Toward the Total Synthesis of Maoecrystal V: Establishment of Contiguous Quaternary Stereocenters

Irina Baitinger, Peter Mayer and Dirk Trauner

Department of Chemistry and Pharmacology, Ludwig-MaximiliansUniversität, Munich, and Center for Integrated Protein Science, 81377 Munich, Germany

Supporting Information

General Experimental Details
S-1...S-2
Experimental Procedures
S-2...S-15
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra S-16...S-47

General Experimental Details

Unless otherwise specified, all reactions were carried out under an inert N_{2} atmosphere in oven-dried glassware. Flash column chromatography was performed using the analytical grade solvents indicated and Merck silica gel ($40-63 \mu \mathrm{~m}, 60 \AA$) as the stationary phase. Reactions and chromatography fractions were monitored with Merck silica gel $60 \mathrm{~F}_{254}$ glass plates and visualized using a 254 nm UV lamp and/or by treatment with a suitable dip followed by heating: potassium permanganate and ceric ammonium molybdate. Tetrahydrofurane (THF), and diethyl ether $\left(\mathrm{Et}_{2} \mathrm{O}\right)$ were distilled from sodium benzophenone ketyl. Diiosopropylamine was distilled from and stored over CaH_{2}. n-Butyllithium (n - BuLi) was titrated with diphenylacetic acid prior to use. All other solvents, as well as starting materials and reagents were used without further purification from commercial sources.

Unless otherwise specified, proton $\left({ }^{1} \mathrm{H}\right)$ and carbon $\left({ }^{13} \mathrm{C}\right)$ spectra were recorded at $18{ }^{\circ} \mathrm{C}$ in base filtered CDCl_{3} on Varian Mercury spectrometers operating at $300 \mathrm{~Hz}, 400 \mathrm{MHz}$ and 600 MHz for proton nuclei $(75 \mathrm{MHz}, 100 \mathrm{MHz}$ and

150 MHz for carbon nuclei). For ${ }^{1} \mathrm{H}$ NMR spectra signals arising from residual protio-forms of the solvent were used as the internal standards. ${ }^{1} \mathrm{H}$ NMR data are recorded as follows: chemicals shift (δ) [multiplicity, coupling constant(s) $J(\mathrm{~Hz})$, relative integral] where multiplicity is defiened as: $s=$ singlet; $d=$ doublet; $t=t r i p l e t ;$ $\mathrm{q}=\mathrm{quartet} ; \mathrm{m}=$ multiplet $\mathrm{br}=$ broad or combinations of the above. The residual CHCl_{3} peak ($\delta 7.26$) was used as reference for ${ }^{1} \mathrm{H}$ NMR spectra. The central peak ($\delta 77.16$) of the CDCl_{3} 'triplet' was used as reference for proton-decoupled ${ }^{13} \mathrm{C}$ NMR spectra.

Low- and high-resolution electrospray (ESI) mass spectra were obtained on a Varian MAT 711 MS instrument operating in either positive or negative ionization modes. Fast atom bombardment (FAB) mass spectra were measured on a VG ProSpec Mass Spectrometer.

Melting points were measured on a Büchi melting point B-540 system and are uncorrected.

X-ray analysis measurements of 7 were made on a Bruker APEX ${ }^{1}$ CCD area detector with graphite monochromated Mo- K_{α} radiation $(\lambda=0.71069 \AA)$. The data collections for $\mathbf{1 4}$ and $\mathbf{1 7}$ were performed on an Oxford Diffraction Xcalibur diffractometer at 173 K using graphite monochromated $\mathrm{Mo}-\mathrm{K}_{\alpha}$-radiation $(\lambda=0.71073 \AA)$.

Experimental Procedures

Aldehydes 4

Ozone was bubbled into a mixture of $3(26.5 \mathrm{~g}, 118 \mathrm{mmol}), \mathrm{NaHCO}_{3}(0.33 \mathrm{~g}$, $4 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$ and $\mathrm{MeOH}(200 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ until a blue color developed. Excess ozone was then removed by bubbling N_{2} through the mixture. $\mathrm{Me}_{2} \mathrm{~S}(14.5 \mathrm{~mL}, 12.2 \mathrm{~g}, 197 \mathrm{mmol})$ was added and the mixture was left to stir overnight at rt The mixture was then concentrated in vacuo and purified by flash
column chromatography (hexanes/EtOAc $=2 / 1)$ to give $25.3 \mathrm{~g}(112 \mathrm{mmol}, 94 \%)$ of $\mathbf{4}$ as a colorless oil.

TLC: $\quad R_{\mathrm{f}}=0.22($ hexanes $/ \mathrm{EtOAc}=2 / 1)\left[\mathrm{KMnO}_{4}\right]$
${ }^{1} \mathrm{H}-\mathrm{NMR} \quad\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.21\left(\mathrm{t},{ }^{3} J=7.1 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.35-2.92(\mathrm{~m}, 12 \mathrm{H}$,$) ,$ $4.08\left(\mathrm{q},{ }^{3} J=7.1 \mathrm{~Hz}, 2 \mathrm{H}\right), 9.68-9.72(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR} \quad\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, only shifts of major diastereomer are listed): $\delta=$ 14.2, 31.6, 32.2, 34.1, 34.4, 46.4, 47.5, 50.4, 60.5, 172.4, 200.5, 208.9.

