Supporting Information

Chiral Ruthenium Lewis Acid Catalyzed Intramolecular Diels-Alder Reactions

Sirinporn Thamapipol, Gérald Bernardinelli, Céline Besnard and E. Peter Kündig*

Department of Organic Chemistry, University of Geneva, 30 Quai Ernest Ansermet, 1211 Geneva 4, Switzerland peter.kundig@unige.ch

Table of contents	
General	S2
Experimental procedures of Trienes and Adducts	
1. Triene 3	S3
2. Triene 4	S5
3. Triene 5	S6
4. Triene 6	S9
5. Triene 7	S11
6. Adduct 19	S12
7. Adduct 20	S13
8. Adduct 21	S15
9. Adduct 22	S16
10. Adduct 23	S18
Experimental procedures of derivatives of Adducts	
11. Carboxilic salt 24	S18
12. Hydrazone 25	S19
Hydrazone 26	S20
Hydrazone 27	S20
Hydrazone 28	S21
References	S21
NMR Spectra	S22
CD Spectra	S64

General

¹H-, ¹³C-, ³¹P-, ¹⁹F-NMR spectra were recorded on Bruker ARX-500, AMX-400 or ARX-300 FT spectrometers in the solvent indicated. ¹H- and ¹³C-NMR chemical shifts (δ) are quoted in parts per million (ppm) relative to TMS. Coupling constants (J) are in hertz (Hz). ³¹P-NMR chemical shifts are referenced to H₃PO₄ as external standard. Infrared spectra were recorded on a Perkin-Elmer Spectrum One spectrophotometer using a diamond ATR Golden Gate sampling. Electron impact (EI) HRMS mass spectra were obtained using a Finningan MAT 95 operating at 70eV. Electrospray ionization (ESI) HRMS analyses were measured on a VG analytical 7070E instrument. Optical rotations were measured on a Perkin Elmer 241 Polarimeter using a quartz cell (l = 10 cm) with a Na high-pressure lamp ($\lambda = 589$ nm, continuous). UV-Vis spectra were recorded on a JASCO V-650 spectrophotometer equipped with a stirrer and a temperature controller (25 °C). CD spectra were recorded on a JASCO J-815 spectropolarimeter with a thermostated S3cell holder at 25°C in quartz cells with 1 cm light path. Three spectra were averaged, and the spectrum of solvent was subtracted for correction. The reactions were carried out under nitrogen atmosphere. Solvents were removed by using a rotary evaporator at a wateraspirator pressure followed by evacuation of the flask to approximate 0.20 mmHg to remove traces of solvents. All glassware and syringes were oven-dried and further dried by placing under vacuum and heating with a heat gun for ca. 5 minutes as necessary. F.c. was performed by using Brunschwig silica gel (60 Å/32-63 mesh) (Art. 7736). Thin layer chromatography was performed on pre-coated aluminium plates (Fluka silica 60F₂₅₄), and visualized using UV light or aq. KMnO₄. Purification of THF, diethyl ether, toluene and dichloromethane was carried out using a Solvtek[©] purification system. Acetone was distilled from drierite before use. Dicyclopentadiene was cracked at 170 °C and cyclopentadiene was traped at -78 °C. It was either used immediately or stored under N₂ at -40 °C. Commercial chemicals were used as supplied unless otherwise stated.

1. Synthesis of triene 3

(*E*)-octa-5,7-dienenitrile $^{1-3}$ was prepared according to the literature procedure.

1.1 (2*E*,7*E*)-methyl deca-2,7,9-trienoate (10)³

In a 50 mL round-bottom flask equipped with a magnetic stirring bar, under N₂, was charged with a solution of to a solution of (*E*)-octa-5,7-dienenitrile (2.78 g, 23 mmol, 1 eq) in dry Et₂O (45 mL). Then, at 0 °C DIBALH (1.2 M in toluene, 28.75 mL, 34.50 mmol, 1.5 eq) was added dropwise. The solution was warmed to room temperature (r.t.) and stirred for 4.5 h. The solution was cooled to 0 °C, and then MeOH (17.20 mL) was added followed by 1 N HCl (87.20 mL). This two-phase mixture was stirred for 2 h at r.t.. The aq. phase was then extracted with Et₂O (3 × 30 mL). The combined organic phases were washed with sat. NaHCO₃ (30 mL), dried (anh. Na₂SO₄). Volatiles were removed in vacuo to give crude aldehyde **9** (R_f = 0.18, 6% EtO₂ in pentanes) which was used in the next step without purification. IR (neat): v_{max} 2925*s*, 1726*m*, 1652*m*, 1603*m*, 1455*m*, 1134*s* cm⁻¹; ¹H NMR (CDCl₃, 300 MHz): δ 9.82 (t, *J* = 1.6 Hz, 1H), 6.35 (td, *J* = 16.9 Hz, 1H), 5.04 (d, *J* = 16.9 Hz, 1H), 2.50 (dt, *J* = 7.4, 1.6 Hz, 2H), 2.18 (dd, *J* = 14.4, 7.4 Hz, 2H), 1.79 (quin, *J* = 7.4 Hz, 2H).

A 50 mL round-bottom flask equipped with a magnetic stirring bar was loaded with NaH (1.10 g of 60% suspension in mineral oil, 27.6 mmol, 1.2 eq), and it was washed with hexanes (3 \times 10 mL) and the liquid phase was removed by syringe under N₂. Methyl diethylphosphonoacetate (4.65 mL, 25 mmol, 1.1 eq) was added to a suspension of NaH in THF (100 mL) at 0 °C and the resulting mixture was stirred for 60 min. A solution of crude dienal **9** (23 mmol, 1 eq) in THF (6.70 mL) was then added at 0 °C. After stirring for 2 h at r.t., the reaction mixture was quenched with water (to aid clarification, 100 mL of 1 N HCl was added as

well). The aq. and organic layers were then separated, the aq. layer was extracted with Et₂O (3 × 30 mL), and the combined organic layers were dried (anh. Na₂SO₄). Volatiles were removed in vacuo. The crude mixture was chromatographed on silica gel ($R_f = 0.27$, 5% EtO₂ in pentanes) to afford the ester **10** as colorless oil in a 80% yield (0.494 g, 2.74 mmol). IR (neat): v_{max} 1722*s*, 1656*m*, 1603*w*, 1436*m*, 1269*s*, 1198*s*, 1174*s*, 1004*m*, 899*s* cm⁻¹; MS(ESI): *m/z* 180 (M⁺); ¹H NMR (400 MHz, CDCl₃): δ 7.00 (td, *J* = 15.6, 7.4 Hz, 1H), 6.35 (td, *J* = 16.8, 10.2 Hz, 1H), 6.10 (dd, *J* = 15.2, 10.2 Hz, 1H), 5.87 (d, *J* = 15.6 Hz, 1H), 5.71 (td, *J* = 15.2, 7.4 Hz, 1H), 5.14 (d, *J* = 16.8 Hz, 1H), 5.02 (d, *J* = 10.2 Hz, 1H), 3.77 (s, 3H), 2.26 (q, *J* = 7.4 Hz, 2H), 2.16 (q, *J* = 7.4 Hz, 2H), 1.61 (quin, *J* = 7.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 167.2, 149.2, 137.1, 134.16, 131.7, 121.2, 115.3, 51.5, 31.9, 31.6, 21.5; HRMS (ESI-TOF) calcd for C₁₁H₁₆OH: 165.1273; found: 165.1266.

1.2 (2*E*,7*E*)-deca-2,7,9-trienal (3)⁴

The ester **10** (0.62 g, 3.44 mmol, 1 eq) was dissolved in dry Et₂O (19 mL) and cooled to -78 °C. To this solution, DIBALH (1.2 M in toluene, 6.30 mL, 7.60 mmol, 2.2 eq) was added dropwise. After 2 h, the reaction was quenched by addition of a sat. aq. solution of Rochelle's salt (50 mL) and the mixture was allowed to warm to r.t.. After 18 h, the clear phases were separated and the aq. phase was extracted with Et₂O (3 × 20 mL). The combined organic extracts were dried (anh. Na₂SO₄) and evaporated to dryness. The crude product was used in further reaction. IR (neat): v_{max} 3335*b*, 2925*m*, 1652*w*, 1603*w*, 1436*m*, 1001*s*, 895*s* cm⁻¹.

