Supporting Information

Chiral Ruthenium Lewis Acid Catalyzed Intramolecular Diels-Alder Reactions

Sirinporn Thamapipol, Gérald Bernardinelli, Céline Besnard and E. Peter Kündig*

Department of Organic Chemistry, University of Geneva, 30 Quai Ernest Ansermet, 1211 Geneva 4, Switzerland peter.kundig@unige.ch
Table of contents
General S2
Experimental procedures of Trienes and Adducts

1. Triene $\mathbf{3}$ S3
2. Triene $\mathbf{4}$ S5
3. Triene $\mathbf{5}$ S6
4. Triene 6 S9
5. Triene 7 S11
6. Adduct 19 S12
7. Adduct 20 S13
8. Adduct 21 S15
9. Adduct 22 S16
10. Adduct 23 S18
Experimental procedures of derivatives of Adducts
11. Carboxilic salt 24 S18
12. Hydrazone 25 S19
Hydrazone 26 S20
Hydrazone 27 S20
Hydrazone 28 S21
References S21
NMR Spectra S22
CD Spectra S64

General

${ }^{1} \mathrm{H}-,{ }^{13} \mathrm{C}-,{ }^{31} \mathrm{P}-,{ }^{19} \mathrm{~F}$-NMR spectra were recorded on Bruker ARX-500, AMX-400 or ARX-300 FT spectrometers in the solvent indicated. ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR chemical shifts (δ) are quoted in parts per million (ppm) relative to TMS. Coupling constants (J) are in hertz (Hz). ${ }^{31} \mathrm{P}-\mathrm{NMR}$ chemical shifts are referenced to $\mathrm{H}_{3} \mathrm{PO}_{4}$ as external standard. Infrared spectra were recorded on a PerkinElmer Spectrum One spectrophotometer using a diamond ATR Golden Gate sampling. Electron impact (EI) HRMS mass spectra were obtained using a Finningan MAT 95 operating at 70 eV . Electrospray ionization (ESI) HRMS analyses were measured on a VG analytical 7070E instrument. Optical rotations were measured on a Perkin Elmer 241 Polarimeter using a quartz cell ($l=10 \mathrm{~cm}$) with a Na high-pressure lamp ($\lambda=589 \mathrm{~nm}$, continuous). UV-Vis spectra were recorded on a JASCO V-650 spectrophotometer equipped with a stirrer and a temperature controller $\left(25{ }^{\circ} \mathrm{C}\right)$. CD spectra were recorded on a JASCO J-815 spectropolarimeter with a thermostated S3cell holder at $25^{\circ} \mathrm{C}$ in quartz cells with 1 cm light path. Three spectra were averaged, and the spectrum of solvent was subtracted for correction. The reactions were carried out under nitrogen atmosphere. Solvents were removed by using a rotary evaporator at a wateraspirator pressure followed by evacuation of the flask to approximate 0.20 mmHg to remove traces of solvents. All glassware and syringes were oven-dried and further dried by placing under vacuum and heating with a heat gun for $c a .5$ minutes as necessary. F.c. was performed by using Brunschwig silica gel ($60 \AA$ A $32-63$ mesh) (Art. 7736). Thin layer chromatography was performed on pre-coated aluminium plates (Fluka silica $60 \mathrm{~F}_{254}$), and visualized using UV light or aq. KMnO_{4}. Purification of THF, diethyl ether, toluene and dichloromethane was carried out using a Solvtek ${ }^{\odot}$ purification system. Acetone was distilled from drierite before use. Dicyclopentadiene was cracked at $170^{\circ} \mathrm{C}$ and cyclopentadiene was traped at $-78^{\circ} \mathrm{C}$. It was either used immediately or stored under N_{2} at $-40^{\circ} \mathrm{C}$. Commercial chemicals were used as supplied unless otherwise stated.

1. Synthesis of triene 3

(\boldsymbol{E})-octa-5,7-dienenitrile ${ }^{1-3}$ was prepared according to the literature procedure.