HRMS $\quad(\mathrm{FAB}+):$ calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{Na}\left[(\mathrm{M}+\mathrm{Na})^{+}\right]:$249.1097, found: 249.1098

t-Butyldimethylsilyloxybicyclo[2.2.2]octanone 6

6

A mixture of $4(6.27 \mathrm{~g}, 27.7 \mathrm{mmol}), 2 \mathrm{~N} \mathrm{HCl}$ aq ($5.54 \mathrm{~mL}, 11.1 \mathrm{mmol})$, and acetone $(105 \mathrm{~mL})$ was heated at reflux for 10 min . After cooling, $\mathrm{NaHCO}_{3}(0.931 \mathrm{~g}$, $11.1 \mathrm{mmol})$ and water $(2.5 \mathrm{~mL})$ were added and the mixture was concentrated in vacuo. The residue was extracted with ethyl ether $(3 \times 40 \mathrm{~mL})$, washed with saturated NaHCO_{3} aq $(10 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$, dried over MgSO_{4}, filtered, and concentrated in vacuo to give a mixture of diastereomers $\mathbf{5}$ and $\mathbf{5 a}(3.54 \mathrm{~g}, 15.6 \mathrm{mmol}, 56 \%)$, which was carried on without further purification.

A solution of the hydroxybicyclo[2.2.2]octanones $\mathbf{5}$ and $\mathbf{5 a}$ obtained above (3.76 g 16.6 mmol), t-butyldimethylsilyl chloride ($3.0 \mathrm{~g}, 19.9 \mathrm{mmol}$) and imidazole (1.70 g , $24.9 \mathrm{mmol})$ in DMF (20 mL) was stirred overnight at rt The mixture was poured into water $(200 \mathrm{~mL})$ and extracted with ethyl ether $(3 \times 100 \mathrm{~mL})$. The organic phase was washed with $2 \mathrm{~N} \mathrm{HCl} \mathrm{aq} \mathrm{(} 100 \mathrm{~mL}$), water $(3 \times 80 \mathrm{~mL})$, and brine $(100 \mathrm{~mL})$, dried over MgSO_{4}, filtered, and concentrated in vacuo. The residue was purified by flash column chromatography (hexanes/EtOAc $=19 / 1$) to give $3.65 \mathrm{~g} 6(10.7 \mathrm{mmol}, 65 \%)$ as well as $0.50 \mathrm{~g} \mathbf{6 a}(1.46 \mathrm{mmol}, 9 \%)$, both as colorless oils. $0.46 \mathrm{~g}(2.05 \mathrm{mmol}, 12 \%)$ of the starting materials 5 and 5a could be reisolated.

6:
TLC: $\quad R_{\mathrm{f}}=0.55($ hexanes $/ \mathrm{EtOAc}=5 / 1)\left[\mathrm{KMnO}_{4}\right]$
${ }^{1} \mathrm{H}-\mathrm{NMR} \quad\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.02(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.82(\mathrm{~s}, 9 \mathrm{H}), 1.24(\mathrm{t}$, $\left.{ }^{3} J=7.1 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.48-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.74(\mathrm{~m}, 3 \mathrm{H}), 1.86\left(\mathrm{ddd},{ }^{2} J=\right.$ $\left.13.9 \mathrm{~Hz},{ }^{3} J=11.3,7.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.09\left(\mathrm{ddt},{ }^{2} J=13.9 \mathrm{~Hz},{ }^{3} J=8.2\right.$, $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.17-2.24(\mathrm{~m}, 2 \mathrm{H}), 2.31-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.51\left(\mathrm{~d},{ }^{2} J=\right.$ $16.0 \mathrm{~Hz}, 1 \mathrm{H}), .2 .61\left(\mathrm{~d},{ }^{2} J=16.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.10\left(\mathrm{q},{ }^{3} J=7.1 \mathrm{~Hz}, 2 \mathrm{H}\right)$, $4.33\left(\mathrm{~d},{ }^{3} J=7.9 \mathrm{~Hz}, 1 \mathrm{H}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR} \quad\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-5.1,-4.1,14.4,17.9,24.0,25.3,25.8,27.5$, $33.9,37.6,44.0,50.9,60.2,70.2,172.5,212.8$.

HRMS $\quad(\mathrm{FAB}+):$ calcd for $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{SiNa}\left[(\mathrm{M}+\mathrm{Na})^{+}\right]: 363.1962$, found: 363.1963

6a:

TLC: $\quad R_{\mathrm{f}}=0.50$ (hexanes $\left./ \mathrm{EtOAc}=5 / 1\right)\left[\mathrm{KMnO}_{4}\right]$
${ }^{1} \mathrm{H}-\mathrm{NMR} \quad\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, observed): $\delta=0.00(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~s}$, $9 \mathrm{H}), 1.25\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.52-1.65(\mathrm{~m}, 3 \mathrm{H}), 1.76-1.87(\mathrm{~m}, 1 \mathrm{H})$, $2.04-2.25(\mathrm{~m}, 5 \mathrm{H}), 2.32\left(\mathrm{~d},{ }^{2} J=16.7 \mathrm{~Hz}, 1 \mathrm{H}\right), .2 .43\left(\mathrm{~d},{ }^{2} J=16.7 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 4.10$ (q, $\left.{ }^{3} J=7.1 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.34\left(\mathrm{~d},{ }^{3} J=8.2 \mathrm{~Hz}, 1 \mathrm{H}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR} \quad\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-5.0,-4.1,14.3,18.0,22.8,24.9,25.9,27.5$, 34.8, 38.6, 43.9, 52.2, 60.1, 67.4, 172.0, 212.8.