This crude alcohol was dissolved in Et₂O (20 mL) and then MnO₂ (6 g, 68.8 mmol, 20 eq) was added. The reaction mixture was stirred at r.t. for 1 h. After removing MnO₂ by filtration, the crude aldehyde was purified on silica gel (R_f = 0.08, 7% EtO₂ in pentanes) to give the trienal **3** as a pale yellow oil in 95% yield (0.49 g, 3.26 mmol). IR (neat): v_{max} 1686s, 1652w, 1637w, 1603w, 1437w, 1121m, 1004m, 973m, 898m cm⁻¹; MS(EI): m/z (%) relative intensity 152 (M⁺+2, 57), 150 (M⁺, 52), 134 (100), 122 (20); ¹H NMR (400 MHz, CDCl₃): δ 9.55 (d, J = 7.7 Hz, 1H), 6.89 (td, J = 15.2, 7.7 Hz, 1H), 6.35 (td, J = 17.0, 10.1 Hz, 1H), 6.15 (dd, J = 14.7, 7.6 Hz, 1H), 6.11 (dd, J = 15.2, 10.1 Hz, 1H), 5.71 (td, J = 15.2, 7.6 Hz, 1H), 5.15 (d, J = 17.0 Hz, 1H), 5.03 (d, J = 10.1 Hz, 1H), 2.39 (q, J = 7.4 Hz, 2H), 2.19 (q, J = 7.4 Hz, 2H), 1.67 (quin, J

= 7.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 194.1, 158.43, 137.0, 133.8, 133.2, 132.0, 115.5, 32.1, 31.9, 27.3; HRMS (ESI-TOF) calcd for C₁₀H₁₄O; 150.1045 found: 150.1042.

2.1 (2*E*,7*E*)-ethyl 2-methyldeca-2,7,9-trienoate (11)

A 50 mL round-bottom flask equipped with a magnetic stirring bar was loaded with NaH (0.268 g of 60% suspension in mineral oil, 6.70 mmol, 1.5 eq), and it was washed with hexanes $(3 \times 15 \text{ mL})$ and the liquid phase was removed by syringe under N_2 . Triethylphosphonopropionate (1.29 mL, 6.02 mmol, 1.35 eq) was added to a suspension of NaH in THF (10 mL) at 0 °C and the resulting mixture was stirred for 1 h at r.t.. A solution of crude dienal 9 (4.46 mmol, 1 eq) in THF (1.40 mL) was then added to the previous solution at 0 °C. The reaction mixture was slowly warmed to r.t. and stirred for 0.5 h. The reaction was quenched with sat. NH_4Cl . The aq. and organic layers were then separated, the aq. layer was extracted with Et_2O (3 × 15 mL), and the combined organic layers were dried (anh. Na₂SO₄). Volatiles were removed in vacuo, the residue was chromatographed on silica gel ($R_f = 0.29$, 3-5% EtO₂ in pentanes) to give a pale yellow oil of ester 11 in a 86% yield (0.806 g, 3.84 mmol). IR (neat): v_{max} 1710s, 1651m, 1436w, 1252s, 1115m, 1004m cm⁻¹; MS(ESI): m/z 208 (M⁺); ¹H NMR (400 MHz, CDCl₃): δ 6.73 (m, 1H), 6.29 (td, *J* = 17.0, 10.5 Hz, 1H), 6.04 (dd, *J* = 14.8, 10.5 Hz, 1H), 5.73-5.59 (m, 1H), 5.08 (d, J = 17.0 Hz, 1H), 4.96 (d, J = 10.1 Hz, 1H), 4.17 (q, J = 7.1 Hz, 2H), 2.17 (dd, J = 15.0, 7.4 Hz, 2H), 2.10 (dd, J = 14.5, 7.4 Hz, 2H), 1.81 (s, 3H), 1.54 (quin, J = 7.4 Hz, 2H), 1.28 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 168.3, 141.8, 137.2, 134.5, 131.6, 128.1, 115.2, 60.5, 32.2, 28.1, 28.1, 14.4, 12.5; HRMS (ESI-TOF) calcd for C₁₃H₂₀O₂; 208.1463 found: 208.1462.

2.2 (2*E*,7*E*)-ethyl 2-methyldeca-2,7,9-trienal (4)⁵

The ester **11** (135 mg, 0.65 mmol, 1 eq) was dissolved in dry Et₂O and cooled to -78 °C. To this solution, DIBALH (1.0 M in hexanes, 1.43 mL, 1.43 mmol, 2.2 eq) was added dropwise. After 2 h, the reaction was quenched by addition of a sat. aq. solution of Rochelle's salt (10 mL) and the mixture was allowed to warm to r.t.. After 18 h, the clear phases were separated and the aq. phase was extracted with Et₂O (3 × 10 mL). The combined organic extracts were dried (anh. Na₂SO₄) and evaporated to dryness. The crude product was used in further reaction. IR (neat): v_{max} 3306*s*, 2923*m*, 1651*w*, 1602*w*, 1438*m*, 1000*s*, 896*m* cm⁻¹.

This crude alcohol was dissolved in CH₂Cl₂ (10 mL) and then MnO₂ (5 g, 58 mmol, 15 eq) was added. The reaction mixture was stirred at r.t. for 1 h. After removing MnO₂ by filtration and purification by flash column chromatography (f.c.) on silica gel ($R_f = 0.31$, 10% EtO₂ in pentanes), the pale yellow oil of aldehyde **4** was obtained in 95% yield (100 mg, 0.63 mmol). IR (neat): v_{max} 1686s, 1646m, 1406w, 1234w, 1004m cm⁻¹; MS(ESI): m/z 164 (M⁺); ¹H NMR (400 MHz, CDCl₃): δ 9.40 (s, 1H), 6.48 (t, J = 7.0 Hz, 1H), 6.31 (td, J = 10.1, 5.3 Hz, 1H), 6.08 (t, J = 12.8 Hz, 1H), 5.68 (dt, J = 15.4, 6.4 Hz, 1H), 5.11 (d, J = 16.8 Hz, 1H), 4.99 (d, J = 10.1 Hz, 1H), 2.37 (q, J = 7.0 Hz, 2H), 2.10 (m, 2H), 1.74 (s, 3H), 1.62 (quin, J = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 195.4, 154.4, 139.7, 137.0, 134.0, 131.9, 115.4, 32.1, 28.5, 27.9, 9.3; HRMS (ESI-TOF) calcd for C₁₁H₁₆O; 164.1201 found: 164.1199.

3. Synthesis of triene 5

3.1 (*E*)-4-iodobut-2-enyl acetate (12)

To an acetronitrile (18 mL) solution of 2,5-dihydrofuran (3 mL, 40 mmol, 1 eq) and NaI (7.2 g, 48 mmol, 1.2 eq) was added an acetronitrile (11 mL) solution of acetyl chloride (2.83 mL, 40 mmol, 1 eq) at 0 °C under N₂. The reaction was stirred under Neon light at r.t. for 21 h. Then it was quenched by the addition of sat. Na₂SO₃ (20 mL) and extracted with Et₂O (3 × 30 mL). The combined organic layers were washed with water, brine (50 mL) and dried (anh. Na₂SO₄). Filtration followed by evaporation to dryness afforded a crude yellow liquid. A 9:1 ration of *E:Z*

isomer was observed by ¹H NMR of olefinic protons. This crude product was used to further reaction. IR (neat): v_{max} 1736s, 1432w, 1362m, 1221s, 1152m, 1024m, 963m cm⁻¹; MS(EI): m/z (%) relative intensity 127 (12), 113 (100), 71 (21), 54 (47), 53 (30); ¹H NMR (300 MHz, CDCl₃): δ 6.04 (m, 1H), 5.82 (m, 1H), 4.58 (d, J = 5.9 Hz, 1H), 3.90 (d, J = 7.9 Hz, 1H), 2.11 (s, 3H); ¹³C NMR (CDCl₃, 75 MHz): δ 170.6, 131.9, 127.5, 63.7, 27.4, 20.9.

(*E*)-5-bromopenta-1,3-diene $(13)^6$ was prepared according to the literature procedure.

To a suspension of NaH (60% suspension in mineral oil, 0.363 g, 9.0 mmol, 1.8 eq) in DMF (10 mL) at 0 °C dimethyl malonate (0.863 g, 10.0 mmol, 2 eq) was added. After 15 min, a solution of (*E*)-7-iodohepta-1,3-diene (**12**) (1.08 g, 5.0 mmol, 1.1 eq) in DMF (5 mL) was added dropwise to previous solution (turbid solution became to clear solution). The mixture was stirred for 15 h at 60 °C and then quenched with sat. NH₄Cl (10 mL) and extracted with Et₂O (3 × 30 mL). The organic layer was washed with water (20 mL), brine, and dried (anh. Na₂SO₄). Volatiles were removed in vacuo. The residue was purified by f.c. (R_f = 0.32, 25% EtO₂ in pentanes) to give monoalkylated product **14** as a colorless oil (1.20 g, 4.90 mmol, 98 %). IR (neat): v_{max} 1732s, 1437*m*, 1365*w*, 1226*s*, 1156*m*, 1026*m*, 970*m* cm⁻¹; MS(EI): *m/z* 244 (M⁺); ¹H NMR (400 MHz, CDCl₃): δ 5.69 (m, 2H), 4.49 (d, *J* = 5.1 Hz, 2H), 3.74 (s, 6H), 3.45 (t, *J* = 7.5 Hz, 1H), 2.65 (t, *J* = 6.6 Hz, 2H), 2.05 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 169.2 (3CO), 130.7, 127.3, 64.6, 52.6 (2CH₃), 51.3, 31.5, 21.0.

