₂₀NO 278.1545, found 278.1554 (M + H).

(1-H) Synthetic Procedure for Catalyst 8.

(*R*)-2-(*N*,*N*-Dimethylamino)-2'-hydroxy-1,1'-binaphthyl (25) was prepared according to the literature.¹⁰

(*R*)-1-(2-Hydroxy-1-naphthyl)-2-naphthyltrimethylammonium iodide (26). A mixture of 25 (627 mg, 2.00 mmol) and MeI (0.37 mL, 6.0 mmol) in dry DMF (2 mL) under N₂ was stirred at 40 °C for 3 d. After removal of DMF, purification by silica gel column chromatography (CH₂Cl₂/MeOH (1:0)–(10:1)) gave 26 as a pale yellow solid (573 mg, 63%): mp 117–118 °C; ¹H NMR (600 MHz, CDCl₃) δ 3.48 (s, 9H), 6.68 (d, *J* = 8.3 Hz, 1H), 6.96 (d, *J* = 8.4 Hz, 1H), 7.22–7.25 (m, 2H), 7.33 (t, *J* = 7.0 Hz, 1H), 7.52 (t, *J* = 7.0 Hz, 1H), 7.80–7.90 (m, 4H), 8.03 (d, *J* = 9.6 Hz, 1H), 8.06 (d, *J* = 9.5 Hz, 1H), 8.43 (br s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 58.3, 114.5, 118.3, 119.1, 123.9, 127.2, 127.9, 127.9, 127.9, 128.3, 128.4, 128.6, 128.8, 131.4, 131.7, 133.2, 133.7, 133.8, 142.6, 152.5; IR (KBr) 3398, 3153, 3067, 3018, 1622, 1508, 1494, 1477, 1433, 1342, 1271, 974, 935, 916, 893, 820, 751 cm⁻¹; HRMS (FAB, nitrobenzyl alcohol) calcd for C₂₃H₂₂NO 328.1701, found 328.1703 (M – I).

(*R*)-1-(2-Trimethylammonio-1-naphthyl)-2-naphtholate (8). A mixture of 26 (455 mg, 1.00 mmol) and K₂CO₃ (166 mg, 1.20 mmol) in dry MeCN (5 mL) under N₂ was stirred at room temperature for 5 h. After filtration and concentration, the product was washed with Et₂O to give 8 as a yellow powder (304 mg, 93%): mp 124–125.5 °C; ¹H NMR (600 MHz, CDCl₃) δ 3.39 (s, 9H), 6.41 (d, *J* = 8.4 Hz, 1H), 7.07 (ddd, *J* = 1.2, 6.6, 7.8 Hz, 1H), 7.10–7.15 (m, 3H), 7.24 (ddd, *J* = 1.2, 7.2, 8.4 Hz, 1H), 7.52 (ddd, *J* = 1.2, 6.6, 7.8 Hz, 1H), 7.60 (d, *J* = 9.0 Hz, 1H), 7.71 (d, *J* = 7.2 Hz, 1H), 7.93–7.94 (m, 2H), 8.07 (d, *J* = 9.6 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 57.8, 113.2, 117.7, 121.2, 122.0, 122.9, 126.4, 126.8, 127.7, 128.1, 128.2, 130.2, 130.9, 131.6, 133.4, 134.5, 134.8, 142.6, 159.7; IR (KBr) 3423, 3049, 2955, 1612, 1589, 1495, 1421, 1346, 1273, 1236, 1211, 980, 939, 891, 808, 748 cm⁻¹; HRMS (FAB, nitrobenzyl alcohol) calcd for C₂₃H₂₂NO 328.1701, found 328.1718 (M + H).

(1-I) Synthetic Procedure for Phenyltrimethylammonium Phenoxide.¹¹

$$PhN^{+}Me_{3} \cdot OH^{-} \xrightarrow{PhOH} PhN^{+}Me_{3} \cdot PhO^{-}$$

A mixture of phenyltrimethylammonium hydroxide (153 mg, 1.00 mmol), phenol (94 mg, 1.00 mmol), K_2CO_3 (152 mg, 1.10 mmol), and molecular sieves 3A (5 pieces) in MeOH (1 mL) was stirred at room temperature for 24 h. After filtration, repeated evaporation with toluene and Et₂O gave the product as a brown viscous solid (216 mg, 94%): ¹H NMR (600 MHz, CDCl₃) δ 3.76 (s, 9H), 6.61 (t, *J* = 7.2 Hz, 1H), 6.87 (d, *J* = 7.2 Hz, 2H), 7.06–7.09 (m, 2H), 7.48–7.54 (m, 3H), 7.73 (d, *J* = 7.8 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 57.0, 116.0, 117.0, 119.5, 129.3, 130.4, 130.6, 146.7, 161.8; IR (KBr) 3013, 1664, 1593, 1474, 1416, 1248, 1165, 949, 849, 762, 694 cm⁻¹; HRMS (FAB, nitrobenzyl alcohol) calcd for C₉H₁₄N 136.1126, found 136.1129 (M – PhO).

[2] Coupling Reaction of CO₂ with Epoxide.

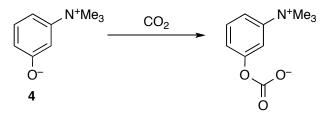
General Procedure for Coupling Reaction of CO₂ with Epoxide.

A stainless autoclave was charged with epoxide (10 mmol), catalyst (a catalytic amount), and then CO_2 (initial pressure 1 MPa at room temperature). The mixture was heated with stirring at a constant temperature for a reaction time. The reactor was cooled in an ice bath for 30 min, and excess CO_2 was released carefully. The crude product was dissolved in Et₂O, and the solution was concentrated. The NMR yield was determined by using 2-methoxynaphthalene as an internal standard. The product was purified by distillation or silica gel column chromatography.

4-*n***-Butyl-1,3-dioxolan-2-one (10a).**¹² ¹H NMR (600 MHz, CDCl₃) δ 0.93 (t, *J* = 7.2 Hz, 3H), 1.33–1.52 (m, 4H), 1.66–1.72 (m, 1H), 1.79–1.85 (m, 1H), 4.07 (dd, *J* = 7.2, 8.4 Hz, 1H), 4.52 (t, *J* = 8.4 Hz, 1H), 4.68–4.72 (m, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 13.7, 22.1, 26.3, 33.4, 69.3, 77.0, 155.0; IR (neat) 2953, 2934, 2874, 1794, 1553, 1483, 1468, 1387, 1175, 1124, 1067, 775, 718 cm⁻¹.

4-Methyl-1,3-dioxolan-2-one (10b).¹² ¹H NMR (600 MHz, CDCl₃) δ 1.50 (d, J = 6.6 Hz, 3H), 4.03 (dd, J = 7.2, 8.4 Hz, 1H), 4.55 (dd, J = 7.8, 8.4 Hz, 1H), 4.83–4.88 (m, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 19.3, 70.6, 73.5, 155.0; IR (neat) 2990, 2924, 1790, 1556, 1485, 1456, 1387, 1354, 1182, 1120, 1051, 851, 777, 712 cm⁻¹.

4-*n***-Octyl-1,3-dioxolan-2-one (10c).**^{13 1}H NMR (600 MHz, CDCl₃) δ 0.88 (t, *J* = 7.2 Hz, 3H), 1.26–1.39 (m, 11H), 1.45–1.50 (m, 1H), 1.65–1.71 (m, 1H), 1.78–1.83 (m, 1H), 4.07 (dd, *J* =


7.2, 8.4 Hz, 1H), 4.52 (dd, J = 7.8, 8.4 Hz, 1H), 4.70 (dq, J = 5.4, 7.8 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 14.0, 22.6, 24.3, 29.0, 29.1, 29.2, 31.7, 33.8, 69.4, 77.0, 155.1; IR (neat) 2928, 2855, 1801, 1466, 1385, 1169, 1065, 775, 721 cm⁻¹.

4-Methoxymethyl-1,3-dioxolan-2-one (**10d**).¹² ¹H NMR (600 MHz, CDCl₃) δ 3.42 (s, 3H), 3.57 (dd, J = 3.6, 10.8 Hz, 1H), 3.64 (dd, J = 3.6, 10.8 Hz, 1H), 4.38 (dd, J = 6.0, 8.4 Hz, 1H), 4.49 (t, J = 8.4 Hz, 1H), 4.78–4.82 (m, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 59.4, 66.0, 71.3, 75.0, 154.9; IR (neat) 2991, 2934, 2897, 2822, 1794, 1481, 1398, 1175, 1132, 1103, 1084, 1074, 1047, 775, 714 cm⁻¹.


4-Phenyl-1,3-dioxolan-2-one (**10e**).¹² ¹H NMR (600 MHz, CDCl₃) δ 4.35 (t, *J* = 8.4 Hz, 1H), 4.80 (t, *J* = 8.4 Hz, 1H), 5.68 (t, *J* = 8.4 Hz, 1H), 7.36–7.38 (m, 2H), 7.43–7.47 (m. 3H); ¹³C NMR (150 MHz, CDCl₃) δ 71.1, 77.9, 125.8, 129.1, 129.6, 135.7, 154.8; IR (KBr) 2976, 2922, 1778, 1460, 1358, 1327, 1169, 1055, 760, 700 cm⁻¹.