HRMS
(FAB+): calcd for $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{SiNa} \quad\left[(\mathrm{M}+\mathrm{Na})^{+}\right]: 363.1962$, found 363.1963

Lactone 7

7
To a solution of $6(6.92 \mathrm{~g}, 20.3 \mathrm{mmol})$ in 100 mL toluene at $0^{\circ} \mathrm{C}$ was added a 1 m solution of diethylaluminium cyanide in toluene ($26.5 \mathrm{~mL}, 26.5 \mathrm{mmol}$). The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 3 h , then warmed to rt After 9 h , the reaction mixture was poured into a mixture of 3 M NaOH aq $(400 \mathrm{~mL})$ and 200 mL ice and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 500 \mathrm{~mL})$. The combined organic phases were washed with brine (500 mL), dried over MgSO_{4}, filtered, and evaporated in vacuo. The crude product was purified by flash column chromatography (hexanes $/ \mathrm{EtOAc}=$ 9/1) affording 5.47 g ($17.0 \mathrm{mmol}, 84 \%$) of 7 as a white, crystalline solid.
TLC: $\quad R_{\mathrm{f}}=0.16($ hexanes $/ \mathrm{EtOAc}=9 / 1)\left[\mathrm{KMnO}_{4}\right]$
m.p.: $\quad 130^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}-\mathrm{NMR} \quad\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.07(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 1.38$ (ddd, $\left.{ }^{2} J=13.7 \mathrm{~Hz},{ }^{3} J=10.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.46-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.56-$ $1.64(\mathrm{~m}, 1 \mathrm{H}), 1.76\left(\mathrm{ddd},{ }^{2} J=13.7 \mathrm{~Hz},{ }^{3} J=10.7,8.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.80(\mathrm{dd}$, ${ }^{2} J=14.0 \mathrm{~Hz},{ }^{3} J=6.7 \mathrm{~Hz}, 1 \mathrm{H}$), $1.91\left(\mathrm{~d},{ }^{2} J=14.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.03$ (virt. $\mathrm{q}, ~ J \approx 4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.04\left(\mathrm{~d},{ }^{2} J=16.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.21\left(\mathrm{dddd},{ }^{2} J=\right.$ $\left.14.0 \mathrm{~Hz},{ }^{3} J=9.1,4.9 \mathrm{~Hz},{ }^{4} J=2.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.58\left(\mathrm{ddd},{ }^{2} J=14.3 \mathrm{~Hz},{ }^{3} J\right.$ $\left.=4.9 \mathrm{~Hz},{ }^{4} J=2.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.08\left(\mathrm{~d},{ }^{2} J=16.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.98\left(\mathrm{dd},{ }^{3} J=\right.$ 6.7 Hz, $9.1 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR} \quad\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-5.1,-4.3,18.1,24.6,25.1,25.7,25.8,35.1$, 37.0, 37.2, 47.5, 67.4, 76.6, 119.8, 174.6.

HRMS $\quad(\mathrm{FAB}+)$: calcd for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{O}_{3} \mathrm{NSiNa}\left[(\mathrm{M}+\mathrm{Na})^{+}\right]: 344.1652$, found: 344.1661

Diol 8

A LDA solution was prepared by dissolving diisopropylamine $(1.35 \mathrm{~mL}, 0.97 \mathrm{~g}$, $9.59 \mathrm{mmol})$ in THF $(4 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ and adding a 2.39 m solution of n-butyllithium in hexanes ($3.65 \mathrm{~mL}, 8.71 \mathrm{mmol}$) dropwise. After stirring at $-78^{\circ} \mathrm{C}$ for 30 min the reaction mixture was warmed to $0^{\circ} \mathrm{C}$ for 10 min and cooled to $-78^{\circ} \mathrm{C}$ again. To a solution of $7(400 \mathrm{mg}, 1.24 \mathrm{mmol})$ in THF $(40 \mathrm{~mL})$ was added gradually the prepared LDA solution at $-78{ }^{\circ} \mathrm{C}$. After addition was completed, stirring was continued for 30 min and the temperature was then raised to $-40^{\circ} \mathrm{C}$ for 30 min . A stream of formaldehyde gas, generated by thermolysis $\left(160^{\circ} \mathrm{C}\right)$ of paraformaldehyde was introduced through a cannula in a stream of N_{2} for 10 min . The reaction mixture was quenched by addition of saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aq (4 mL) and extracted with EtOAc $(3 \times 20 \mathrm{~mL})$. The combined organic phases were filtered through celite and washed with EtOAc. After removing the solvent in vacuo, the residue was purified by flash column chromatography (hexanes/EtOAc $=5 / 1 \rightarrow 1 / 1)$ to give $232 \mathrm{mg} 8(0.61 \mathrm{mmol}$, 49\%) as a white, crystalline solid.
TLC: $\quad R_{\mathrm{f}}=0.14$ (hexanes $\left./ \mathrm{EtOAc}=2 / 1\right)\left[\mathrm{KMnO}_{4}\right]$
m.p.: $\quad 164{ }^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}-\mathrm{NMR} \quad\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.19(\mathrm{~s}, 3 \mathrm{H}), 0.20(\mathrm{~s}, 3 \mathrm{H}), 0.97(\mathrm{~s}, 9 \mathrm{H}), 1.47-$ $1.64(\mathrm{~m}, 3 \mathrm{H}), 1.89-1.96(\mathrm{~m}, 2 \mathrm{H}), 2.04-2.14(\mathrm{~m}, 2 \mathrm{H}), 2.28$ (dddd, ${ }^{2} J=$ $13.8 \mathrm{~Hz},{ }^{3} J=8.9,5.0 \mathrm{~Hz},{ }^{4} J=1.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.68 (ddd, ${ }^{2} J=14.2 \mathrm{~Hz},{ }^{3} J$ $\left.=5.4 \mathrm{~Hz},{ }^{4} J=2.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.96\left(\mathrm{dd},{ }^{3} J=9.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.40\left(\mathrm{dd},{ }^{3} J\right.$ $=8.4,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.85\left(\mathrm{dd},{ }^{2} J=12.1 \mathrm{~Hz},{ }^{3} J=9.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.15(\mathrm{dd}$, $\left.{ }^{2} J=12.3 \mathrm{~Hz},{ }^{3} J=8.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.22\left(\mathrm{dd},{ }^{2} J=12.1 \mathrm{~Hz},{ }^{3} J=3.5 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 4.49\left(\mathrm{dd},{ }^{3} J=8.9,7.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.67\left(\mathrm{dd},{ }^{2} J=12.3 \mathrm{~Hz},{ }^{3} J=\right.$ $5.7 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR} \quad\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-3.6,-3.5,18.6,23.9,24.3,24.6,26.0,38.2$, 38.9, 51.2, 56.0, 64.0, 64.7, 71.3, 73.9, 121.4, 174.9.