3.3 Dimethyl 2-((*E*)-4-acetoxybut-2-enyl)-2-((*E*)-penta-2,4-dienyl)malonate (15)

A solution of **14** (0.366 g, 1.50 mmol, 1 eq) in dry DMF (3 mL) was added to a suspension of NaH (72 mg of a 60% suspension in mineral oil, 1.80 mmol, 1.2 eq) in dry DMF

(3 mL) at r.t. under N₂. The mixture was stirred at r.t. for 15 min. Then solution of diene **13** (0.441 g, 3.00 mmol, 2.00 eq) in dry DMF (2 mL) was added dropwise and the reaction was stirred at r.t. for 20 h. Then the mixture was quenched with sat. NH₄Cl (10 mL), extracted with Et₂O (3 × 10 mL). Combined organic portions were washed with water (10 mL) and dried (anh. Na₂SO₄). The solvent was evaporated and the residue was chromatographed on silica gel (R_f = 0.26, 35 % EtO₂ in pentanes) to afford dialkylated product **15** as a colorless viscous liquid in 86% yield (400 mg, 1.29 mmol) and. IR (neat): v_{max} 1738*s*, 1449*m*, 1368*m*, 1235*s*, 1207*s*, 1032*m*, 1012*m*, 975*m* cm⁻¹; MS(ESI): *m/z* 333 (M⁺); ¹H NMR (400 MHz, CDCl₃): δ 6.26 (dt, *J* = 16.9, 10.5 Hz, 1H), 6.07 (dd, *J* = 15.1, 10.3 Hz, 1H), 5.61 (m, 2H), 5.47 (dt, *J* = 15.1, 7.6 Hz, 1H), 5.11 (d, *J* = 16.9 Hz, 1H), 5.01 (d, *J* = 10.5 Hz, 1H), 4.47 (d, *J* = 5.0 Hz, 2H), 3.70 (s, 6H), 2.61 (d, *J* = 7.7 Hz, 4H), 2.04 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 171.0 (2CO), 170.7, 136.5, 135.3, 129.3, 128.7, 127.5, 116.7, 64.6, 57.8, 52.5 (2CH₃), 36.1, 35.7, 21.0; HRMS (ESI-TOF) calcd for C₁₆H₂₂O₆Na; 333.1308 found: 333.1297.

3.4 Dimethyl 2-((*E*)-4-oxobut-2-enyl)-2-((*E*)-penta-2,4-dienyl)malonate (5)

A solution of **15** (0.314 g, 1.01 mmol, 1 eq) in MeOH (3.37 mL) was added to a solution of K₂CO₃ (0.307 g, 2.90 mmol, 2.2 eq) in a mixture of MeOH (14.40 mL) and H₂O (3.37 mL) at r.t.. The mixture was stirred at r.t. for 1 h, and then MeOH was removed under reduced pressure. The residue was extracted with CH₂Cl₂ (3 × 15 mL). The combined organic layers were brine and dried (anh. Na₂SO₄). Volatiles were removed in vacuo and the residue was used in further step. IR (neat): v_{max} 3442m, 1728s, 1437m, 1267s, 1203s, 1005s cm⁻¹; MS(ESI): *m/z* 286 (M⁺ + H₂O); ¹H NMR (400 MHz, CDCl₃): δ 6.28 (dt, *J* = 16.9, 10.3 Hz, 1H, CH₂=CHCH), 6.09 (dd, *J* = 15.1, 10.3 Hz, 1H), 5.72 (dt, *J* = 15.3, 5.6 Hz, 1H), 5.52 (sept, *J* = 7.6 Hz, 2H), 5.13 (d, *J* = 16.9 Hz, 1H), 5.03 (d, *J* = 10.3 Hz, 1H,), 4.08 (d, *J* = 5.3 Hz, 2H), 3.72 (s, 6H), 2.64 (dd, *J* = 9.9, 8.1 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃): δ 171.2 (2CO), 136.6, 135.2, 134.0, 127.6, 125.8, 116.7, 63.3, 58.0, 52.6 (2CH₃), 35.9, 35.6.

The crude alcohol (1.01 mmol, 1 eq) was dissolved in Et₂O (10 mL) and then MnO₂ (1.74 g, 20 mmol, 20 eq) was added. The reaction mixture was stirred at r.t. for 1 h. After removing MnO₂ by filtration, the pure aldehyde **5** was obtained as pale yellow oil in 92% yield⁹ (0.245 g, 0.92 mmol). IR (Neat): v_{max} 1733s, 1692m, 1437m, 1205s, 1008m cm⁻¹; MS(ESI): m/z 266 (M⁺);

¹H NMR (400 MHz, CDCl₃): δ 9.50 (d, *J* = 7.7 Hz, 1H), 6.73 (td, *J* = 15.1, 7.7 Hz, 1H), 6.27 (td, *J* = 16.8, 10.4 Hz, 1H), 6.11 (ddd, *J* = 15.1, 10.4, 9.3 Hz, 2H), 5.47 (td, *J* = 15.0, 7.6 Hz, 1H), 5.15 (d, *J* = 16.8 Hz, 1H), 5.06 (d, *J* = 10.1 Hz, 1H), 3.74 (s, 6H), 2.86 (dd, *J* = 7.5, 1.1 Hz, 2H), 2.70 (d, *J* = 7.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 193.5, 170.5 (2CO), 151.8, 136.2, 135.9 (2CH), 126.6, 117.4, 57.5, 52.9 (2CH₃), 36.8, 36.2; HRMS (ESI-TOF) calcd for C₁₄H₁₈O₅; 266.1154 found: 266.1154.

4. Synthesis of triene 6

(2E,4E)-hexa-2,4-dien-1-ol (16)⁷ was prepared according to the literature procedure.
4.1 Dimethyl 2-((Z)-4-acetoxybut-2-enyl)-2-((2E,4E)-hexa-2,4-dienyl)malonate (17)⁸

THF (1.30 mL) was added under N₂ to a round bottom flask containing alcohol 16 (216 mg, 2.2 mmol, 1.1 eq) and a stirring bar. The reaction flask was then placed into a dry ice/acetone bath (-78 °C). n-BuLi (1.60 M in hexanes, 1.44 mL, 2.3 mmol, 1.15 eq) was added dropwise over 5 min and the yellow solution was stirred for 15 min. Methanesulfonyl chloride (0.19 mL, 2.40 mmol, 1.20 eq) was then added dropwise causing the solution to become colorless. After 15 min a solution of LiBr (0.87 g in 2.3 mL of THF, 10 mmol, 5 eq) was added and the reaction was then allowed to warm to r.t.. In a separate 2 necks of round bottom flask, NaH (92 mg of 60% suspension in mineral oil, 2.3 mmol, 1.15 eq) was placed and washed with hexanes $(3 \times 5 \text{ mL})$, the liquid phase was removed by syringe and then dried under vacuum. THF (2.5 mL) was added to the previous flask under N₂ followed by the slow addition of a solution of dimethyl allylmalonate 14 (0.488 g, 2.0 mmol, 1 eq) in THF (2 mL). The reaction was stirred for 20 min at r.t. then placed into a dryice/acetone bath (-78 °C). The solution containing the diene was then transferred via cannula to the flask containing the malonate anion and the reaction was allowed to warm to r.t. and was stirred for 15 h. Sat. NH₄Cl (7 mL) was added and mixture was poured into a separating funnel and extracted with Et_2O (3 × 10 mL). The combined organic layers were washed with brine (25 mL) and dried (anh. MgSO₄). Volatiles were removed in vacuo. The residue was purified by f.c. ($R_f = 0.20$, 20% Et₂O in pentanes) affording a colorless

oil in 36% yield (140 mg, 0.43 mmol) in a 18:1 ratio of **17** and its isomer which was determined by ¹H NMR. Alkenyl bromide and starting material **14** were also obtained in 13% yield and 14% yield, respectively. IR (neat): v_{max} 1730*s*, 1436*m*, 1380*w*, 1226*s*, 1200*s*, 1025*m*, 990*m*, 973*m* cm⁻¹; MS(ESI): m/z 324 (M⁺); ¹H NMR (400 MHz, CDCl₃): δ 6.06-5.91 (m, 2H), 5.68-5.53 (m, 3H), 5.29 (m, 1H), 4.47 (d, J = 5.0 Hz, 2H), 3.69 (s, 6H), 2.60 (d, J = 6.3 Hz, 4H), 2.06 (s, 3H), 1.71 (d, J = 7.4 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 171.0 (2CO), 170.6, 134.8, 131.0, 129.4, 129.4, 128.9, 123.8, 64.5, 57.5, 52.4 (2CH₃), 36.0, 35.5, 20.9, 18.0 ; HRMS (ESI-TOF) calcd for C₁₇H₂₄O₆Na; 347.1465 found: 347.1457.