4-Chloromethyl-1,3-dioxolan-2-one (**10f**).¹² ¹H NMR (600 MHz, CDCl₃) δ 3.70–3.78 (m, 2H), 4.42 (dd, J = 6.0, 9.0 Hz, 1H), 4.59 (dd, J = 8.4, 9.0 Hz, 1H), 4.94–4.98 (m, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 43.8, 66.8, 74.3, 154.3; IR (neat) 3221, 2984, 2968, 1794, 1481, 1431, 1396, 1356, 1335, 1167, 1072, 1045, 768, 718, 664 cm⁻¹.

[3] Synthesis of Betaine–CO₂ Adduct and Subsequent Reaction with Epoxide.

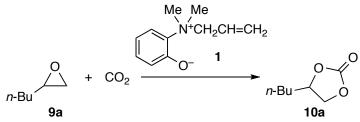

A 30-mL stainless autoclave was charged with **4** (151 mg, 1.00 mmol) and CO₂ (initial pressure 1 MPa). The mixture was stirred at a constant temperature for 24 h. Excess CO₂ was released carefully to give a **4**–CO₂ adduct as a white powder: ¹H NMR (600 MHz, DMSO-*d*₆) δ 3.48 (s, 9H), 6.71 (d, *J* = 8.2 Hz, 1H), 6.92 (d, *J* = 8.2 Hz, 1H), 6.99 (s, 1H), 7.18 (t, *J* = 8.2 Hz, 1H); ¹³C NMR (150 MHz, methanol-*d*₄) δ 57.9, 108.7, 109.8, 119.2, 132.1, 149.6, 161.2, 162.7; IR (KBr) 3013, 1655, 1609, 1497, 1470, 1412, 1219, 945, 918, 837 cm⁻¹.

Figure S1. Selected Regions of ¹H NMR (600 MHz, DMSO- d_6) and ¹³C NMR (150 MHz, methanol- d_4) Spectra of **4** and its CO₂-adduct.

The 4–CO₂ adduct was allowed to react with 9a (1.21 mL, 10.0 mmol) under Ar in an autoclave at 120 °C for 24 h. The reactor was then cooled in an ice bath for 30 min. The NMR yield was determined by using 2-methoxynaphthalene as an internal standard. The results are summarized in Figure 3 in the text.

[4] Optimization of Reaction Conditions Using Catalyst 1.

A 50-mL stainless autoclave was charged with epoxide **9a** (10 mmol), catalyst (indicated in Table S1), and then CO_2 (pressure indicated in Table S1). The mixture was heated with stirring at the indicated temperature for the reaction time indicated. The reactor was cooled in an ice bath for 30 min, and excess CO_2 was released carefully. The crude product was dissolved in Et₂O, and the solution was concentrated. The NMR yield was determined by using 2-methoxynaphthalene as an internal standard.

The yield showed signs of leveling off at 0.5–2.0 MPa CO₂ (entries 1–4), while the yield increased with an increase in the amount of catalyst (entries 3 and 5–8). Next we changed the temperature using 3 mol % of catalyst at 1.0 MPa CO₂ to find that the yield reached a plateau at 130 °C (entries 3 and 9–12). When the progress of the reaction was then monitored under the optimal conditions (5 mol % of catalyst, 1.0 MPa CO₂, and 130 °C), the reaction reached 99% in 48 h (entries 13–16).

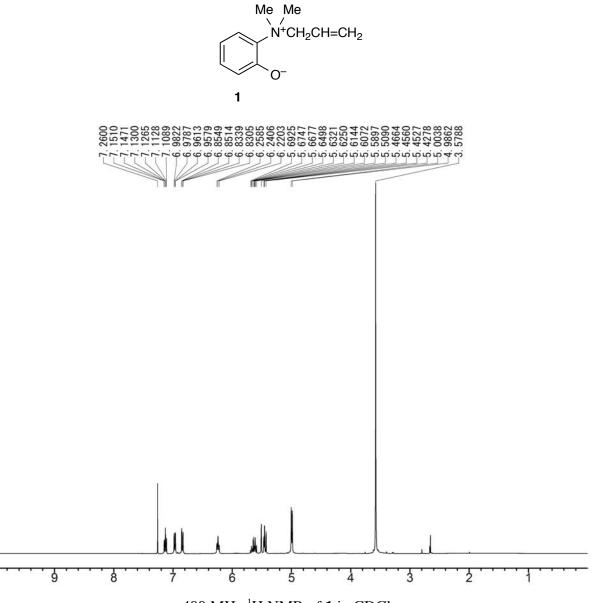
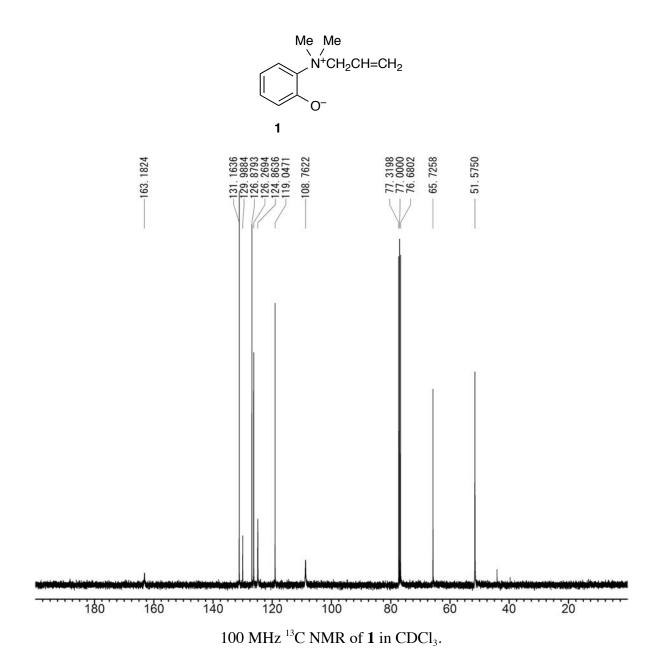
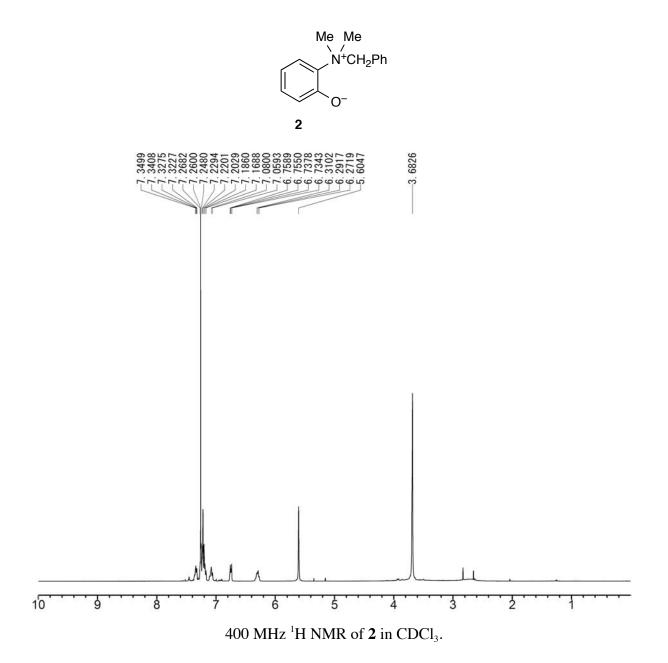
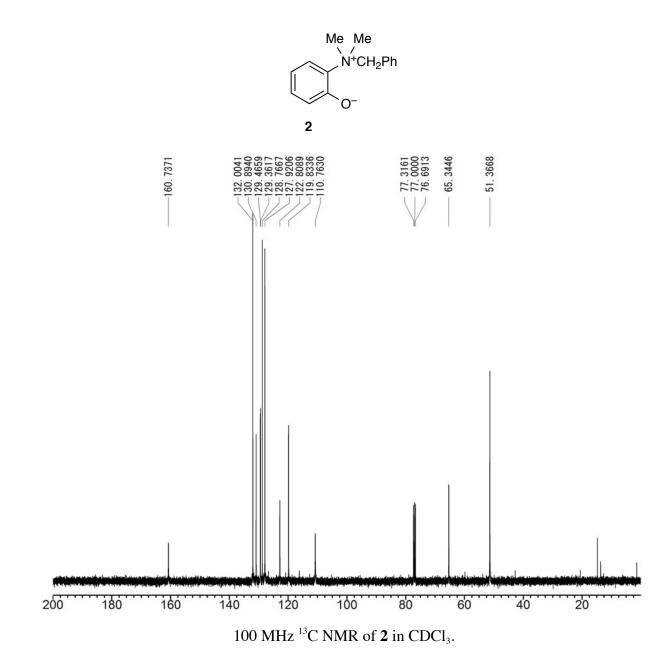
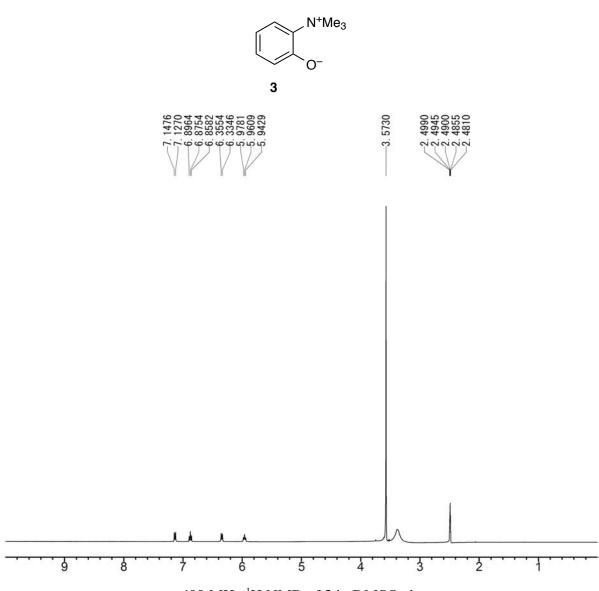

entry	CO_2 (MPa)	loading (mol %)	temp (°C)	time (h)	yield (%)
1	0.1	3	120	48	54
2	0.5	3	120	48	76
3	1.0	3	120	48	76
4	2.0	3	120	48	75
5	1.0	1	120	48	18
6	1.0	2	120	48	60
7	1.0	4	120	48	85
8	1.0	5	120	48	99
9	1.0	3	100	48	63
10	1.0	3	110	48	77
11	1.0	3	130	48	79
12	1.0	3	140	48	79
13	1.0	5	130	6	19
14	1.0	5	130	12	65
15	1.0	5	130	24	73
16	1.0	5	130	48	99