HRMS (FAB+): calcd for $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{O}_{5} \mathrm{NSiNa}\left[(\mathrm{M}+\mathrm{Na})^{+}\right]: 404.1864$, found: 404.1863

Acetal 9

9

Diol $8(52.0 \mathrm{mg}, 136 \mu \mathrm{~mol})$ was dissolved in DMF (2 mL) and 2,2-dimethoxypropane ($0.85 \mathrm{~mL}, 0.71 \mathrm{~g}, 6.81 \mathrm{mmol}$) and p-toluenesulfonic acid ($0.51 \mathrm{mg}, 2.72 \mu \mathrm{~mol}$) were added. After stirring the resulting solution at rt for 48 h , pyridine $(0.1 \mathrm{~mL})$ and water $(15 \mathrm{~mL})$ were added and the mixture was extracted with EtOAc $(3 \times 20 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4}, filtered, and the solvent was removed in vacuo. Purification of the residue by flash column chromatography (hexanes/EtOAc $=3 / 1)$ afforded $24.7 \mathrm{mg} 9(58.9 \mu \mathrm{~mol}, 43 \%)$ as a white solid.

TLC: $\quad R_{\mathrm{f}}=0.38($ hexanes $/ \mathrm{EtOAc}=2 / 1)\left[\mathrm{KMnO}_{4}\right]$
m.p.: $\quad 201{ }^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}-\mathrm{NMR} \quad\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.14(\mathrm{~s}, 3 \mathrm{H}), 0.18(\mathrm{~s}, 3 \mathrm{H}), 0.95(\mathrm{~s}, 9 \mathrm{H}), 1.34-$ $1.58(\mathrm{~m}, 10 \mathrm{H}), 1.83$ (dddd, , ${ }^{2} J=13.7 \mathrm{~Hz},{ }^{3} J=6.4,2.6 \mathrm{~Hz},{ }^{4} J=1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 1.89\left(\mathrm{~d},{ }^{2} J=14.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.97-2.07(\mathrm{~m}, 1 \mathrm{H}), 2.26$ (dddd, , ${ }^{2} J=$ $\left.13.7 \mathrm{~Hz},{ }^{3} J=9.0,4.8 \mathrm{~Hz},{ }^{4} J=2.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.65\left(\mathrm{ddd},{ }^{2} J=14.3 \mathrm{~Hz},{ }^{3} J\right.$ $\left.=5.3 \mathrm{~Hz},{ }^{4} J=1.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.86\left(\mathrm{~d},{ }^{2} J=3.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.19\left(\mathrm{~d},{ }^{2} J=\right.$ $12.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.25\left(\mathrm{dd},{ }^{3} J=9.8,6.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.98\left(\mathrm{~d},{ }^{2} J=12.3 \mathrm{~Hz}\right.$, $1 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR} \quad\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-4.4,-3.5,18.1,22.2,22.6,23.8,24.5,25.1$, $26.0,38.9,39.3,49.5,50.3,60.1,60.6,68.9,73.0,99.5,121.2,175.7$.

HRMS $\quad(\mathrm{FAB}+)$: calcd for $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{O}_{5} \mathrm{NSi} \quad\left[(\mathrm{M}+\mathrm{H})^{+}\right]: 422.2354$, found: 422.2358

Lactol 10

10
To a solution of $9(35 \mathrm{mg}, 0.083 \mathrm{mmol})$ in $\mathrm{DCM}(2 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added dropwise a 1.0 m solution of DIBAH in DCM. After stirring for 30 min at this temperature, the reaction was quenched by addition of water (5 mL) and extracted with EtOAc $(3 \times 5 \mathrm{~mL})$. The combined organic phases were washed with 0.5 m aqueous $\mathrm{HCl}(5 \mathrm{~mL})$, then brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated in vacuo. The crude product was purified by flash column chromatography (hexanes/EtOAc $=2 / 1$) affording $35 \mathrm{mg}(0.083 \mathrm{mmol}, 99 \%)$ of $\mathbf{1 0}$ as a white, crystalline solid.
TLC:
$R_{\mathrm{f}}=0.31($ hexanes $/ \mathrm{EtOAc}=2 / 1)$ [CAM]
m.p.: $\quad 181^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}-\mathrm{NMR} \quad\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.12(\mathrm{~s}, 3 \mathrm{H}), 0.17(\mathrm{~s}, 3 \mathrm{H}), 0.95(\mathrm{~s}, 9 \mathrm{H}), 1.18-$ $1.24(\mathrm{~m}, 2 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.49-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.71$ $(\mathrm{m}, 1 \mathrm{H}), 1.81-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.93-2.05(\mathrm{~m}, 1 \mathrm{H}), 2.07-2.17(\mathrm{~m}, 1 \mathrm{H})$, $2.45-2.55(\mathrm{~m}, 1 \mathrm{H}), 3.64(\mathrm{~d}, J=3.0,1 \mathrm{H}), 3.83(\mathrm{~d}, J=11.2,1 \mathrm{H}), 4.02-$ $4.11(\mathrm{~m}, 2 \mathrm{H}), 4.33(\mathrm{dd}, J=3.2,12.9,1 \mathrm{H}), 4.61(\mathrm{~d}, J=12.9,1 \mathrm{H}), 5.83$ (d, $J=3.0,1 \mathrm{H}$).
${ }^{13} \mathrm{C}-\mathrm{NMR} \quad\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-4.3,-3.5,18.1,18.6,21.8,24.4,24.8,26.0$, 29.5, 39.2, 40.4, 48.4, 50.1, 61.8, 65.1, 70.1, 75.1, 97.8, 103.3, 123.4.