1.1 (2E,7E)-methyl deca-2,7,9-trienoate (10) ${ }^{3}$

In a 50 mL round-bottom flask equipped with a magnetic stirring bar, under N_{2}, was charged with a solution of to a solution of (E)-octa-5,7-dienenitrile ($2.78 \mathrm{~g}, 23 \mathrm{mmol}, 1 \mathrm{eq}$) in dry $\mathrm{Et}_{2} \mathrm{O}(45 \mathrm{~mL})$. Then, at $0^{\circ} \mathrm{C}$ DIBALH (1.2 M in toluene, $28.75 \mathrm{~mL}, 34.50 \mathrm{mmol}, 1.5 \mathrm{eq}$) was added dropwise. The solution was warmed to room temperature (r.t.) and stirred for 4.5 h . The solution was cooled to $0^{\circ} \mathrm{C}$, and then $\mathrm{MeOH}(17.20 \mathrm{~mL})$ was added followed by $1 \mathrm{~N} \mathrm{HCl}(87.20$ mL). This two-phase mixture was stirred for 2 h at r.t.. The aq. phase was then extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$. The combined organic phases were washed with sat. $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$, dried (anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$). Volatiles were removed in vacuo to give crude aldehyde $9\left(\mathrm{R}_{\mathrm{f}}=0.18,6 \% \mathrm{EtO}_{2}\right.$ in pentanes) which was used in the next step without purification. IR (neat): $v_{\max } 2925 \mathrm{~s}, 1726 \mathrm{~m}$, $1652 \mathrm{~m}, 1603 \mathrm{~m}, 1455 \mathrm{~m}, 1134 \mathrm{~s} \mathrm{~cm}{ }^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 9.82(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.35$ $(\mathrm{td}, J=16.9,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{dd}, J=15.1,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{q}, J=15.1,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.16$ $(\mathrm{d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{dt}, J=7.4,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.18(\mathrm{dd}, J=14.4$, $7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 1.79 (quin, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$).

A 50 mL round-bottom flask equipped with a magnetic stirring bar was loaded with NaH (1.10 g of 60% suspension in mineral oil, $27.6 \mathrm{mmol}, 1.2 \mathrm{eq}$), and it was washed with hexanes (3 $\times 10 \mathrm{~mL}$) and the liquid phase was removed by syringe under N_{2}. Methyl diethylphosphonoacetate ($4.65 \mathrm{~mL}, 25 \mathrm{mmol}, 1.1 \mathrm{eq}$) was added to a suspension of NaH in THF $(100 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ and the resulting mixture was stirred for 60 min . A solution of crude dienal 9 ($23 \mathrm{mmol}, 1 \mathrm{eq}$) in THF (6.70 mL) was then added at $0{ }^{\circ} \mathrm{C}$. After stirring for 2 h at r.t., the reaction mixture was quenched with water (to aid clarification, 100 mL of 1 N HCl was added as
well). The aq. and organic layers were then separated, the aq. layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times$ 30 mL), and the combined organic layers were dried ($\mathrm{anh} . \mathrm{Na}_{2} \mathrm{SO}_{4}$). Volatiles were removed in vacuo. The crude mixture was chromatographed on silica gel $\left(\mathrm{R}_{\mathrm{f}}=0.27,5 \% \mathrm{EtO}_{2}\right.$ in pentanes) to afford the ester $\mathbf{1 0}$ as colorless oil in a 80% yield $(0.494 \mathrm{~g}, 2.74 \mathrm{mmol})$. IR (neat): $v_{\max } 1722 \mathrm{~s}$, $1656 m, 1603 w, 1436 m, 1269 s, 1198 s, 1174 s, 1004 m, 899 s \mathrm{~cm}^{-1} ; \operatorname{MS}(E S I): m / z 180\left(\mathrm{M}^{+}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.00(\mathrm{td}, J=15.6,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{td}, J=16.8,10.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.10(\mathrm{dd}, J=15.2,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.87(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.71(\mathrm{td}, J=15.2,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.14$ $(\mathrm{d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.16(\mathrm{q}, J$ $=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 1.61 (quin, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.2,149.2,137.1$, 134.16, 131.7, 121.2, 115.3, 51.5, 31.9, 31.6, 21.5; HRMS (ESI-TOF) calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{OH}$: 165.1273; found: 165.1266 .