A solution of **17** (200 mg, 0.62 mmol, 1 eq) in MeOH (2.10 mL) was added to a solution of K₂CO₃ (0.186 g, 1.35 mmol, 2.2 eq) in a mixture of MeOH (8.60 mL) and H₂O (2.10 mL) at r.t.. The mixture was stirred at r.t. for 30 min, and then MeOH was removed under reduced pressure. The residue was extracted with CH₂Cl₂ (3 × 10 mL). The combined organic layers were brine and dried (anh. Na₂SO₄). Volatiles were removed in vacuo and the residue was used in next step. IR (neat): v_{max} 3456*br*, 1732*s*, 1437*m*, 1280*m*, 1200*s*, 991*m* cm⁻¹; MS(ESI): *m/z* 300 (M⁺+H₂O); ¹H NMR (400 MHz, CDCl₃): δ 6.01 (quin, *J* = 6.0 Hz, 2H), 5.80-5.47 (m, 3H), 5.32 (dt, *J* = 11.0, 7.4 Hz, 1H), 4.08 (t, *J* = 5.3 Hz, 2H), 3.71 (s, 6H), 2.63 (d, *J* = 7.5 Hz, 4H), 1.73 (d, *J* = 6.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 171.3 (2CO), 134.8, 133.8, 131.11, 129.0, 126.0, 124.0, 63.4, 58.1, 52.5 (2CH₃), 35.9, 35.5, 18.1.

This crude alcohol was dissolved in Et₂O (6 mL) and then MnO₂ (1.08 g, 12.40 mmol, 20 eq) was added. The reaction mixture was stirred at r.t. for 30 min. After removing MnO₂ by filtration, give a trienal **6** as a colorless oil ($R_f = 0.18, 40\%$ Et₂O in pentanes) in 92% yield (0.160 g, 0.57 mmol).⁹ IR (neat): v_{max} 1733*s*, 1693*m*, 1436*m*, 1337*m*, 1226*s*, 1198*s*, 1152*s*, 990*m* cm⁻¹; MS(EI): m/z (%) relative intensity 280 (M⁺); ¹H NMR (400 MHz, CDCl₃): δ 9.50 (d, J = 7.9 Hz, 1H), 6.74 (dt, J = 11.5, 7.5 Hz, 1H), 6.13 (dd, J = 15.6, 7.9 Hz, 1H,), 6.09-5.95 (m, 2H), 5.65 (dq, J = 12.8, 6.6, 6.2 Hz, 1H), 5.30 (m, 1H), 3.74 (s, 6H), 2.86 (d, J = 7.5 Hz, 2H), 2.68 (d, J = 7.5 Hz, 2

7.8 Hz, 2H), 1.74 (d, J = 6.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 193.5, 170.6 (2CO), 152.0, 135.8, 135.5, 130.8, 129.7, 123.1, 57.6, 52.8 (2CH₃), 36.8, 36.2, 18.1; HRMS (ESI-TOF) calcd for C₁₅H₂₀O₅; 280.1311 found: 280.1311.

5. Synthesis of triene 7

5.1 (2E,7E)-N-methoxy-N-methyldeca-2,7,9-trienamide (18)

To a solution of ester **10** and *N*,*O*-dimethylhydroxyamine hydrochloride (0.585 g, 6 mmol, 2 eq) in THF (6 mL), a solution of *i*PrMgCl (2 M in THF, 6.75 mL, 13.5 mmol, 4.5 eq) was added dropwise at -5 °C. The mixture was stirred for 30 min, and then treated with sat. aq. NH₄Cl (20 mL). The two layer mixture was separated and organic phase was dried (anh. Na₂SO₄). After removal of the solvent, purification by f.c. on silica gel ($R_f = 0.33$, 50% EtOAc in pentanes) gave a colorless oil of Weinreb amide **18** in 71% yield (0.413 g, 1.96 mmol). IR (neat): v_{max} 2933*w*, 1663*s*, 1633*s*, 1412*m*, 1379*s*, 1178*m*, 1002*s*, 979*s*, 952*m*, 898*m* cm⁻¹; MS(ESI): *m/z* 210 (M⁺); ¹H NMR (400 MHz, CDCl₃) δ 6.96 (td, *J* = 15.3, 7.0 Hz, 1H), 6.40 (d, *J* = 15.4 Hz, 1H), 6.31 (td, *J* = 16.9, 10.3 Hz, 1H), 6.10-6.01 (m, 1H), 5.73-5.62 (m, 1H), 5.09 (d, *J* = 16.9 Hz, 1H), 5.00-4.94 (m, 1H), 3.72-3.67 (m, 1H), 3.23 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 167.0, 147.4, 137.2, 134.4, 131.6, 119.0, 115.1, 61.7, 32.4, 32.0, 31.9, 27.8; HRMS (ESI-TOF) calcd for C₁₂H₂₀NO₂: 210.1488; found: 210.1480.

5.2 (3*E*,8*E*)-undeca-3,8,10-trien-2-one (7)

A solution of MeMgBr (1 M in THF, 3.9 mL, 3.94 mmol, 2.2 eq) was added dropwise to a solution of Weinreb amide **18** (0.38 g, 1.79 mmol, 1 eq) at -30 °C. The reaction mixture was stirred at -5 °C for 35 min, and then the mixture was treated with sat. NH₄Cl (15 mL). The aq. phase was extracted with EtOAc (3 × 15 mL), and the organic layer was washed with brine (15 mL), and dried (anh. Na₂SO₄). After removal of the solvent, purification by f.c. on silica gel (R_f = 0.19, 5% EtOAc in pentanes) gave a pale yellow oil of trienone **7** in 85% yield (0.25 g, 1.52 mmol); IR (neat): v_{max} 2929w, 1698m, 1673s, 1626m, 1434w, 1360m, 1253s, 1003s, 978s, 952m, 898*m* cm⁻¹; MS(EI): *m/z* (%) relative intensity 164 (M⁺, 8), 149 (8), 121 (99), 106 (20), 93 (24), 84 (90), 67 (100), 53 (38); ¹H NMR (400 MHz, CDCl₃): δ 6.80 (td, *J* = 15.8, 6.87 Hz, 1H), 6.31 (td, *J* = 16.9, 10.2 Hz, 1H), 6.08 (d, *J* = 15.8 Hz, 1H), 6.05 (d, *J* = 14.7 Hz, 1H), 5.67 (td, *J* = 15.2, 7.2 Hz, 1H,), 5.11 (d, *J* = 16.9 Hz, 1H), 4.98 (d, *J* = 10.2 Hz, 1H), 2.24 (m, 5H), 2.13 (q, *J* = 7.2 Hz, 2H), 1.59 (quin, *J* = 7.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃,): δ 198.6, 148.0, 137.0, 134.0, 131.7, 131.5, 115.3, 31.9, 31.8, 27.5, 26.9; HRMS (ESI-TOF) calcd for C₁₁H₁₆ONa: 165.1273; found: 165.1266.