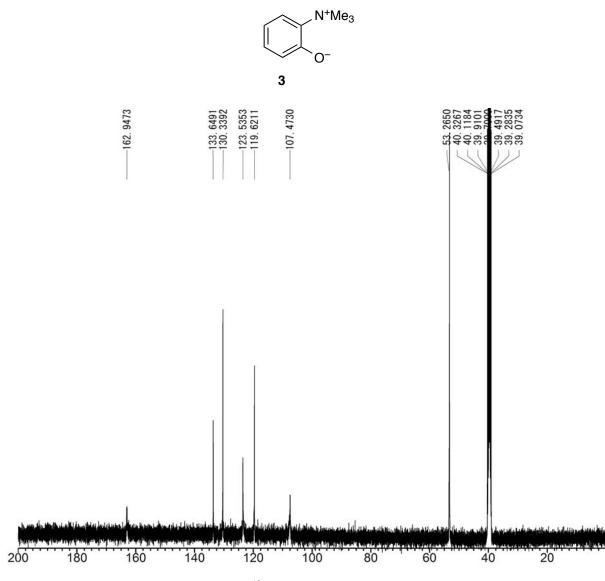
 Table S1. Optimization of Reaction Conditions Using Catalyst 1.

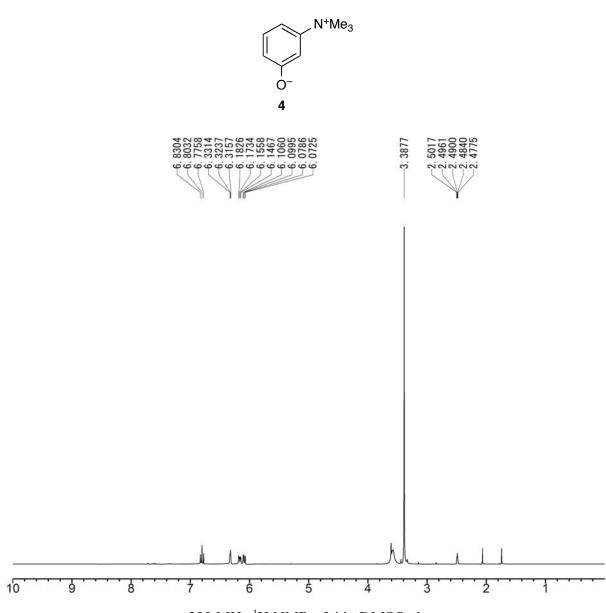

References

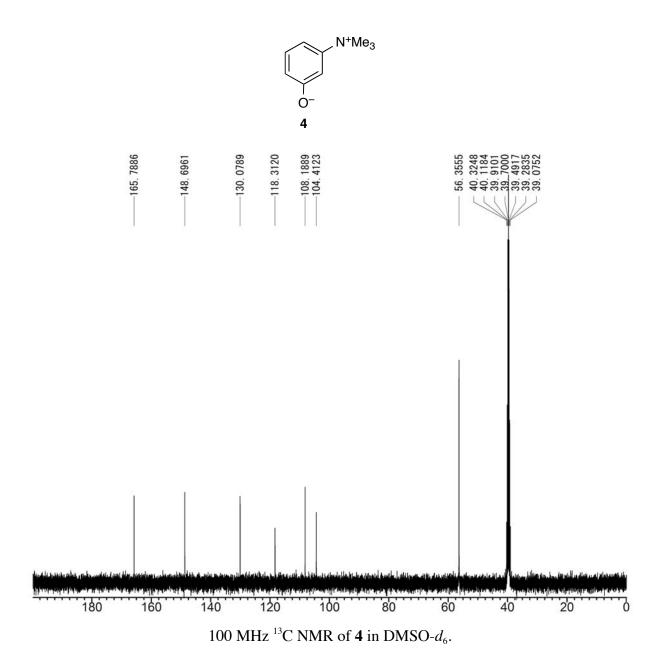

- (1) Grove, S. J. A.; Kaur, J.; Muir, A. W.; Pow, E.; Tarver, G. J.; Zhang, M.-Q. *Bioorg. Med. Chem. Lett.* **2002**, *12*, 193–196.
- (2) Ollis, W. D.; Sutherland, I. O.; Thebtaranonth, Y. J. Chem. Soc. Perkin Trans. 1981, 1981–1993.
- Epstein, J.; Plapinger, R. E.; Michel, H. O.; Cable, J. R.; Stephani, R. A.; Hester, R. J.;
 Billington, C., Jr.; List, G. R. J. Am. Chem. Soc. 1964, 86, 3075–3084.
- (4) Beringer, F. M.; Lillien, I. J. Am. Chem. Soc. 1960, 82, 5135–5140.
- (5) Ortega, P.; Copa-Patiño, J. L.; Muñoz-Fernandez, M. A.; Soliveri, J.; Gomez, R.; de la Mata, F. J. Org. Biomol. Chem. 2008, 6, 3264–3269.
- (6) Wiley, G. R.; Miller, S. I. J. Org. Chem. **1972**, *37*, 767–773.
- (7) Beringer, F. M.; Lillien, I. J. Am. Chem. Soc. 1960, 82, 5141–5142.
- (8) Downie, I. M.; Heaney, H.; Kemp, G.; King, D.; Wosley, M. *Tetrahedron* 1992, 48, 4005–4016.
- (9) Stubbs, H. W. D.; Tucker, S. H. J. Chem. Soc. 1954, 227–233.
- (10) Smrčina, M.; Vyskočil, Š.; Polívková, J.; Sejbal, J.; Hanuš, V.; Polášek, M.; Verrier, H.; Kočovský, P. *Tetrahedron: Asymmetry* 1997, 8, 537–546.
- (11) Walsh, T. D.; Long, R. C. J. Am. Chem. Soc. 1967, 89, 3943–3944.
- (12) Sakai, T.; Tsutsumi, Y.; Ema, T. Green Chem. 2008, 10, 337–341.
- (13) Meléndez, J.; North, M.; Pasquale, R. Eur. J. Inorg. Chem. 2007, 3323–3326.

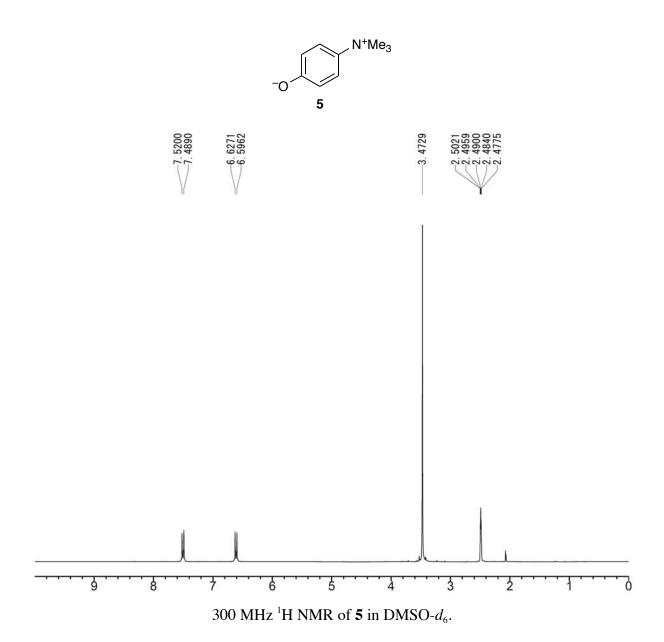

[5] ¹H and ¹³C NMR Spectra.