1.2 (2E,7E)-deca-2,7,9-trienal (3) ${ }^{4}$

The ester 10 ($0.62 \mathrm{~g}, 3.44 \mathrm{mmol}, 1 \mathrm{eq}$) was dissolved in dry $\mathrm{Et}_{2} \mathrm{O}(19 \mathrm{~mL})$ and cooled to $78{ }^{\circ} \mathrm{C}$. To this solution, DIBALH (1.2 M in toluene, $6.30 \mathrm{~mL}, 7.60 \mathrm{mmol}, 2.2 \mathrm{eq}$) was added dropwise. After 2 h , the reaction was quenched by addition of a sat. aq. solution of Rochelle's salt $(50 \mathrm{~mL})$ and the mixture was allowed to warm to r.t.. After 18 h , the clear phases were separated and the aq. phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic extracts were dried (anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$) and evaporated to dryness. The crude product was used in further reaction. IR (neat): $v_{\max } 3335 b, 2925 m, 1652 w, 1603 w, 1436 m, 1001 s, 895 s \mathrm{~cm}^{-1}$.

This crude alcohol was dissolved in $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ and then $\mathrm{MnO}_{2}(6 \mathrm{~g}, 68.8 \mathrm{mmol}, 20$ eq) was added. The reaction mixture was stirred at r.t. for 1 h . After removing MnO_{2} by filtration, the crude aldehyde was purified on silica gel $\left(\mathrm{R}_{\mathrm{f}}=0.08,7 \% \mathrm{EtO}_{2}\right.$ in pentanes) to give the trienal 3 as a pale yellow oil in 95% yield $(0.49 \mathrm{~g}, 3.26 \mathrm{mmol})$. IR (neat): $v_{\max } 1686 s, 1652 \mathrm{w}$, $1637 w, 1603 w, 1437 w, 1121 m, 1004 m, 973 m, 898 \mathrm{~m} \mathrm{~cm}^{-1} ; \mathrm{MS}(\mathrm{EI}): \mathrm{m} / \mathrm{z}$ (\%) relative intensity 152 $\left(\mathrm{M}^{+}+2,57\right), 150\left(\mathrm{M}^{+}, 52\right), 134(100), 122(20) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.55(\mathrm{~d}, J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 6.89(\mathrm{td}, J=15.2,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{td}, J=17.0,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{dd}, J=14.7,7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.11(\mathrm{dd}, J=15.2,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.71(\mathrm{td}, J=15.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~d}, J=17.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.03(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.19(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.67$ (quin, J
$=7.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 194.1,158.43,137.0,133.8,133.2,132.0,115.5$, 32.1, 31.9, 27.3; HRMS (ESI-TOF) calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O} ; 150.1045$ found: 150.1042.

2. Synthesis of triene 4

2.1 (2E,7E)-ethyl 2-methyldeca-2,7,9-trienoate (11)