6. (3a*R*,4*R*,7a*S*)-2,3,3a,4,5,7a-hexahydro-1*H*-indene-4-carbaldehyde (19)

Racemic:

In a 10 mL Schlenk tube equipped with a magnetic stirring bar, under N₂, to stirred a triene **3** (23 mg, 0.15 mmol, 1 eq) solution in dry CH_2Cl_2 (0.5 mL) at r.t. AlEt₂Cl solution (1 M in hexanes, 0.075 mL, 0.075 mmol, 0.5 eq) was added dropwise. The yellow reaction mixture was stirred at r.t. for 30 min and quenched with water (1 mL) and Et₂O (1 mL). The organic phase was extracted with Et₂O (5 × 3 mL), brine and dried (anh. Na₂SO₄). The crude product was purified by f.c. to give the racemic adduct **19** in 65% yield (14 mg, 0.95 mmol). *Asymmetric:*

In a 50 mL Schlenk tube equipped with a magnetic stirring bar at r.t. and under N₂, Ru catalyst **1c** (73 mg, 0.05 mmol, 0.05 eq) was dissolved in dry CH₂Cl₂ (1.80 mL). To the stirring mixture, 2,6-lutidine (2.3 μ L, 0.02 mmol, 0.02 eq) and a solution of triene **3** (150 mg, 1.00 mmol, 1 eq) in dry CH₂Cl₂ (1.50 mL) were carefully added, and the resulting orange solution was stirred at r.t. and under N₂ for 7 d. The reaction was then monitored by TLC. At the end of the reaction, CH₂Cl₂ was removed under vacuum pump and hexane (20 mL) was added, and the mixture was suspended and filtered through a Celite 545 plug to give recoverable catalyst on Cilite. Volatiles were removed in vacuo and the residue was purified by f.c. using a silica gel column (R_f = 0.22, 5% Et₂O in pentanes) to give a pale yellow oil of adduct **19** in 92% isolated

yield (138 mg, 0.92 mmol). Chiral GC (Hydrodex-β, H₂, 100 °C 30 min then heating 0.5 °C/min to 120 °C): t_R of *endo* product (min) = 33.69 (7.84), 35.30 (92.16) and t_R of starting material (min) = 47.69 (1.16) Calculated : 99% conv. and 84% ee. $[\alpha]^{23}_{D}$ = -93.5° (*c* = 1.05, CHCl₃); IR (neat): *v*_{max} 2954*m*, 2870*m*, 1726*s*, 1639*w*, 1454*w*, 1437*w* cm⁻¹; MS(EI): *m/z* (%) relative intensity 150 (M⁺+1, 9), 137 (10), 121 (98), 91 (84), 79 (100), 81 (58), 55 (34); ¹H NMR (500 MHz, CDCl₃): δ 9.68 (dd, *J* = 2.7, 1.1 Hz, 1H), 5.86 (d, *J* = 9.85 Hz, 1H), 5.62 (dtd, *J* = 5.6, 4.0, 2.2 Hz, 1H), 2.49 (m, 1H), 2.37-2.20 (m, 2H), 2.00-1.84 (m, 3H), 1.80-1.71 (m, 2H), 1.43 (ddd, *J* = 22.7, 11.0, 6.2 Hz, 1H), 1.36-1.26 (m, 1H), 1.16 (quin, *J* = 11.0 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 203.8, 130.0, 125.1, 52.6, 44.5, 44.0, 28.6, 27.5, 25.7, 22.3; HRMS (ESI-TOF) calcd for C₁₀H₁₄O-H; 149.0966 found: 149.0962. ¹H NMR and $[\alpha]^{23}_{D}$ are in accordance with Yamamoto's data.⁴

Using $[Ru(\eta^5-C_5H_5)((S,S)-BIPHOP-F)(acetone)][SbF_6]$ (1b), the reaction was run in the same scale at r.t. for 9 d to afford the corresponding adduct 19 in 82% yield with 72% ee.

7. (3a*R*,4*R*,7a*S*)-4-methyl-2,3,3a,4,5,7a-hexahydro-1*H*-indene-4-carbaldehyde (20)

Racemic:

In a 10 mL Schlenk tube equipped with a magnetic stirring bar, under N₂, a solution of triene **4** (20 mg, 0.12 mmol, 1 eq) was stirred in dry CH_2Cl_2 (2 mL) at r.t.. AlEt₂Cl solution (1 M in hexanes, 0.12 mL, 0.12 mmol, 1 eq) was added dropwise. The yellow reaction mixture was stirred at -78 to 0 °C for overnight and quenched with water (2 mL) and CH_2Cl_2 (2 mL). The organic phase was extracted with CH_2Cl_2 (3 × 5 mL). The combined organic phases were brine and dried (anh. Na₂SO₄). A 99:1 mixture of *endo:exo* adducts **20** was obtained in 90% yield (18 mg, 0.11 mmol).

Asymmetric:

In a 50 mL Schlenk tube equipped with a magnetic stirring bar at r.t. and under N_2 , Ru catalyst **1b** (70 mg, 0.05 mmol, 0.05 eq) was dissolved in dry CH₂Cl₂ (1.80 mL). To the stirring

mixture, 2,6-lutidine (2.3 μ L, 0.02 mmol, 0.02 eq) and a solution of triene 4 (164 mg, 1.00 mmol, 1 eq) in dry CH₂Cl₂ (1.50 mL) was carefully added, and the resulting yellow solution was stirred at r.t. and under N₂ for 7 d. The reaction was then monitored by TLC. At the end of the reaction, CH₂Cl₂ was removed under vacuum pump and hexane (20 mL) was added, and the mixture was suspended and filtered through a Celite 545 plug to give recoverable catalyst on Cilite. Volatiles were removed in vacuo and the residue was purified by f.c. using a silica gel column ($R_f = 0.36$, 10% Et₂O in pentanes) to give a pale yellow oil of adduct in 82% isolated yield (135 mg, 0.82 mmol). Chiral GC (Hydrodex-β, H₂, 100 °C 30 min then heating 0.5 °C/min to 120 °C): t_R of *exo* product (min) = 34.82 (15.56), 38.03 (0.79) and t_R of *endo* product (min) = 40.85 (4.26), 41.52 (79.38). Calculated: 100% conv., a 16:84 ratio of exo:endo isomers and 92% ee for both isomers; IR (neat): v_{max} 1726s, 1634w, 1456m, 691m cm⁻¹; MS(ESI): m/z 164 (M⁺); ¹H NMR (500 MHz, CDCl₃): δ 9.49 (s, 1H), 5.85 (d, J = 9.9 Hz, 1H), 5.61 (tdd, J = 9.9, 4.6, 2.6 Hz, 1H), 2.45 (ddd, J = 18.0, 6.2, 2.7 Hz, 1H), 2.04-1.86 (m, 2H), 1.82-1.76 (dp, J = 18.0, 2.1Hz, 1H), 1.76-1.68 (m, 2H), 1.64-1.50 (m, 2H), 1.35-1.11 (m, 2H), 1.03 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 205.6, 129.4, 124.3, 47.8, 46.4, 39.2, 33.4, 28.7, 23.7, 22.1, 12.5; HRMS (ESI-TOF) calcd for $C_{11}H_{16}O$; 164.1201 found: 164.1199. ¹H NMR is in accordance with Yamamoto's data.⁵

Using $[Ru(\eta^5-C_8H_7)((S,S)-BIPHOP-F)(acetone)][SbF_6]$ (1c), the reaction was run in the same scale at r.t. for 6 d to afford the corresponding adduct 20 in a 81:19 mixture of *endo:exo* isomers with 84% ee and 90% ee respectively (85% yield, 139 mg, 0.85 mmol).

8. dimethyl (3a*R*,4*R*,7a*S*)-4-formyl-1,3,3a,4,5,7a-hexahydro-2*H*-indene-2,2dicarboxylate (21)

Racemic:

To a solution of triene 5 (20 mg, 0.07 mmol) in CH_2Cl_2 (1 mL), silica gel and 1 drops of conc. HCl were added, and then stirred at r.t. for overnight. After filtration, the *endo* adduct 21 was obtained in quantitative yield.