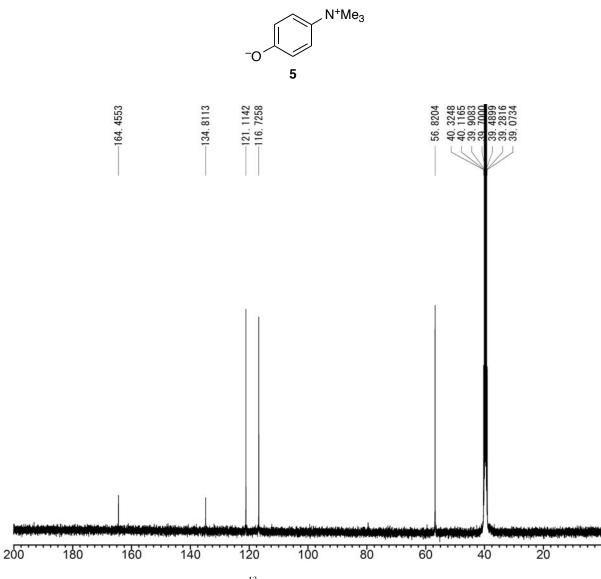


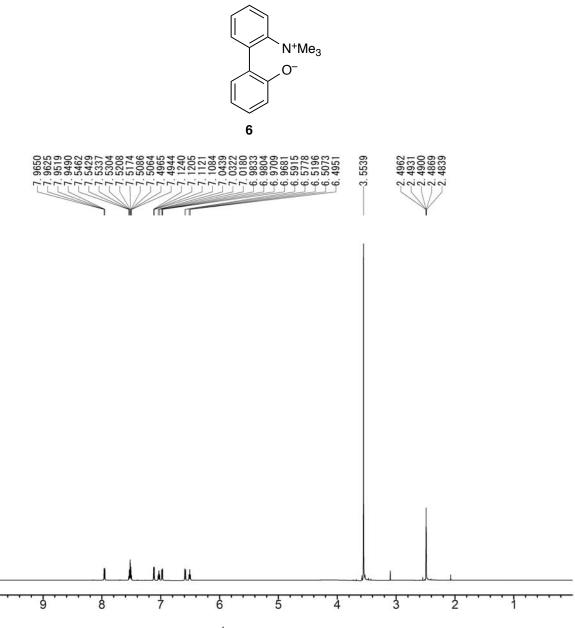


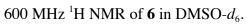


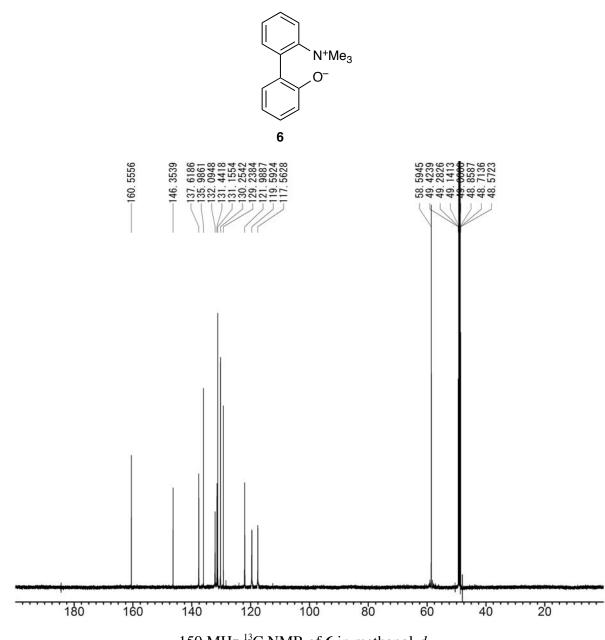

400 MHz ¹H NMR of **3** in DMSO- d_6 .

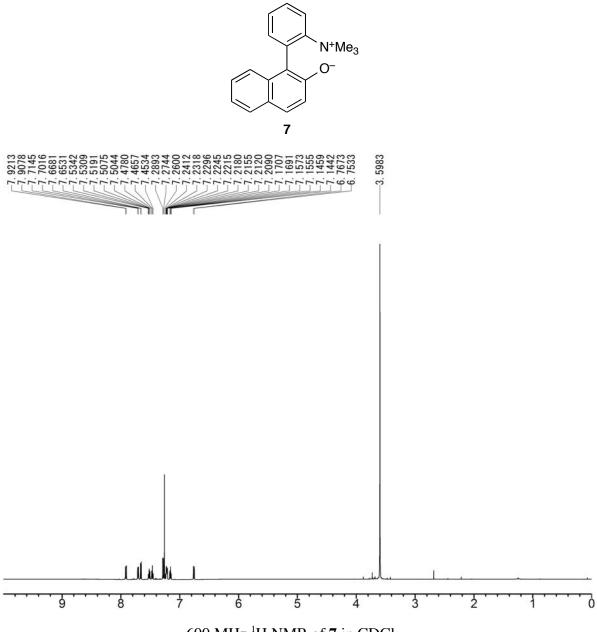


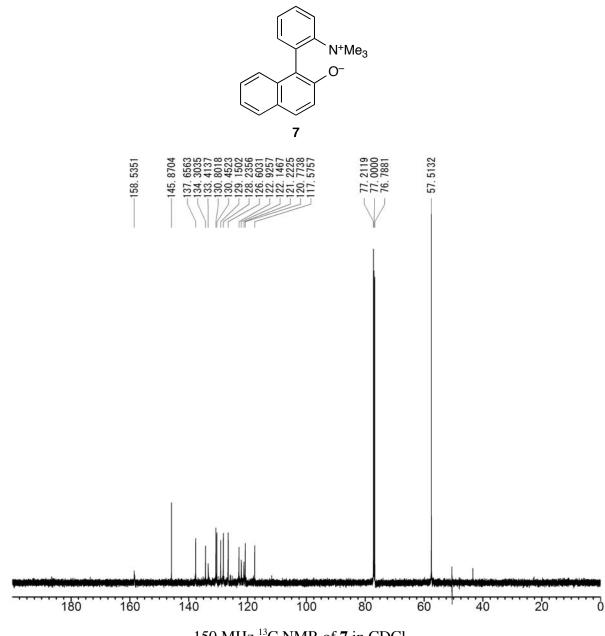

100 MHz 13 C NMR of **3** in DMSO- d_6 .

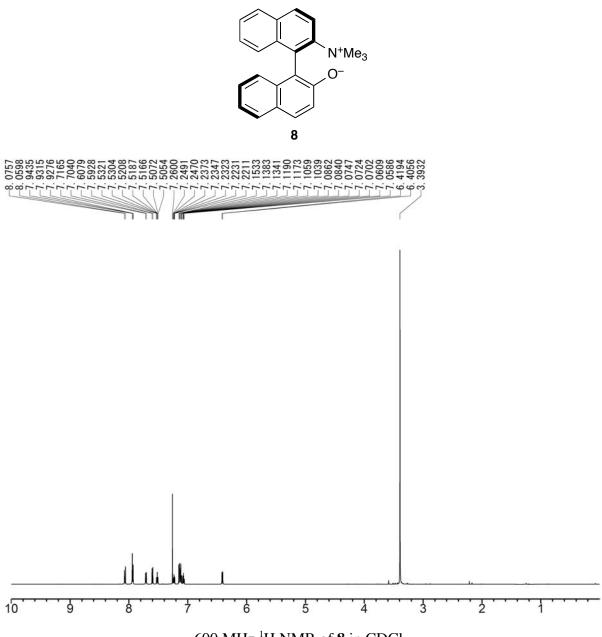

300 MHz ¹H NMR of **4** in DMSO- d_6 .

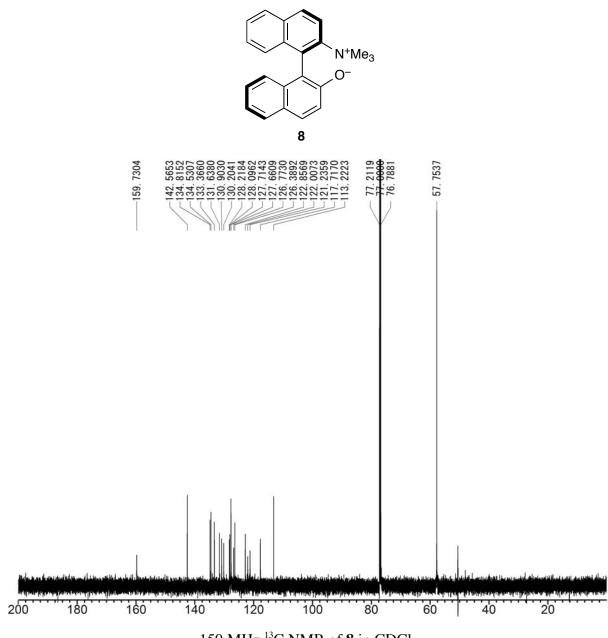


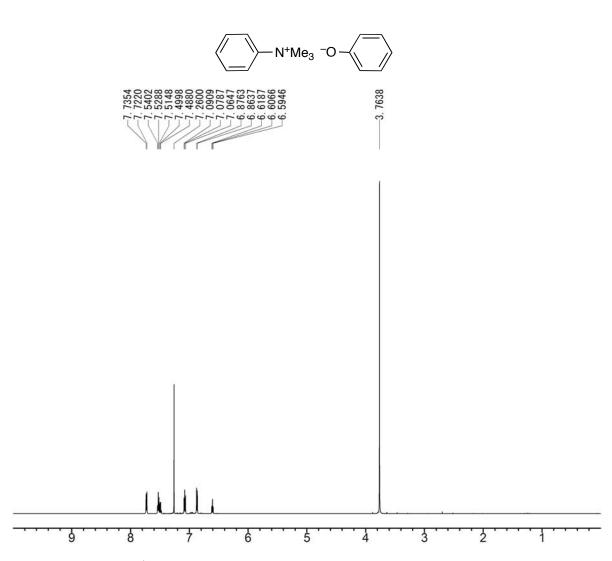