A 50 mL round-bottom flask equipped with a magnetic stirring bar was loaded with NaH (0.268 g of 60% suspension in mineral oil, $6.70 \mathrm{mmol}, 1.5 \mathrm{eq}$), and it was washed with hexanes $(3 \times 15 \mathrm{~mL})$ and the liquid phase was removed by syringe under N_{2}. Triethylphosphonopropionate ($1.29 \mathrm{~mL}, 6.02 \mathrm{mmol}, 1.35 \mathrm{eq}$) was added to a suspension of NaH in THF $(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and the resulting mixture was stirred for 1 h at r.t.. A solution of crude dienal 9 ($4.46 \mathrm{mmol}, 1 \mathrm{eq}$) in THF (1.40 mL) was then added to the previous solution at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was slowly warmed to r.t. and stirred for 0.5 h . The reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$. The aq. and organic layers were then separated, the aq. layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15 \mathrm{~mL})$, and the combined organic layers were dried ($\mathrm{anh} . \mathrm{Na}_{2} \mathrm{SO}_{4}$). Volatiles were removed in vacuo, the residue was chromatographed on silica gel $\left(\mathrm{R}_{\mathrm{f}}=0.29,3-5 \% \mathrm{EtO}_{2}\right.$ in pentanes) to give a pale yellow oil of ester 11 in a 86% yield ($0.806 \mathrm{~g}, 3.84 \mathrm{mmol}$). IR (neat): $v_{\max } 1710 s, 1651 m, 1436 w, 1252 s, 1115 m, 1004 m \mathrm{~cm}^{-1} ; \mathrm{MS}(\mathrm{ESI}): m / z 208\left(\mathrm{M}^{+}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.73(\mathrm{~m}, 1 \mathrm{H}), 6.29(\mathrm{td}, J=17.0,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{dd}, J=14.8,10.5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.73-5.59(\mathrm{~m}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{q}, J=7.1 \mathrm{~Hz}$, 2 H), 2.17 (dd, $J=15.0,7.4 \mathrm{~Hz}, 2 \mathrm{H}$), $2.10(\mathrm{dd}, J=14.5,7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 1.81 (s, 3H), 1.54 (quin, J $=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.3,141.8,137.2$, 134.5, 131.6, 128.1, 115.2, 60.5, 32.2, 28.1, 28.1, 14.4, 12.5; HRMS (ESI-TOF) calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{2} ; 208.1463$ found: 208.1462 .

2.2 (2E,7E)-ethyl 2-methyldeca-2,7,9-trienal (4) ${ }^{5}$

The ester $\mathbf{1 1}$ ($135 \mathrm{mg}, 0.65 \mathrm{mmol}, 1 \mathrm{eq}$) was dissolved in dry $\mathrm{Et}_{2} \mathrm{O}$ and cooled to $-78{ }^{\circ} \mathrm{C}$. To this solution, DIBALH (1.0 M in hexanes, $1.43 \mathrm{~mL}, 1.43 \mathrm{mmol}, 2.2 \mathrm{eq}$) was added dropwise. After 2 h , the reaction was quenched by addition of a sat. aq. solution of Rochelle's salt (10 mL) and the mixture was allowed to warm to r.t.. After 18 h , the clear phases were separated and the aq. phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic extracts were dried (anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$) and evaporated to dryness. The crude product was used in further reaction. IR (neat): $v_{\max } 3306 s, 2923 m, 1651 w, 1602 w, 1438 m, 1000 s, 896 \mathrm{~m} \mathrm{~cm}^{-1}$.

This crude alcohol was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and then $\mathrm{MnO}_{2}(5 \mathrm{~g}, 58 \mathrm{mmol}, 15$ eq) was added. The reaction mixture was stirred at r.t. for 1 h . After removing MnO_{2} by filtration and purification by flash column chromatography (f.c.) on silica gel $\left(\mathrm{R}_{\mathrm{f}}=0.31,10 \% \mathrm{EtO}_{2}\right.$ in pentanes), the pale yellow oil of aldehyde 4 was obtained in 95% yield ($100 \mathrm{mg}, 0.63 \mathrm{mmol}$). IR (neat): $v_{\max } 1686 s, 1646 m, 1406 w, 1234 w, 1004 m \mathrm{~cm}^{-1} ; \mathrm{MS}(\mathrm{ESI}): m / z 164\left(\mathrm{M}^{+}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.40(\mathrm{~s}, 1 \mathrm{H}), 6.48(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{td}, J=10.1,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{t}, J$ $=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.68(\mathrm{dt}, J=15.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~d}, J=10.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.37(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.10(\mathrm{~m}, 2 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.62(\mathrm{quin}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 195.4,154.4,139.7,137.0,134.0,131.9,115.4,32.1,28.5,27.9,9.3$; HRMS (ESI-TOF) calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O} ; 164.1201$ found: 164.1199.