HRMS (ESI-): calcd for $\mathrm{C}_{23} \mathrm{H}_{38} \mathrm{NO}_{7} \mathrm{Si}\left[(\mathrm{M}+\mathrm{HCOO})^{-}\right]: 468.2418$, found: 468.2413 .

Keto Aldehyde 11

11

To a solution of $\mathbf{1 0}(50 \mathrm{mg}, 0.118 \mathrm{mmol})$ in $\mathrm{EtOH}(2 \mathrm{~mL})$ at rt was added 2 m aqueous NaOH and the reaction was stirred for 30 min . This mixture was extracted with EtOAc $(3 \times 5 \mathrm{~mL})$ and the combined organic phases were washed with water $(10 \mathrm{~mL})$, then brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated in vacuo. The crude product was purified by flash column chromatography (hexanes/EtOAc $=5 / 1$) affording 45 mg ($0.114 \mathrm{mmol}, 96 \%$) of $\mathbf{1 1}$ as a colourless oil.

TLC: $\quad R_{\mathrm{f}}=0.72($ hexanes $/ \mathrm{EtOAc}=2 / 1)$ [CAM]
${ }^{1} \mathrm{H}-\mathrm{NMR} \quad\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.13(\mathrm{~s}, 3 \mathrm{H}), 0.14(\mathrm{~s}, 3 \mathrm{H}), 0.80(\mathrm{~s}, 9 \mathrm{H}), 1.30(\mathrm{~s}$, $3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.35-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.77(\mathrm{~m}, 3 \mathrm{H}), 2.01-2.15(\mathrm{~m}$, $3 \mathrm{H}), 2.17-2.22(\mathrm{~m}, 1 \mathrm{H}), 2.31-2.40(\mathrm{~m}, 1 \mathrm{H}), 3.94-4.04(\mathrm{~m}, 2 \mathrm{H}), 4.16-$ $4.28(\mathrm{~m}, 3 \mathrm{H}), 9.89(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR} \quad\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, observed): $\delta=-4.3,-3.0,17.9,22.2,25.0,26.0$, $26.8,38.2,44.9,51.2,57.6,60.9,61.9,70.9,98.4,204.6,212.7$.

HRMS (ESI+): calcd for $\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{O}_{5} \mathrm{SiNa}\left[(\mathrm{M}+\mathrm{Na})^{+}\right]:$419.2230, found: 419.2223

Alcohol 13

13
A solution of (trimethylsilyl)acetylene ($0.395 \mathrm{~mL}, 2.77 \mathrm{mmol}$) in THF (5 mL) was treated at $-78{ }^{\circ} \mathrm{C}$ with a 1.5 m solution of n-butyllithium in hexanes $(1.76 \mathrm{~mL}$, 2.64 mmol). After stirring for 30 min at this temperature, this solution was added dropwise to a solution of $6(0.45 \mathrm{~g}, 1.32 \mathrm{mmol})$ in THF $(15 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ and left to stir for 20 min at this temperature. The reaction was warmed to rt and then quenched by addition of saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aq $(10 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic phases were washed with brine (20 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated in vacuo. The crude product was purified by flash column chromatography (hexanes/EtOAc $=20 / 1$) affording $0.436 \mathrm{~g}(0.994 \mathrm{mmol}, 75 \%)$ of $\mathbf{1 3}$ as a colourless oil.

TLC: $\quad R_{\mathrm{f}}=0.74($ hexanes $/ \mathrm{EtOAc}=10 / 1)$ [CAM]

${ }^{1} \mathrm{H}-$ NMR	$\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.08(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.15(\mathrm{~s}, 9 \mathrm{H}), 0.87(\mathrm{~s}$,
	$9 \mathrm{H}), 1.24(\mathrm{t}, J=7.1,3 \mathrm{H}), 1.33-1.40(\mathrm{~m}, 1 \mathrm{H}), 1.42-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.53-$
	$1.62(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.89-2.00(\mathrm{~m}, 2 \mathrm{H})$,
	$2.51-2.31(\mathrm{~m}, 1 \mathrm{H}), 2.60(\mathrm{~d}, J=15.2,1 \mathrm{H}), 2.90(\mathrm{~d}, J=15.2,1 \mathrm{H}), 4.17-$
	$4.00(\mathrm{~m}, 2 \mathrm{H}), 4.50(\mathrm{dd}, J=2.0,9.0,1 \mathrm{H}), 4.85(\mathrm{~s}, 1 \mathrm{H})$.
	$\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-5.2,-4.4,0.0,14.4,17.7,23.8,24.6,25.2$,
${ }^{13} \mathrm{C}-\mathrm{NMR}$	
	$25.8,35.3,38.1,41.0,47.1,60.0,71.4,72.9,87.5,108.8,172.9$.
HRMS	$(\mathrm{ESI}+):$ calcd for $\mathrm{C}_{23} \mathrm{H}_{42} \mathrm{O}_{4} \mathrm{Si}_{2} \mathrm{Na} \quad\left[(\mathrm{M}+\mathrm{Na}){ }^{+}\right]: 461.2519$, found:
	461.2515

Lactone 14

14
$\mathrm{NaH}(159 \mathrm{mg}, 60 \%$ in mineral oil, 3.98 mmol) was suspended in a solution of $\mathbf{1 3}$ ($436 \mathrm{mg}, 0.994 \mathrm{mmol}$) in THF (20 mL) and the reaction was stirred for 3 h at $40^{\circ} \mathrm{C}$. After cooling to rt, the reaction mixture was poured into $1 \mathrm{~m} \mathrm{HCl}(5 \mathrm{~mL})$ and ice, then extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic phases were washed with brine $(20 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated in vacuo. The crude product was purified by flash column chromatography (hexanes/EtOAc $=10 / 1$) affording $0.262 \mathrm{~g}(0.817 \mathrm{mmol}, 82 \%)$ of $\mathbf{1 5}$ as a white, crystalline solid.