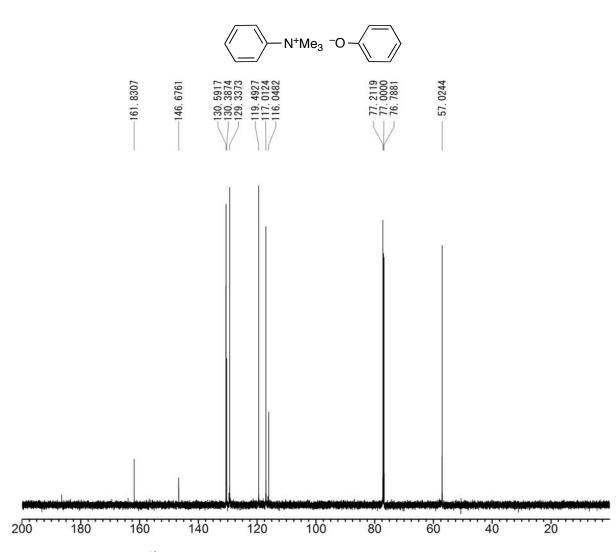

100 MHz 13 C NMR of **5** in DMSO- d_6 .

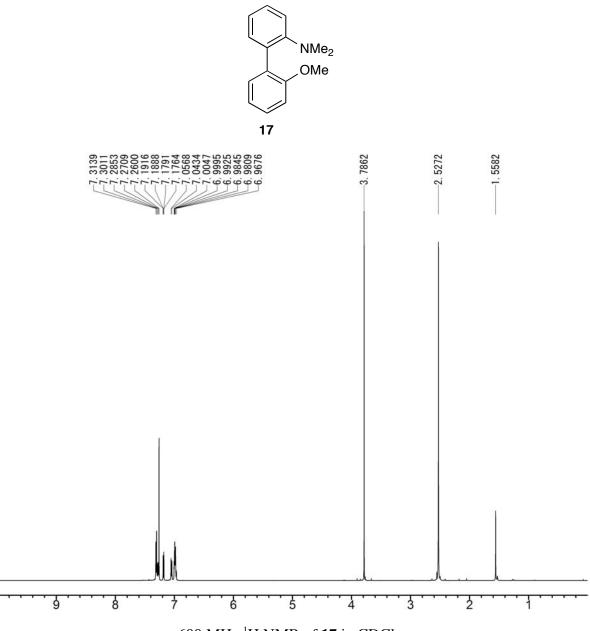


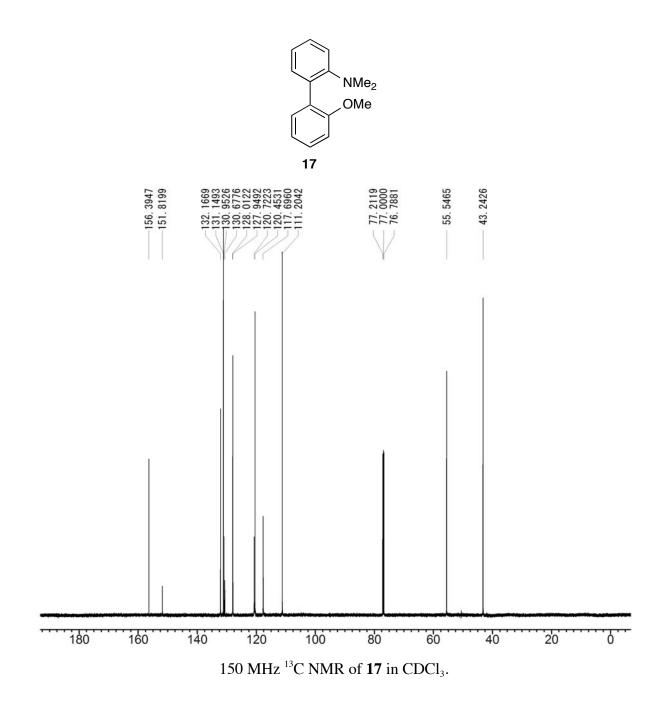

150 MHz ¹³C NMR of **6** in methanol- d_4 .

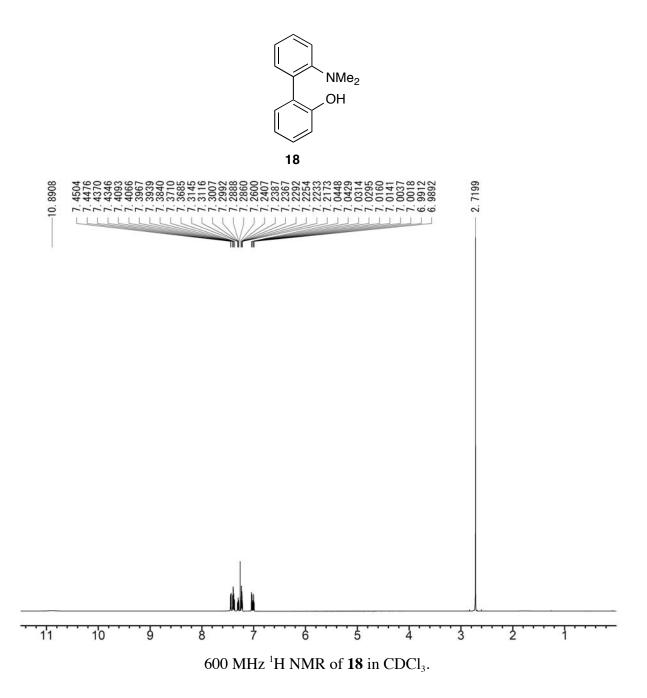

600 MHz ¹H NMR of **7** in CDCl₃.

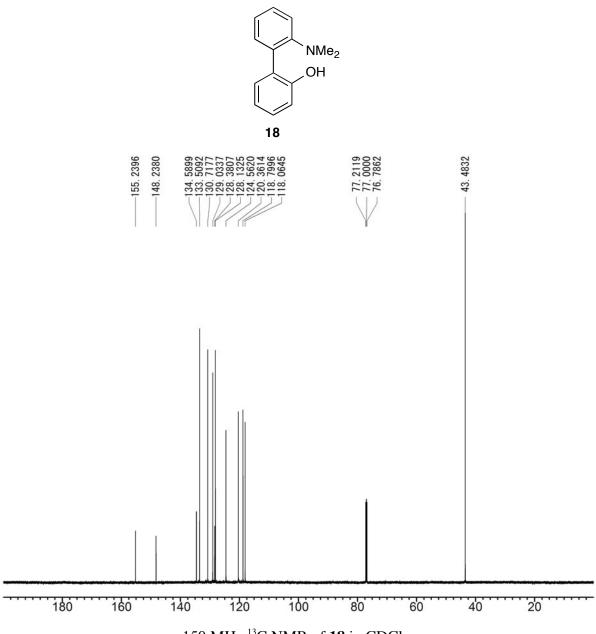

150 MHz 13 C NMR of 7 in CDCl₃.

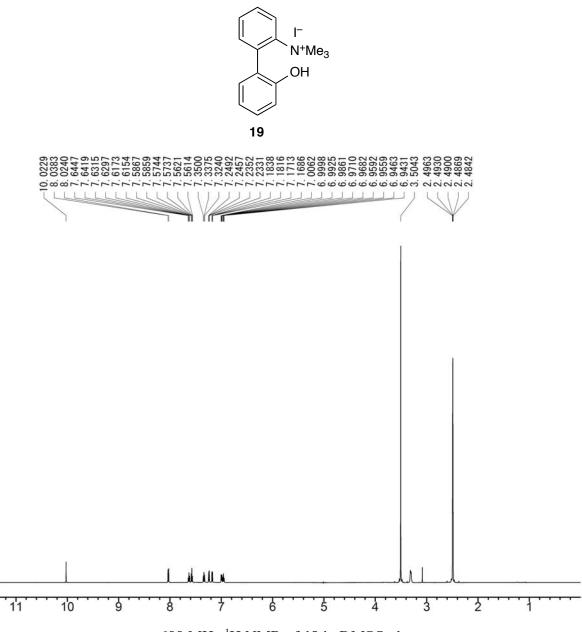


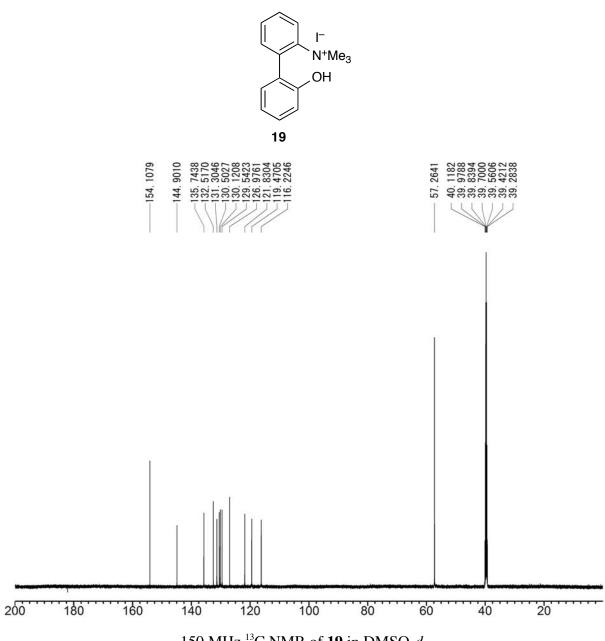

150 MHz 13 C NMR of **8** in CDCl₃.

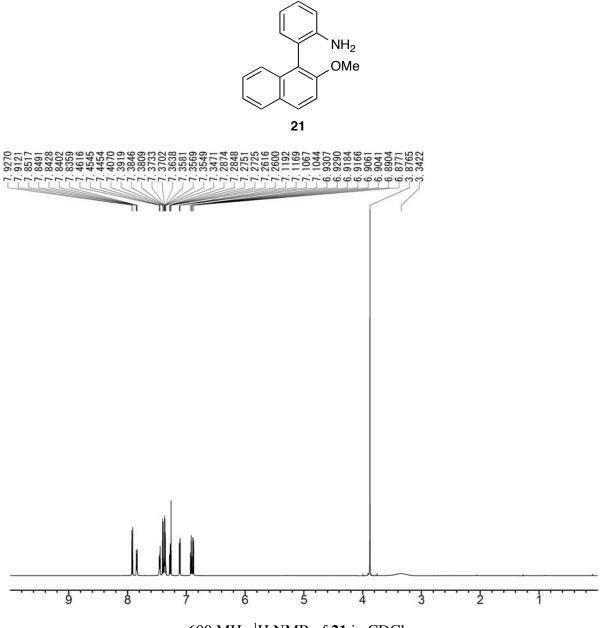