Asymmetric:

In a 20 mL Schlenk tube equipped with a magnetic stirring bar at r.t. and under N₂, Ru catalyst (1c) (14.6 mg, 0.010 mmol, 0.05 eq) was dissolved in dry CH₂Cl₂ (0.70 mL). To the stirring mixture, 2,6-lutidine (1.2 µL, 0.010 mmol, 0.05 eq) and a solution of triene 5 (56 mg, 0.2 mmol, 1 eq) in dry CH₂Cl₂ (0.70 mL) was carefully added, and the resulting orange solution was stirred at r.t. and under N_2 for 4 h. The reaction was then monitored by IR (peak at 1692 cm⁻¹ of α , β -unsaturated aldehyde was disappeared)¹⁰. At the end of the reaction, CH₂Cl₂ was removed under vacuum pump and hexane (10 mL) was added, and the mixture was suspended and filtered through a Celite 545 plug to give recoverable catalyst on Cilite. Volatiles were removed in vacuo and the residue was purified by f.c. using a silica gel column ($R_f = 0.26$, 35% Et₂O in pentanes) to give a pale yellow oil of *endo*-adduct in quantitative yield (56 mg, 0.2 mmol). $[\alpha]_{D}^{23} = -16.1^{\circ}$ $(c = 1.35, \text{CHCl}_3)$; IR (neat): v_{max} 1731s, 1436m, 1266m, 905s, 728s cm⁻¹; MS(ESI): m/z 266 (M^+) ; ¹H NMR (400 MHz, CDCl₃): δ 9.68 (d, J = 2.5 Hz, 1H), 5.81 (dd, J = 9.8, 1.7 Hz, 1H), 5.67 (ddd, J = 9.8, 6.3, 3.3 Hz, 1H), 3.73 (s, 3H), 3.72 (s, 3H), 2.74 (dd, J = 13.0, 6.3 Hz, 1H), 2.66 (dd, J = 13.0, 6.7 Hz, 1H), 2.53 (dtd, J = 11.2, 8.5, 2.5 Hz, 1H), 2.31 (m, 2H), 2.17 (m, 1H), 1.87 (t, J = 12.7 Hz, 1H), 1.67 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 203.0, 173.0 (2CO), 128.3, 126.3, 58.7, 53.12 (2CH₃), 52.13, 43.8, 43.2, 38.2, 37.4, 25.8; HRMS (ESI-TOF) calcd for C₁₄H₁₈O₅; 266.1154 found: 266.1157.

To determine enantiomeric ratio, aldehyde adduct was changed to chiral imine derivative **29**. The 92:8 ratio of emine protons was shown to give 84% ee by ¹H NMR (500 MHz, CDCl₃) at 7.66 (d, J = 6 Hz) and 7.64 (d, J = 6.5 Hz).

Using $[Ru(\eta^5-C_5H_5)((S,S)-BIPHOP-F)(acetone)][SbF_6]$ (**1b**), the reaction was run in the same scale at r.t. for 5 h to afford the corresponding *endo*-adduct **21** in quantitative yield with 43% ee (28 mg, 0.10 mmol).

9. dimethyl (3a*R*,4*R*,5*R*,7a*S*)-4-formyl-5-methyl-1,3,3a,4,5,7a-hexahydro-2*H*indene-2,2-dicarboxylate (22)

Racemic:

A solution of triene 6 (20 mg, 0.07 mmol) in CH_2Cl_2 (1 mL) was then put silica gel and stirred at r.t. overnight. After removal silica gel by filtration, the adduct 22 was obtained in quantitative yield.

Asymmetric:

In a 20 mL Schlenk tube equipped with a magnetic stirring bar at r.t. and under N₂, Ru catalyst (**1c**) (7.3 mg, 0.005 mmol, 0.05 eq) was dissolved in dry CH_2Cl_2 (0.35 mL). To the stirring mixture, 2,6-lutidine (0.6 μ L, 0.005 mmol, 0.05 eq) and a solution of triene **6** (freshly

prepared from the allylic alcohol by oxidation with MnO₂, 28 mg, 0.10 mmol, 1 eq) in dry CH₂Cl₂ (0.35 mL) was carefully added at r.t., and the resulting orange solution mixture was stirred under N₂ for 4 h. The reaction was then monitored by IR (peak at 1693 cm⁻¹ of α , β unsaturated aldehyde was disappeared)¹⁰. At the end of the reaction, CH₂Cl₂ was removed under vacuum pump and hexane (10 mL) was added, and the mixture was suspended and filtered through a Celite 545 plug to give recoverable catalyst on Cilite. Volatiles were removed in vacuo and the residue was purified by f.c. using a silica gel column ($R_f = 0.17, 40\%$ Et₂O in pentanes) to give a pale yellow oil of adduct in quantitative yield; Chiral GC (CP-Chirasil-DexCB, H₂, 160 °C isothermal, 45 min): t_R of *endo* product (min) = 30.35 (77.73), 32.67 (22.27) Calculated: 56% ee; IR (neat): v_{max} 1726s, 1473m, 1435m, 1252s, 1197m, 1154m, 1091m, 912m cm⁻¹; MS(ESI): m/z 280 (M⁺); ¹H NMR (400 MHz, CDCl₃): δ 9.74 (d, J = 1.8 Hz, 1H), 5.75 (d, J = 9.8 Hz, 1H) 5.56 (ddd, J = 9.8, 4.0, 2.9 Hz, 1H), 3.73 (s, 3H), 3.71 (s, 3H), 2.86 (m, 2H), 2.62 (ddd, J = 11.0, 6.3, 1.8 Hz, 1H), 2.57 (dd, J = 12.7, 6.5 Hz, 1H), 2.04 (m, 1H), 1.84 (ddd, J = 21.6, 11.0, 5.7 Hz, 1H), 1.74 (t, J = 12.7 Hz, 2H), 0.97 (d, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃); δ 203.5, 173.1, 172.9, 133.2, 127.1, 58.7, 55.8, 52.9, 52.9, 44.4, 38.2, 37.8, 37.2, 31.6, 17.5; HRMS (ESI-TOF) calcd for C₁₅H₂₀O₅; 280.1311 found: 280.1310.

In the case of using $[Ru(\eta^5-C_5H_5)((S,S)-BIPHOP-F)(acetone)][SbF_6]$ (1b), the reaction was run in the same scale at r.t. for 5 h to afford the corresponding *endo*-adduct **22** in quantitative yield with 55% ee (28 mg, 0.10 mmol).

10. 1-[(3a,4,7a)-2,3,3a,4,5,7a-hexahydro-1*H*-inden-4-yl]ethanone (23)

Racemic:

In a 10 mL round-bottom flask equipped with a magnetic stirring bar, under N_2 , to stirred a triene 7 (30 mg, 0.18 mmol, 1 eq) solution in dry CH_2Cl_2 (0.2 mL) at -78 °C, AlEt₂Cl solution (1 M in hexanes, 0.072 mL, 0.072 mmol, 0.4 eq) was added dropwise. The yellow reaction mixture was stirred at -78 °C to r.t. for 2 h and quenched with water (2 mL) and Et₂O (2 mL). The organic phase was extracted with Et₂O (5 × 3 mL). The combined organic layers were brine and dried (anh. Na₂SO₄). A >99:1 mixture of *endo:exo* adducts and complete conversion were determined by ¹H NMR. The crude reaction was purified with f.c. ($R_f = 0.31$, 5% Et₂O in pentanes) to give a colorless oil in 67% yield (20 mg, 0.12 mmol). Chiral GC (Hydrodex- β , H₂, 100 °C 30 min then heating 0.5 °C/min to 120 °C): t_R of *endo* product (min) = 47.24, 49.04 and t_R of starting material (min) = 61.01; IR (neat): v_{max} 2924*s*, 2870*s*, 1708*s*, 1454*m*, 1377*w*, 1059*s* cm⁻¹; MS(EI): *m/z* (%) relative intensity 164 (M⁺, 10), 146 (10), 121 (100), 93 (22), 91 (30), 79 (47), 77 (14), 67 (26), 55 (12); ¹H NMR (400 MHz, CDCl₃): δ 5.78 (d, *J* = 9.8 Hz, 1H), 5.53 (ddd, *J* = 9.8, 6.5, 2.9 Hz, 1H), 2.59 (dt, *J* = 10.7, 6.7 Hz, 1H), 2.29-2.13 (m, 2H), 2.12-2.08 (m, 3H), 1.90-1.60 (m, 3H), 1.42 (m, 1H), 1.36-1.10 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): δ 211.8, 129.9, 125.6, 53.3, 45.6, 44.4, 29.4, 29.3, 28.8, 28.2, 22.1. HRMS (ESI-TOF) calcd for C₁₁H₁₅O; 164.1201 found: 164.1200.