TLC: $\quad R_{\mathrm{f}}=0.47$ (hexanes/EtOAc $\left.=5 / 1\right)$ [CAM]
m.p.: $\quad 150{ }^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}-\mathrm{NMR} \quad\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.05(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 1.35-$ $148(\mathrm{~m}, 2 \mathrm{H}), 1.58-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.88-2.08(\mathrm{~m}, 4 \mathrm{H}), 2.13-2.22(\mathrm{~m}, 2 \mathrm{H})$, 2.32-2.38 (m, 1H), 2.57-2.62 (m, 2H), $3.82(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR} \quad\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-4.9,-4.6,17.8,23.9,25.7,25.8,37.7,38.0$, 39.2, 44.3, 73.7, 73.9, 81.0, 84.9, 176.0.

HRMS (ESI+): calcd for $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{O}_{3} \mathrm{Si}\left[(\mathrm{M}+\mathrm{H})^{+}\right]: 321.1881$ found: 321.1882

Lactone 15

15
A solution of $\mathbf{1 4}(190 \mathrm{mg}, 0.539 \mathrm{mmol})$ in pyridine $(10 \mathrm{~mL})$ was vigorously stirred in hydrogen with $6.3 \mathrm{mg}(0.059 \mathrm{mg})$ of a 5% palladium-on-calcium carbonate catalyst, poisoned with 3.5% lead at atmospheric pressure and rt After 30 min , the catalyst was removed and the solvent was evaporated in vacuo. The residue was purified by flash column chromatography (hexanes/EtOAc $=10 / 1)$ to give $183 \mathrm{mg}(0.567 \mathrm{mmol}, 96 \%)$ of $\mathbf{1 5}$ as a white, crystalline solid.

TLC: $\quad R_{\mathrm{f}}=0.48$ (hexanes $\left./ \mathrm{EtOAc}=5 / 1\right)$ [CAM]
m.p.: $\quad 131{ }^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}-\mathrm{NMR} \quad\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.07(\mathrm{~s}, 6 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 1.36(\mathrm{ddd}, J=6.9$, 10.7, 13.4, 1H), 1.46-1.52 (m, 1H), 1.65-1.77 (m, 3H), 1.91-2.11 (m, 5 H), 2.34 (d, $J=16.2,1 \mathrm{H}), 3.77$ (d, $J=8.9,1 \mathrm{H}), 5.15$ (d, $J=0.9,10.8$, $1 \mathrm{H}), 5.32$ (dd, $J=0.9,16.9,1 \mathrm{H}), 6.03(\mathrm{dd}, J=10.8,16.9,1 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR} \quad\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-4.9,-4.6,17.8,24.4,24.7,25.8,25.9,35.6$, $36.7,40.3,43.4,74.6,85.7,114.3,140.5,176.9$.

HRMS (ESI+): calcd for $\mathrm{C}_{18} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{NSi} \quad\left[\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}\right]: 340.2308$, found: 340.2303

Alcohol 17

17
A LDA solution was prepared by dissolving diisopropylamine $(0.67 \mathrm{~mL}, 0.477 \mathrm{~g}$, $4.71 \mathrm{mmol})$ in THF (2 mL) at $-78^{\circ} \mathrm{C}$ and adding a 2.34 m solution of n-butyllithium in hexanes $(1.99 \mathrm{~mL}, 4.65 \mathrm{mmol})$ dropwise. After stirring at $-78^{\circ} \mathrm{C}$ for 30 min the reaction mixture was warmed to $0^{\circ} \mathrm{C}$ for 10 min and cooled to $-78^{\circ} \mathrm{C}$ again. To a
solution of $\mathbf{1 5}(100 \mathrm{mg}, 0.31 \mathrm{mmol})$ in THF (3 mL) was added gradually the prepared LDA solution at $-78{ }^{\circ} \mathrm{C}$. After addition was completed, stirring was continued for 30 min and the temperature was then raised to $-40^{\circ} \mathrm{C}$ for 30 min . A stream of formaldehyde gas, generated by thermolysis $\left(160^{\circ} \mathrm{C}\right)$ of paraformaldehyde was introduced through a cannula in a stream of N_{2} for 10 min . The reaction mixture was quenched by addition of saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aq (4 mL) and extracted with EtOAc $(3 \times 20 \mathrm{~mL})$. The combined organic phases were filtered through celite and washed with EtOAc. After removing the solvent in vacuo, the residue was purified by flash column chromatography (hexanes/EtOAc $=2 / 1$) to give $101 \mathrm{mg} 17(0.29 \mathrm{mmol}, 92 \%)$ as a white, crystalline solid.
TLC: $\quad R_{\mathrm{f}}=0.25$ (hexanes $\left./ \mathrm{EtOAc}=2 / 1\right)$ [CAM]
m.p.: $\quad 169^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}-\mathrm{NMR} \quad\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.06(\mathrm{~s}, 6 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 1.30-1.40(\mathrm{~m}, 1 \mathrm{H})$, $1.45-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.62-1.75(\mathrm{~m}, 3 \mathrm{H}), 1.82-2.00(\mathrm{~m}, 3 \mathrm{H}), 2.08-2.17$ $(\mathrm{m}, 1 \mathrm{H}), 2.34-2.47(\mathrm{~m}, 2 \mathrm{H}), 3.66-3.79(\mathrm{~m}, 2 \mathrm{H}), 3.83-3.93(\mathrm{~m}, 1 \mathrm{H}), 5.11$ (d, $J=10.8,1 \mathrm{H}), 5.31$ (d, $J=16.9,1 \mathrm{H}), 6.12$ (dd, $J=10.9,16.9,1 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR} \quad\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-5.0,-4.4,17.7,21.2,24.3,25.5,25.8,36.6$, $39.8,44.9,50.1,61.3,76.1,86.0,114.5,142.8,178.6$.