600 MHz ¹H NMR of phenyltrimethylammonium phenoxide in CDCl₃.

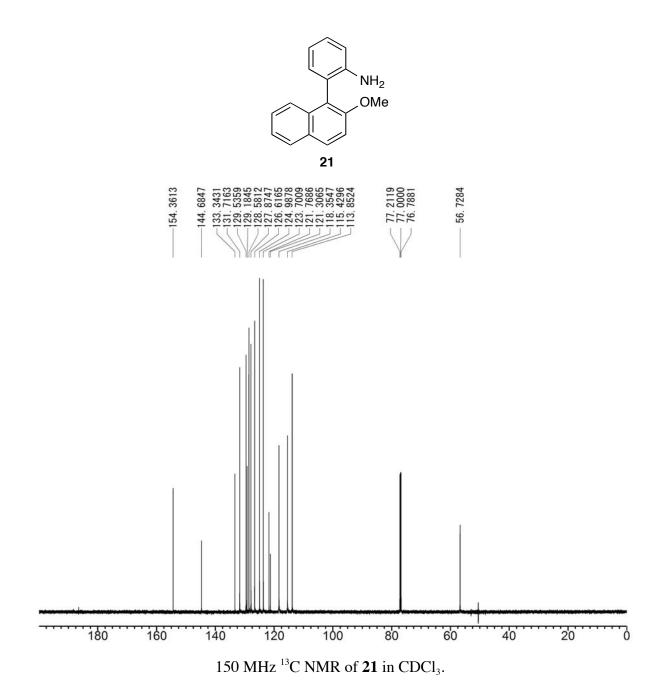


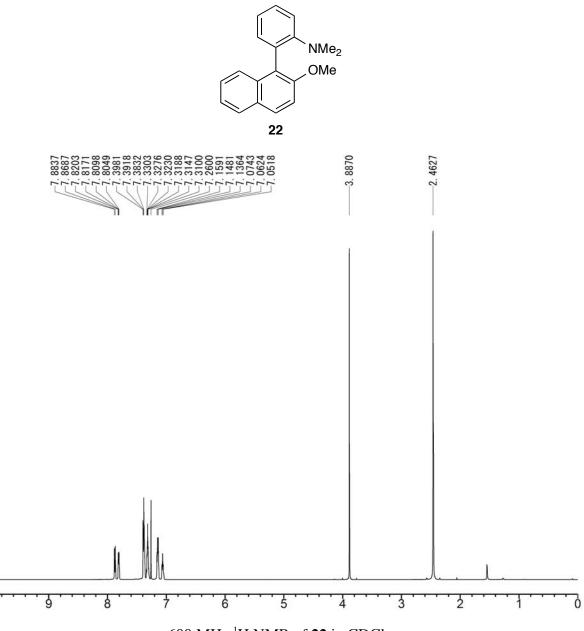

150 MHz ¹³C NMR of phenyltrimethylammonium phenoxide in CDCl₃.



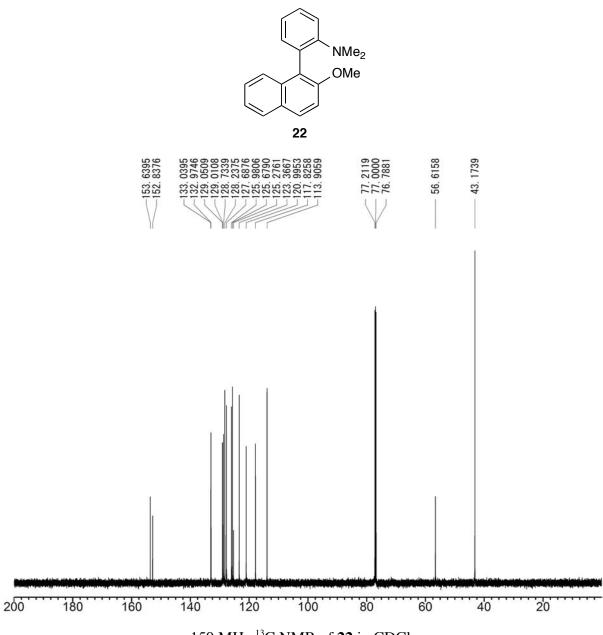


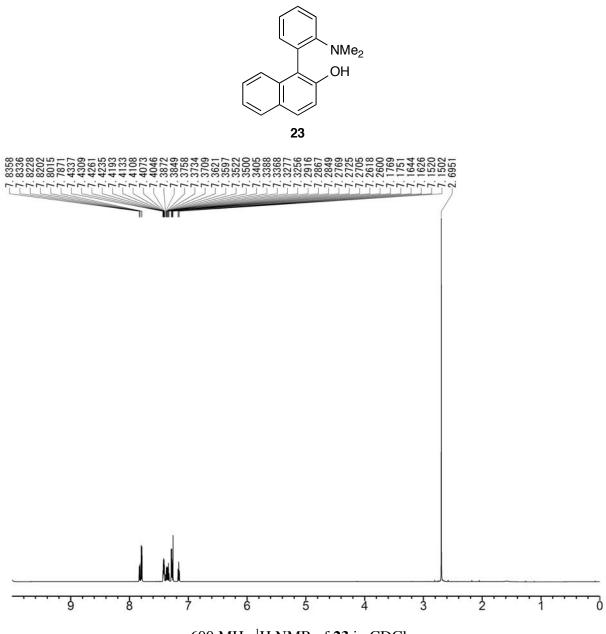


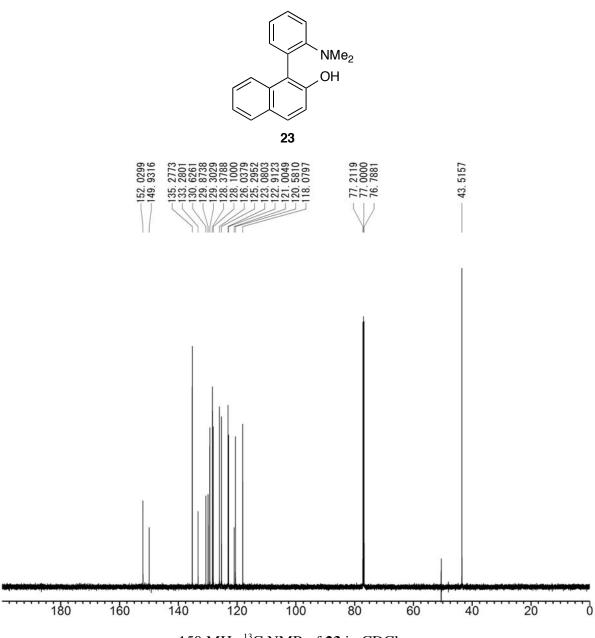

600 MHz ¹H NMR of **19** in DMSO- d_6 .

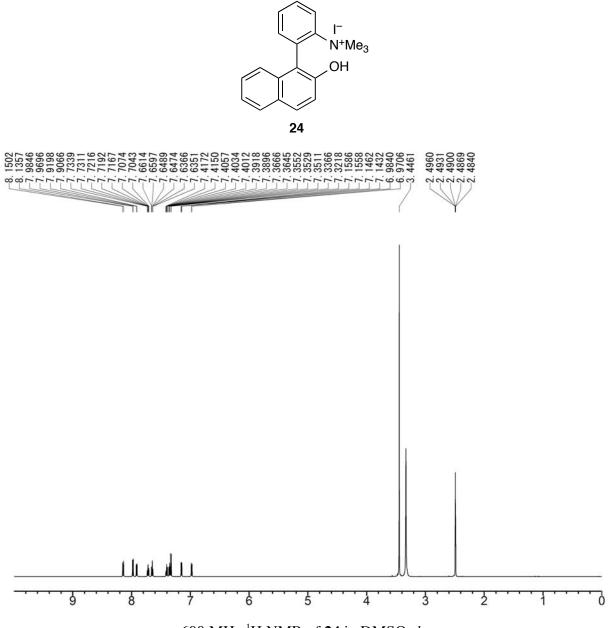


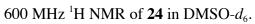
150 MHz 13 C NMR of **19** in DMSO- d_6 .