11. (1*R*)-1-phenylethanaminium (3a*S*,4*R*,6*R*,7*R*,7a*R*)-7-chloro-6-hydroxyoctahydro-1*H*-indene-4-carboxylate (24)

To solution of aldehyde **19** (80 mg, 0.53 mmol, 1 eq) in *t*BuOH (24 mL) was added 2methyl-2-butene (7.3 mL, 68.9 mmol, 130 eq), followed by NaH₂PO₄.2H₂O (3.12 g, 20.14 mmol, 38 eq) and NaClO₂ (0.527 g, 5.83 mmol, 11 eq) in water (19 mL). After 1 h, the reaction was quenched by the addition of sat. NH₄Cl (30 mL) and extracted with EtOAc (3 × 30 mL). The combined organic layers were washed with brine (15 mL), dried (anh. MgSO₄). Volatiles were removed in vacuo. The chiral amine was added to the crude oxidized product to afford white solid. Decantation by using syringe and recrystallization from warm ethanol, then cooling down to r.t. afforded white crystal of **24** in 60% yield (110 mg, 0.32 mmol); IR (CHCl₃): v_{max} 3262*m*, 2931*m*, 1643*s*, 1530*s*, 1399*m*, 1258*m*, 1108*m* cm⁻¹; MS(ESI): *m/z* (%) relative intensity 217.3 (M⁻) and 122.3 (M⁺); ¹H NMR (400 MHz, CDCl₃): δ 7.51-7.37 (m, 5H), 5.10-4.80 (m, 4H), 4.43 (q, J = 6.8 Hz, 1H), 4.22 (br. s, 1H), 4.09 (d, J = 2.4 Hz, 1H), 2.35 (td, J = 12.0, 3.3 Hz, 1H), 2.10 (td, J = 13.4, 2.6 Hz, 1H), 2.02 (br.s, 1H), 1.95-1.75 (m, 3H), 1.72-1.56 (m, 7H), 1.24 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 183.8, 140.9, 130.4 (2CH), 130.0, 127.7 (2CH), 72.5, 64.5, 52.4, 48.1, 44.2, 41.7, 32.5, 30.6, 27.7, 22.3, 21.5; Elemental analysis: C, 63.61; H, 7.71; N, 4.12; found C, 63.53; H, 7.78; N, 4.08.

12. Hydrazone derivatives 25-28

General procedure:

A solution of aldehyde (0.2 mmol, 1 eq) in CH_2Cl_2 (1 mL) and anhydride MgSO₄ were placed in the reaction flask and cooled to 0 °C. SAMP (29 µL, 0.22 mmol, 1.1 eq) was carefully added to the mixture. After stirring at 0 °C for 2 h, the reaction mixture was filtered through Celite plug. Volatiles were removed in vacuo. The residue was purified by f.c. to afford the hydrazone derivatives.

12.1 (2S)-N-[(1E)-(3aR,4R,7aS)-2,3,3a,4,5,7a-hexahydro-1H-inden-4-ylmethylene]2-(methoxymethyl)pyrrolidin-1-amine (25)

Obtained as a yellow liquid in 95% yield: $R_f = 0.26$ (20% Et₂O in pentanes); IR (neat): v_{max} 3016*m*, 2951*s*, 2868*s*, 1638*w*, 1602*w*, 1455*m*, 1339*m*, 1196*m*, 1117*s* cm⁻¹; MS(ESI): *m/z* 263 (M⁺+H); ¹H NMR (400 MHz, CDCl₃): δ 6.62 (d, J = 6.46 Hz, 1H), 5.87 (d, J = 9.80 Hz, 1H), 5.64 (ddd, J = 9.59, 6.61, 2.72 Hz, 1H), 3.61 (dd, J = 8.7, 3.3 Hz, 1H), 3.34-3.50 (m, 6H), 2.78 (q, J = 8.4 Hz, 1H), 2.45 (tt, J = 10.8, 6.3 Hz, 1H), 2.33 (dddd, J = 18.2, 8.4, 4.2, 2.2 Hz, 1H),

2.22-2.08 (m, 1H), 2.05-1.64 (m, 9H), 1.44-1.14 (m, 3H); 13 C NMR (100 MHz, CDCl₃): δ 142.4, 129.9, 126.6, 74.8, 63.5, 59.3, 50.5, 47.7, 44.7, 43.5, 31.8, 29.5, 28.1, 26.6, 22.2, 22.1; HRMS (ESI-TOF) calcd for C₁₆H₂₇N₂O; 263.2117 found: 263.2119.

12.2 (2S)-2-(methoxymethyl)-*N*-{(1*E*)-[(3a*R*,4*R*,7a*S*)-4-methyl-2,3,3a,4,5,7ahexahydro-1*H*-inden-4-yl]methylene}pyrrolidin-1-amine (26)

Obtained as a yellow liquid in 96% yield: $R_f = 0.33$ (20% EtO₂ in pentane); IR (neat): v_{max} 3014*m*, 2954*s*, 2870*s*, 1638*w*, 1603*w*, 1457*m*, 1340*m*, 1196*m*, 1119*s* cm⁻¹; MS(ESI): *m/z* 277.3 (M⁺+H); ¹H NMR (400 MHz, CDCl₃): δ 6.71 (s, 1H of *exo*), 6.65 (s, 1H of *endo*), 5.83 (d, *J* = 9.9 Hz, 1H of *endo*), 5.64 (ddt, *J* = 9.7, 4.8, 2.5 Hz, 1H of *endo*), 5.56 (dtd, *J* = 7.2, 4.8, 2.3 Hz, 1H of *exo*), 5.43 (d, *J* = 10.1 Hz, 1H of *exo*), 3.65 (dt, *J* = 9.1, 3.1 Hz, 2H of *endo* and *exo*), 3.54-3.29 (m, 12H of *endo* and *exo*), 2.80-2.60 (m, 2H of *endo* and *exo*), 2.50-2.35 (m, 2H of *endo* and *exo*), 2.15-1.77 (m, 14H of *endo* and *exo*), 1.76-1.59 (m, 6H of *endo* and *exo*), 1.54-1.43 (m, 2H of *endo* and *exo*), 1.34-1.14 (m, 4H of *endo* and *exo*), 1.09 (d, *J* = 4.5 Hz, 3H of *exo*), 1.04 (s, 3H of *endo*); ¹³C NMR (100 MHz, CDCl₃): δ of *endo* 146.6, 128.8, 126.3, 74.7, 63.6, 59.3, 50.9, 50.2, 40.2, 38.8, 38.6, 29.3, 26.6, 24.1, 22.0, 21.9, 16.4; HRMS (ESI-TOF) calcd for C₁₇H₂₉N₂O; 277.2274 found: 277.2274.

12.3 Dimethyl (3a*R*,4*R*,7a*S*)-4-[(*E*)-{[(2*S*)-2-(methoxymethyl)pyrrolidin-1-yl] imino}methyl]-1,3,3a,4,5,7a-hexahydro-2*H*-indene-2,2-dicarboxylate (27)

Obtained as a yellow liquid in 86% yield: $R_f = 0.21$ (40% EtO₂ in pentanes); IR (neat): v_{max} 3019w, 2953m, 2919m, 1732s, 1601w, 1435m, 1251s, 1196s, 1159s, 1110s cm⁻¹; MS(ESI): m/z 378 (M⁺+H); ¹H NMR (400 MHz, CDCl₃): δ 6.55 (d, J = 6.4 Hz, 1H), 5.81 (d, J = 9.9 Hz, 1H), 5.73–5.63 (m, 1H), 3.763 (s, 3H), 3.758 (s, 3H), 3.64–3.57 (m, 1H), 3.50–3.34 (m, 6H), 2.86–2.60 (m, 3H), 2.44 (m, 1H), 2.40–2.28 (m, 1H), 2.16 (m, 2H), 2.06–1.90 (m, 3H), 1.89–1.78 (m, 2H), 1.72 (t, J = 12.8 Hz, 1H), 1.62 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 173.2, 140.1, 127.9, 127.5, 77.4, 77.1, 76.8, 63.4, 59.2, 58.2, 52.8, 50.3, 46.7, 43.8, 43.0, 38.7, 37.9, 31.5, 26.6, 22.2; HRMS (ESI-TOF) calcd for C₂₀H₃₁N₂O₅; 379.2227 found: 379.2239.

12.4 Dimethyl (3a*R*,4*R*,5*R*,7a*S*)-4-[(*E*)-{[(2*S*)-2-(methoxymethyl)pyrrolidin-1-yl] imino}methyl]-5-methyl-1,3,3a,4,5,7a-hexahydro-2*H*-indene-2,2-dicarboxylate (28)

Obtained as a yellow liquid in 84% yield: $R_f = 0.19$ (40% EtO₂ in pentanes); IR (neat): v_{max} 3018w, 2954m, 2927m, 1733s, 1598w, 1435m, 1251s, 1196s, 1153s, 1114s cm⁻¹; MS(ESI): *m/z* 378 (M⁺+H); ¹H NMR (400 MHz, CDCl₃): δ 6.65 (d, J = 7.3 Hz, 1H), 5.76 (d, J = 9.9 Hz, 1H), 5.63-5.56 (m, 1H), 3.77 (s, 3H), 3.75 (s, 3H), 3.64-3.55 (m, 1H), 3.53-3.34 (m, 6H), 2.90-2.47 (m, 4H), 2.12 (m, 1H), 2.07-1.61 (m, 8H), 1.03 (d, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 173.3, 173.2, 139.3, 134.5, 126.6, 74.9, 63.2, 59.2, 58.5, 52.74, 52.71, 50.7, 46.6, 44.9, 41.5, 38.6, 37.8, 35.3, 26.7, 22.2, 17.0. HRMS (ESI-TOF) calcd for C₂₁H₃₃N₂O₅; 393.2383 found: 379.2402.