HRMS (ESI-): calcd for $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{SiCl} \quad\left[(\mathrm{M}+\mathrm{Cl})^{-}\right]: 387.1758$, found: 387.1863

Dicarbonyl 18

18
To a solution of $\mathbf{1 7}(130 \mathrm{mg}, 0.37 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added $\mathrm{NaHCO}_{3}(43 \mathrm{mg}, 0.517 \mathrm{mmol})$, then DMP $(219 \mathrm{mg}, 0.517 \mathrm{mmol})$ and the mixture was left to stir at rt for 2 h . The reaction was quenched by addition of conc. $\mathrm{Na}_{2} \mathrm{SO}_{3}$ aq : sat. $\mathrm{NaHCO}_{3} \mathrm{aq}$: water $=5 \mathrm{~mL}: 5 \mathrm{~mL}: 5 \mathrm{~mL}$ and stirred vigorously for 20 min . After extracting the aqueous phase with EtOAc $(3 \times 20 \mathrm{~mL})$, the combined organic phases were washed with brine (30 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and
evaporated in vacuo. The residue was purified by flash column chromatography (hexanes/EtOAc $=10 / 1$) to give $\mathbf{1 8}(116 \mathrm{mg}, 0.331 \mathrm{mmol}, 90 \%)$ as a colorless oil. TLC: $\quad R_{\mathrm{f}}=0.65$ (hexanes $\left./ \mathrm{EtOAc}=2 / 1\right)$ [CAM]
${ }^{1} \mathrm{H}-\mathrm{NMR} \quad\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-0.08-0.12(\mathrm{~m}, 6 \mathrm{H}), 0.81-0.94(\mathrm{~m}, 9 \mathrm{H}), 1.16-$ $2.19(\mathrm{~m}, 12 \mathrm{H}), 3.03(\mathrm{~s}, 1 \mathrm{H}), 4.17-4.20(\mathrm{~m}, 1 \mathrm{H}), 5.10-5.38(\mathrm{~m}, 2 \mathrm{H})$, 5.92-6.08 (m, 1H), $9.99(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR} \quad\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, mixture of enol and aldehyde): $\delta=-5.2,-4.8,-4.1$, -3.9, 17.7, 17.8, 22.4, 23.7, 24.0, 24.8, 25.5, 25.7, 25.8, 25.9, 26.0, $29.9,36.2,39.3,40.2,45.8,47.8,54.2,69.2,84.6,86.6,108.6,114.9$, 115.3, 139.9, 140.4, 152.6, 173.6, 176.4, 199.4.

HRMS (ESI-): calcd for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{O}_{4} \mathrm{Si}\left[(\mathrm{M}-\mathrm{H})^{-}\right]: 349.1841$, found: 363.1836

Hydroxymethyl lactone 19

19
Sodium borohydride ($32 \mathrm{mg}, 0.855 \mathrm{mmol}$) was added to a solution of 18 (100 mg , $0.285 \mathrm{mmol})$ in $\mathrm{EtOH}(2 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and the mixture was left to stir at rt for 1 h . The reaction was quenched by neutralization with 0.5 m HCl and extracted with EtOAc. The combined organic phases were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated in vacuo. Purification of the residue by flash column chromatography (hexanes/EtOAc = 2/1) yielded $19(92 \mathrm{mg}, 0.261 \mathrm{mmol}, 92 \%)$ as a colorless oil.

TLC: $\quad R_{\mathrm{f}}=0.28($ hexanes $/ \mathrm{EtOAc}=2 / 1)$ [CAM]
${ }^{1} \mathrm{H}-\mathrm{NMR} \quad\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.09(\mathrm{~s}, 3 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 1.38-$ $1.44(\mathrm{~m}, 1 \mathrm{H}), 1.46-1.52(\mathrm{~m}, 1 \mathrm{H}), 1.63-1.77(\mathrm{~m}, 3 \mathrm{H}), 1.87-1.93(\mathrm{~m}, 1 \mathrm{H})$, $1.96-2.02(\mathrm{~m}, 2 \mathrm{H}), 2.11-2.14(\mathrm{~m}, 1 \mathrm{H}), 2.69(\mathrm{dd}, J=6.0,8.8,1 \mathrm{H}), 3.66$ (dd, $J=6.0,10.9,1 \mathrm{H}$), 3.92 (d, $J=8.2,1 \mathrm{H}$), 4.08 (dd, $J=8.8,10.9,1 \mathrm{H}$), 5.18 (dd, $J=0.9,10.8,1 \mathrm{H}), 5.34$ (dd, $J=0.9,16.9,1 \mathrm{H}), 6.03$ (dd, $J=10.9$, $16.9,1 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR} \quad\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-4.0,-3.4,18.0,24.2,24.3,25.3,26.0,35.6$, 39.4, 45.7, 46.5, 58.7, 70.3, 85.0, 114.8, 139.8, 179.1.

HRMS (ESI+): calcd for $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{SiNa}\left[(\mathrm{M}+\mathrm{Na})^{+}\right]:$375.1968, found: 375.1962

Diol 16

16
A LDA solution was prepared by dissolving diisopropylamine $(0.23 \mathrm{~mL}, 0.165 \mathrm{~g}$, $1.63 \mathrm{mmol})$ in THF $(1.5 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ and adding a 2.34 m solution of n-butyllithium in hexanes ($1.58 \mathrm{~mL}, 6.76 \mathrm{mmol}$) dropwise. After stirring at $-78^{\circ} \mathrm{C}$ for 30 min the reaction mixture was warmed to $0^{\circ} \mathrm{C}$ for 10 min and cooled to $-78^{\circ} \mathrm{C}$ again. To a solution of $\mathbf{1 9}(40 \mathrm{mg}, 0.113 \mathrm{mmol})$ in THF $(1.5 \mathrm{~mL})$ was added gradually the prepared LDA solution at $-78^{\circ} \mathrm{C}$. After addition was completed, stirring was continued for 20 min and the temperature was then raised to $-40^{\circ} \mathrm{C}$ for 20 min . A stream of formaldehyde gas, generated by thermolysis $\left(160^{\circ} \mathrm{C}\right)$ of paraformaldehyde was introduced through a cannula in a stream of N_{2} for 10 min . The reaction mixture was quenched by addition of saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aq (2 mL) and extracted with EtOAc $(3 \times 20 \mathrm{~mL})$. The combined organic phases were filtered through celite and washed with EtOAc. After removing the solvent in vacuo, the residue was purified by flash column chromatography (hexanes $/ \mathrm{EtOAc}=1 / 1$) to give $28 \mathrm{mg} 16(0.073 \mathrm{mmol}, 65 \%)$ as a colorless oil.