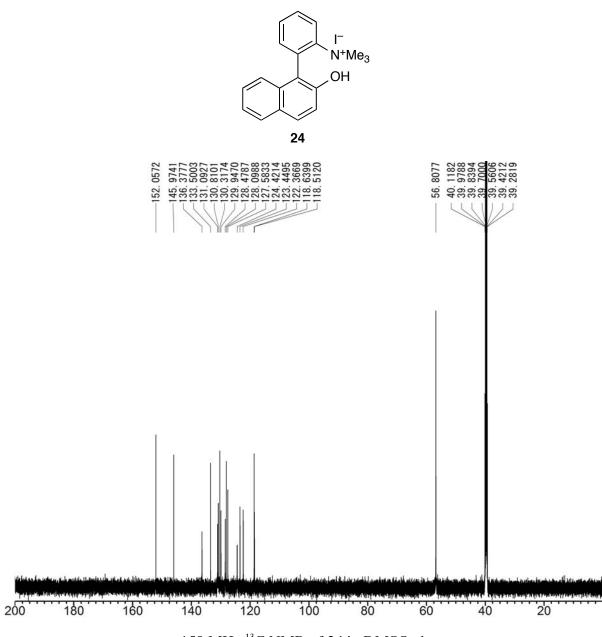


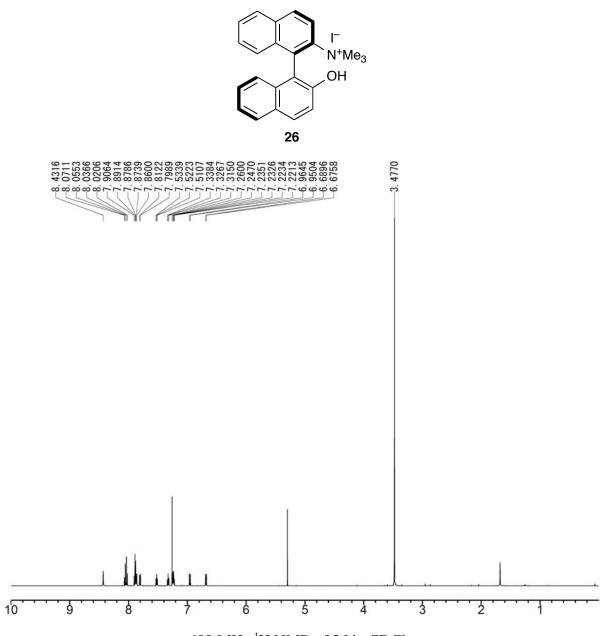


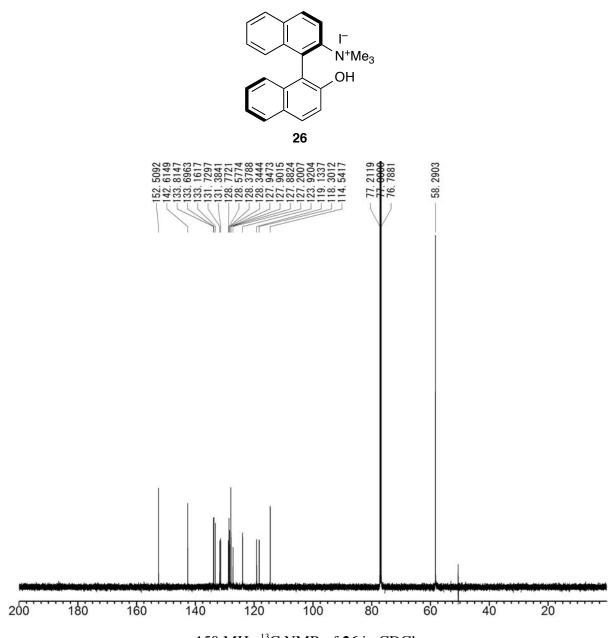

600 MHz ¹H NMR of **22** in CDCl₃.

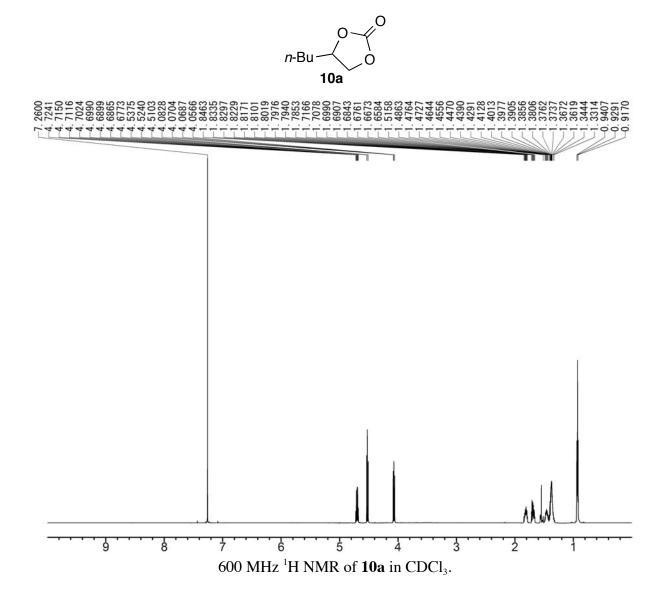

150 MHz ¹³C NMR of **22** in CDCl₃.

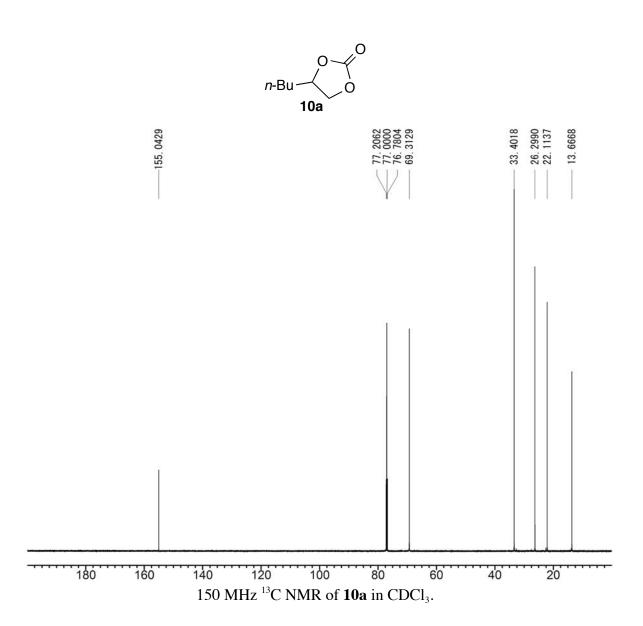


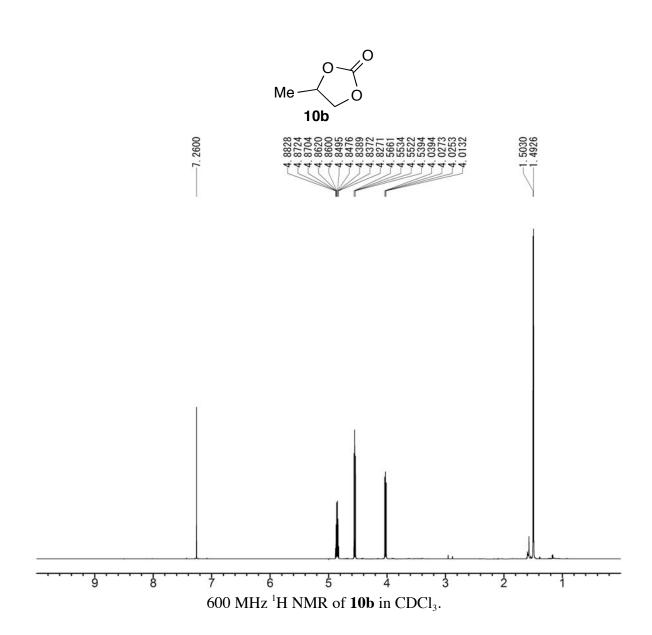


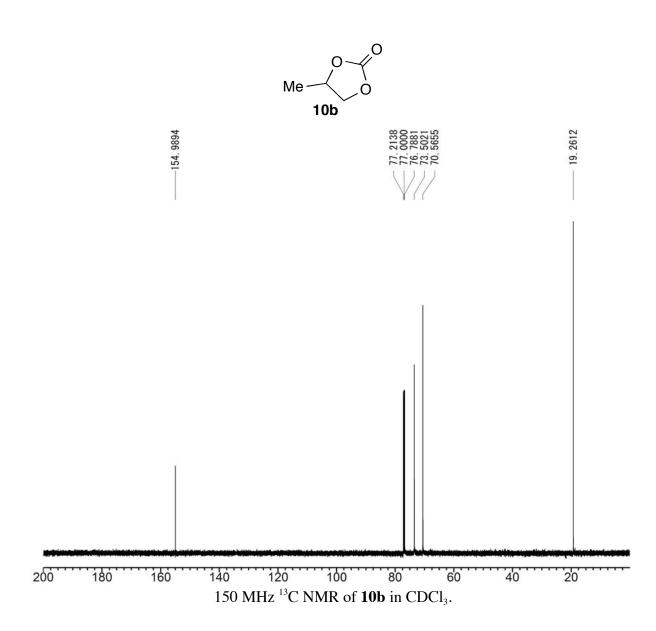


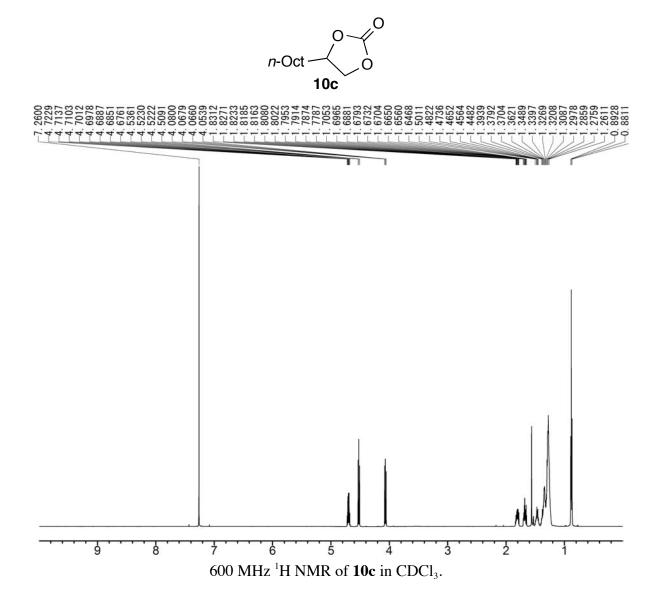


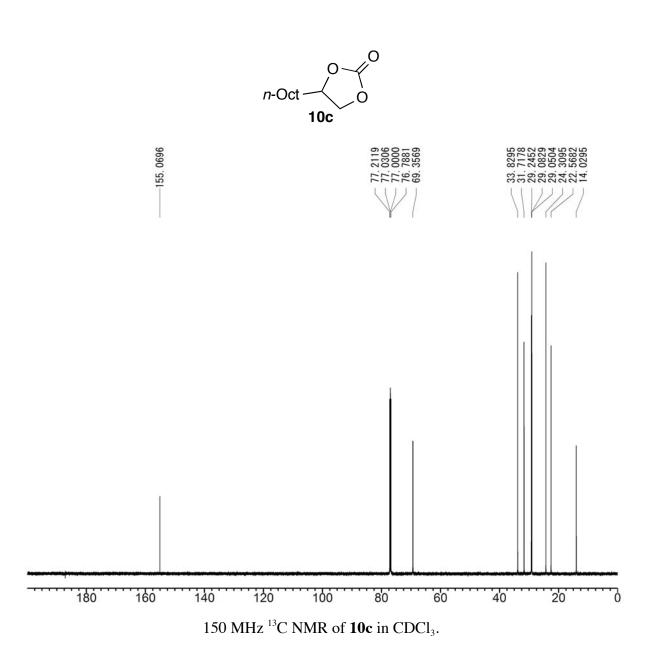

150 MHz 13 C NMR of **24** in DMSO- d_6 .