References

- 1. Spino, C.; Crawford, J. Tetrahedron Lett. 1994, 35, 5559.
- 2. Spino, C.; Crawford, J.; Bishop J. J. Org. Chem. 1995, 60, 844.
- 3. Roush, W. R.; Gillis, H. R.; Ko, A. I. J. Chem. Am. Soc. 1982, 104, 2269.
- 4. Ishihara, K.; Kurihara, H.; Yamamoto, H. J. Chem. Am. Soc. 1996, 118, 3049.
- 5. Furuta, K.; Kanematsu, A.; Yamamoto, H.; Takaoka, S. Tetrahedron Lett. 1989, 30, 7231.
- 6. Nakanishi, H.; Miyazawa, N. Japanese Kokai Tokkyo Koho 2008, 15.
- 7. Bross, H; Schneider, R; Hopf, H. Tetrahedron Lett. 1979, 23, 2129.
- 8. Wender, P. A.; Christy, J. P. J. Chem. Am. Soc. 2006, 128, 5354.
- Trienes 5 and 6 cannot be purified by f.c. on silica gel because it undergoes IMDA reaction spontaneously. Therefore, the alcohol intermediate was stored and freshly oxidized to trienal 6 before do asymmetric IMDA reaction.
- The IMDA reaction cannot follow by TLC because R_f of starting material and adduct are similar.

-	-2400	-2200	-2000		-1600	-1400	-1200	-1000	-800	-600	-400	-200	. 9	200	
													7		1 4
1											22	_	$\langle \langle$	8	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2								<u></u>		-	-	-	4	Fier	-
2222												_	Z	11.5 F11.5	-
2- 2- 2- 2-														2	
2-													1	2	
													3	3	and the second
67 67													1		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
S- S-													ال	₽ 90'I	2
5 5 5 5										-				F-90'I F-60'I	
5-2													5	Fun	-
9 9											-			F-20.1	
9-										-			-	F-00'T	-
z—			Ţ	2							-	_			
		¢	⇒												-
															1
		CDCl ₃		e											
6 6		¹ H NMR 400 MHz, CDCl ₃					_						3	-86'0	10 10 10 10 10 10 10 10 10 10 10 10 10 1
6		MR 400												1	+
		IN H _I	H,C	7									1		

-2600	-2400	-2200	-2000	-1800	-1600	-1400	-1200	-1000	-800	-600	400	-200	, <u>?</u>	200
_	_			_			_		_					
													{	
791-												5	\neg	
651 191									: 117			5	5	<u></u> Γετ.ς
510 21'2 51'2 91'2												_		
22'2- 62'2- 52'2- 22'2-									_				-	Lees
72.27														
	_								-					
	_		_	_			_		_					
16%-														
26'b 00'S 60'S	_			_		_				-		-	R	-το.1 Γ-εο.1
60'5 <u>5</u> <u>5</u> <u>5</u> <u>2</u> 9'5 <u>6</u> 9'5 <u>1</u> <u>2</u> '5			_	_	_	_	_		_			-		T
12'5 1 80'9 90'9 01'9											39			-20'T
01'9			CH ₃								5			- 90'Z
92 9-		0=					-		-					T
92'9- 82'9- 62'9- 18'9- 18'9-			\rangle		1 0 - 						77			-00,1
121-			5								8	12	_	
	¹ H NMR 400 MHz, CDCl ₃		\langle	-										
	1Hz, C		2											
	400 M		>	_										
	NMR													
	H	2	H ₂ C											

S31

-5500	-5000	-4500	4000	-3500	-3000	-2500	-2000	-1500	-1000	-500		1
	-12	-										
												- 4
											} ++1.5 +34.5	
											E-POE	
it it		CH ₃									≥ - €01 - 601	4
	ە ت	\rangle	10						22			- L - L - Z - Z
	¹ H NMR 400 MHz, CDCl ₃	H ₃ C									Foot	

S33

S35

-3200	-3000	-2800	-2400 -2200	-2000	-1800	-1600	-1400	-1200	-1000	-800	-600	-400	-200	2
													1	2
				-						-				-3
														-
26°0Z—														-
				-		-	-			+		-	3	- 6
02'.5E 50'.9E>								्	-					- 3
														-
ZS' ZS			1	01 <u>M</u> 11										- 1
08'ZS									100	_		_		- :
85.49-								-			_	-		-
Manager 1				-		-				-		-		- 1
92'92 80'22 06'22		-		_	_	_	_	_		-	_	_		-
														-
12				-						-				- 1
														100
				-		_		i i i A ser				_	1	H
62911—									1922	-				-
15221-														-
12821-5				_										-
05'5ET 25'9ET								37 30					1	
		°, cH ₃	Ğ											
		Ī	Î	-						-				-
		-												
	¹³ C NMR 100 MHz, CDCl ₃	5	7										العدالساديا والألامين فبقط	-
ε <i>ι</i> :021 ε0:121	Hz, (Ì	N					151		_	-	ő.		
	00 M	\rangle	15											_
	MR 1	R	H2C											
	³ C N		=0							+			huð heine heinde hein	-
	H	H ₃ C												Ŀ
						S39								đ

2	006-	-800	8	-700	uuy-	8	-500	 -400	9	-300	Ň	-200	8	-100			
																	-
															0		
								_		+				-			- 10
														_	× 1		Ĺ,
;;>								<u>1171</u>		+		-		-		Fare	
''Z																Εrrε	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~							3	2015								Feo.4	- 1
								+		+					(1		
				1										-0			- 1
																Fe1.8	
*>				-									-			F281 F220	IT.
S-2-										+						F20.0 F00.1	
				ന		_0						_	1		$\mathbb{R}$	F 66.2	
5	_		0		ļ	0 CH ₃	8	_		-		-			Ľ	Fsoz	- 1
9- 9- 9- 9- 9-	ć	2		2	$\leq$		0	_		-					3		ļ,
9-	NH2 CT			X	4	>	11									0	;
.z—	R 400 P		$\rightarrow$	/		>			102								
	¹ H NMR 400 MH ² CDCl ²		H ₃ C	-ó	H ₃ C	»									je Je		-













-1000	E.	006-	-800	-700	-600	-500	-400	-300	-200	
							ŝ.			1
				_						
		_								
96' 21								-	-	
60' ZZ-J 89' EZ-J 69' 8Z- T+' EE-										
69'8Z-										
02.95.20										
05.95~								5.54		
11.10-										
										3
										1
				_						tation of the second seco
92'92-				_		_		_		
65.777										
							11			
										3
							11			
				_						
		_						- 444		
E'671 —										
				_						
				-		-				
							115			3
			_	_		_				
	G									
	8		~							a the distribution of the
	Hz,		$\langle \rangle$							
	M O	0, I-	) (.	1111 I						
	¹³ C NMR 100 MHz, CDCl ₃			>	50		11			initia di secondari di secondari Secondari di secondari
i9'S0Z	NMF	H ₃ Cmm								
	3CI	Н								3
	<b>***</b>									<b></b>



-6500	-6000	-5500	-5000	-4500	-4000	-3500	-3000	-2500	-2000	-1500	-1000	-500
				-								
				_	-	-		-		-		a state
				_	_		_	_				
28' SZ			_	_	_			_		_		<b>NAME</b>
05.75 38.14 51.85		_	_	_	_	_	_			_		
18.EP>												
11'25 11'E5 12'85				-						THE		
26.92												1
95'22												da la la
												L Martin
	_		_	_	_		_	_		_	_	
												Lillin .
92'921 — 82'821 —										_	_	
_				_	_		_	_		_	_	
												a la la
30°EZT —											-	
	DG3		ર્સ	_								للنابل
	Hz, C	0=	1	Lo	ੱਦੰ ਦ							
E0'E0Z	M 00	-0-	X	5			_	_				
	¹³ C NMR 100 MHz, CDCl ₃	о <u>,</u> т	$\rightarrow$	( <u></u>	21							vin Lief
	¹³ C l	~										ala luk
						S4	0					3

















-1400	-1300	-1100	-1000	006-		8		- 600	-500	-400	- 300	-200	-100	
									8		477-			
														F242 F242 F252 F252 F252
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		CH ₃		- 2 - 1	1.13 Million		0 <b>1</b>	26				8		5 Karo F2ro F001 P001
لوًي. -9- 19-	¹ H NMR 400 MHz, CDCl ₃					8						-		£ 200'T
sz—	¹ H NMR 400													]