TLC: $\quad R_{\mathrm{f}}=0.15($ hexanes $/ E t O A c=2 / 1)$ [CAM]
${ }^{1} \mathrm{H}-\mathrm{NMR} \quad\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.09-0.16(\mathrm{~m}, 6 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 1.23-1.55(\mathrm{~m}$, $4 \mathrm{H}), 1.65-2.00(\mathrm{~m}, 6 \mathrm{H}), 2.25-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.52(\mathrm{~s} \mathrm{br}, 1 \mathrm{H}), 3.09(\mathrm{~s} \mathrm{br}$, $1 \mathrm{H}), 3.91-3.97(\mathrm{~m}, 1 \mathrm{H}), 4.02-4.06(\mathrm{~m}, 1 \mathrm{H}), 4.11-4.14(\mathrm{~m}, 1 \mathrm{H}), 4.15-$ $4.21(\mathrm{~m}, 1 \mathrm{H}), 4.23-4.28(\mathrm{~m}, 1 \mathrm{H}), 5.11(\mathrm{dd}, J=1.1,10.9,1 \mathrm{H}), 5.35$ (dd, $J=1.1,17.0,1 \mathrm{H}), 6.33$ (dd, $J=10.9,16.9,1 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR} \quad\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-4.2,-2.7,18.2,20.6,24.5,24.6,26.1,37.3$, $38.7,48.6,51.6,62.7,63.5,70.9,85.4,113.6,144.1,179.8$.
HRMS (ESI+): calcd for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}_{5} \mathrm{SiNa}\left[(\mathrm{M}+\mathrm{Na})^{+}\right]:$405.2073, found: 405.2067

Lactol/Lactone 20

20
Ozone was bubbled into a mixture of $\mathbf{1 6}(30 \mathrm{mg}, 0.078 \mathrm{mmol}), \mathrm{NaHCO}_{3}(6.6 \mathrm{mg}$, $0.078 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ and $\mathrm{MeOH}(1 \mathrm{~mL})$ for 10 min . Excess ozone was then removed by bubbling N_{2} through the mixture. $\mathrm{Me}_{2} \mathrm{~S}(0.02 \mathrm{~mL}, 20 \mathrm{mg}, 0.314 \mathrm{mmol})$ was added and the mixture was left to stir overnight at rt The mixture was then concentrated in vacuo and purified by flash column chromatography (hexanes/EtOAc $=2 / 1)$ to give $14 \mathrm{mg}(0.036 \mathrm{mmol}, 46 \%)$ of $\mathbf{2 0}$ as a colorless oil.

TLC: $\quad R_{\mathrm{f}}=0.11$ (hexanes $/ \mathrm{EtOAc}=2 / 1$) [CAM]
${ }^{1} \mathrm{H}-\mathrm{NMR} \quad\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.10(\mathrm{~s}, 3 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 1.15-$ $1.28(\mathrm{~m}, 1 \mathrm{H}), 1,47-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.88(\mathrm{~m}, 1 \mathrm{H})$, 1.95-2.10 (m, 3H), 2.14-2.21 (m, 1H), 2.59-2.69 (m, 1H), 2.76 (d, $J=12.8,1 \mathrm{H}), 3.50-3.57(\mathrm{~m}, 1 \mathrm{H}), 3.97(\mathrm{~d}, J=7.3,1 \mathrm{H}), 4.03-4.10(\mathrm{~m}$, $2 \mathrm{H}), 4.19$ (d, $J=11.2,1 \mathrm{H}), 4.83$ (d, $J=12.7,1 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR} \quad\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-4.1,-3.7,18.0,19.6,23.8,24.8,26.0,31.0$, 39.3, 45.1, 48.2, 59.1, 64.4, 70.0, 83.9, 94.0, 178.8.

HRMS (ESI+): calcd for $\mathrm{C}_{19} \mathrm{H}_{33} \mathrm{O}_{6} \mathrm{SiNa}\left[(\mathrm{M}+\mathrm{H})^{+}\right]:$385.2041, found: 385.2042.

1		1	1	1	1	1	1	1	1	1		1	1	1	1	1	1	1	1	1		\checkmark
210	200	190	180	170	160	150	140	130	120		100	90	80	70	60	50	40	30	20	10	0	-10

6

Abstract

$\underset{\underset{\sim}{i}}{\underset{\sim}{i}}$

6

6a

1	1	1	1	1	1	1	1	1	1	1	1	1	1	T	1		1	1	1	1	
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

$\cdots \stackrel{0}{0}$
ill
$\stackrel{\rightharpoonup}{\sim}$

Γ	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
210	200	190	180	170	160	150	140	130	120	110	$\begin{aligned} & 100 \\ & \text { ppm } \end{aligned}$	90	80	70	60	50	40	30	20	10	0

11

11

13

13

\ulcorner	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		1	1	1
220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

14

15

15

\bigcirc	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

17

18

「	1	1	1	1	1	1	1	1	1	，	1	1	1	1	1	1	1	1	1	1	1	1
220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

19

	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10

16

16

20

Γ	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