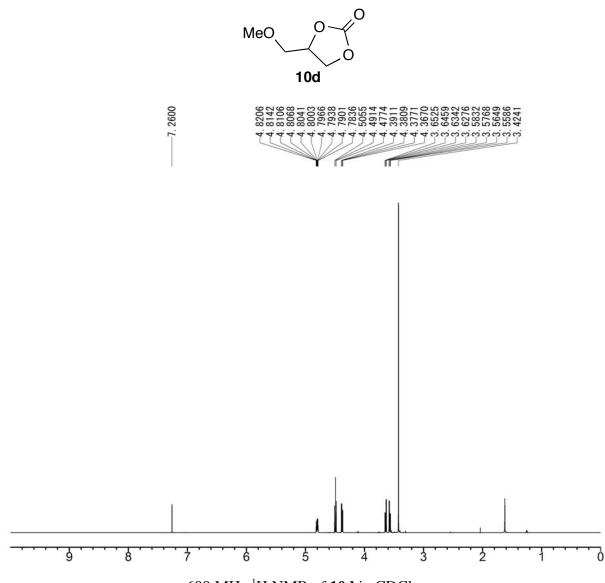


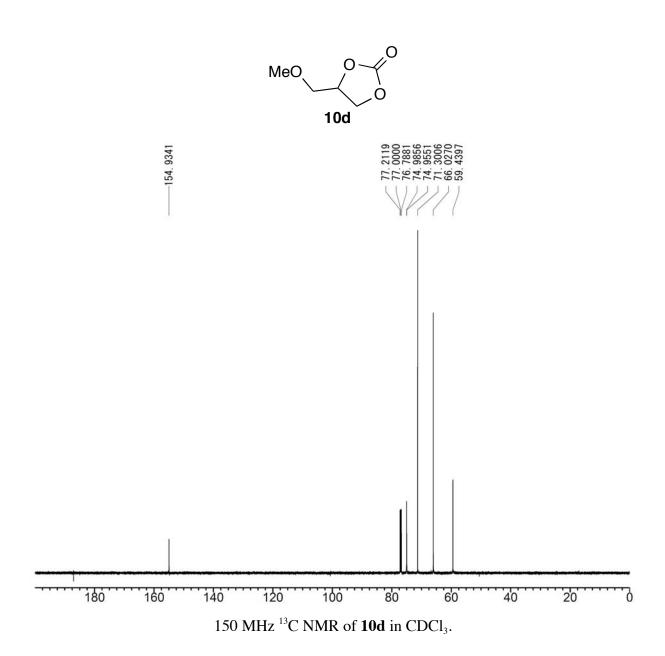


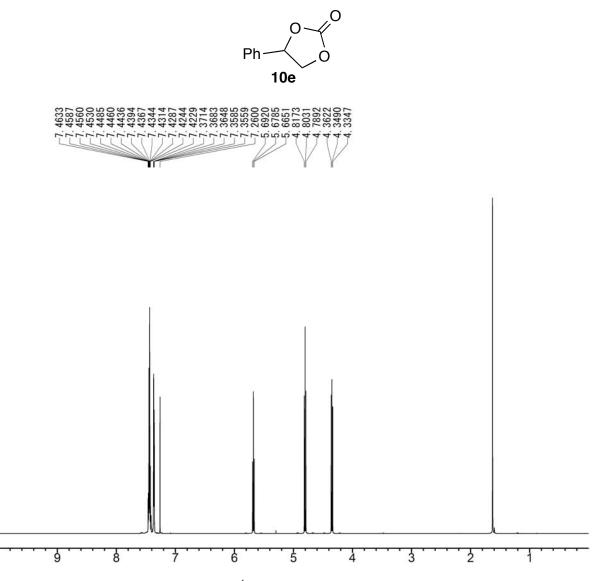


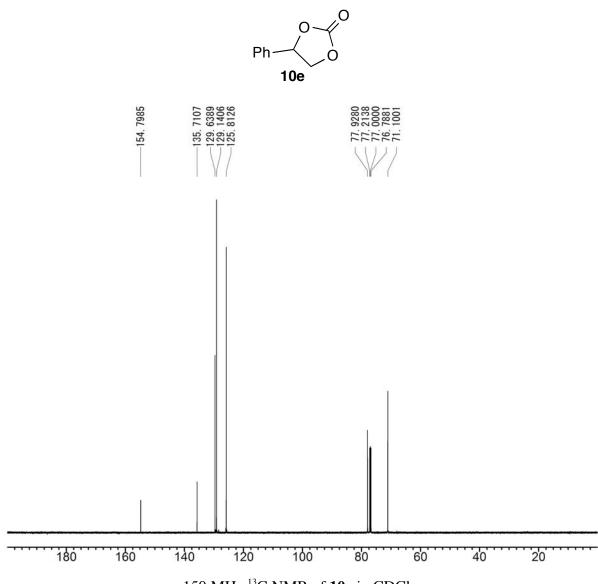

150 MHz ¹³C NMR of **26** in CDCl₃.



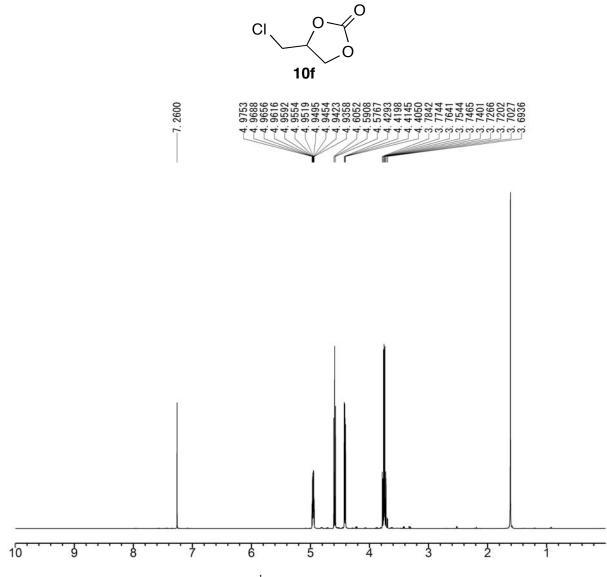


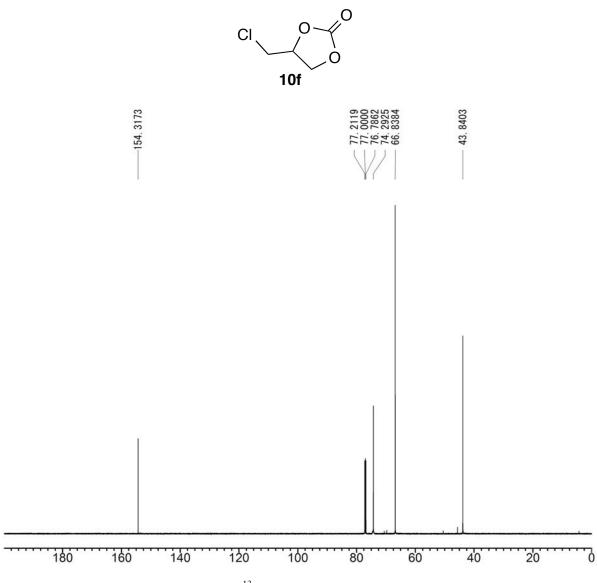






600 MHz 1 H NMR of **10d** in CDCl₃.




600 MHz ¹H NMR of **10e** in CDCl₃.

150 MHz ¹³C NMR of **10e** in CDCl₃.

600 MHz ¹H NMR of **10f** in CDCl₃.

150 MHz ¹³C NMR of **10f** in CDCl₃.