3. Synthesis of triene 5

3.1 (E)-4-iodobut-2-enyl acetate (12)

quant.

12

To an acetronitrile (18 mL) solution of 2,5-dihydrofuran ($3 \mathrm{~mL}, 40 \mathrm{mmol}, 1 \mathrm{eq}$) and NaI ($7.2 \mathrm{~g}, 48 \mathrm{mmol}, 1.2 \mathrm{eq}$) was added an acetronitrile $(11 \mathrm{~mL})$ solution of acetyl chloride (2.83 mL , $40 \mathrm{mmol}, 1 \mathrm{eq})$ at $0^{\circ} \mathrm{C}$ under N_{2}. The reaction was stirred under Neon light at r.t. for 21 h . Then it was quenched by the addition of sat. $\mathrm{Na}_{2} \mathrm{SO}_{3}(20 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$. The combined organic layers were washed with water, brine (50 mL) and dried (anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$). Filtration followed by evaporation to dryness afforded a crude yellow liquid. A 9:1 ration of $E: Z$
isomer was observed by ${ }^{1} \mathrm{H}$ NMR of olefinic protons. This crude product was used to further reaction. IR (neat): $\gamma_{\max } 1736 s, 1432 w, 1362 m, 1221 s, 1152 m, 1024 m, 963 \mathrm{~m} \mathrm{~cm}^{-1} ; \operatorname{MS}(E I): m / z$ (\%) relative intensity 127 (12), 113 (100), 71 (21), 54 (47), 53 (30); ${ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 6.04(\mathrm{~m}, 1 \mathrm{H}), 5.82(\mathrm{~m}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 170.6,131.9,127.5,63.7,27.4,20.9$.
(\boldsymbol{E})-5-bromopenta-1,3-diene (13) ${ }^{6}$ was prepared according to the literature procedure.

3.2 (E)-dimethyl 2-(4-acetoxybut-2-enyl)malonate (14)

To a suspension of $\mathrm{NaH}(60 \%$ suspension in mineral oil, $0.363 \mathrm{~g}, 9.0 \mathrm{mmol}, 1.8 \mathrm{eq})$ in DMF (10 mL) at $0{ }^{\circ} \mathrm{C}$ dimethyl malonate ($0.863 \mathrm{~g}, 10.0 \mathrm{mmol}, 2 \mathrm{eq}$) was added. After 15 min , a solution of (E)-7-iodohepta-1,3-diene (12) ($1.08 \mathrm{~g}, 5.0 \mathrm{mmol}, 1.1 \mathrm{eq}$) in DMF (5 mL) was added dropwise to previous solution (turbid solution became to clear solution). The mixture was stirred for 15 h at $60{ }^{\circ} \mathrm{C}$ and then quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 30$ $\mathrm{mL})$. The organic layer was washed with water (20 mL), brine, and dried (anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$). Volatiles were removed in vacuo. The residue was purified by f.c. $\left(\mathrm{R}_{\mathrm{f}}=0.32,25 \% \mathrm{EtO}_{2}\right.$ in pentanes) to give monoalkylated product $\mathbf{1 4}$ as a colorless oil ($1.20 \mathrm{~g}, 4.90 \mathrm{mmol}, 98 \%$). IR (neat): $v_{\max } 1732 \mathrm{~s}, 1437 m, 1365 w, 1226 s, 1156 m, 1026 m, 970 \mathrm{~m} \mathrm{~cm}^{-1} ; \operatorname{MS}(\mathrm{EI}): m / z 244\left(\mathrm{M}^{+}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.69(\mathrm{~m}, 2 \mathrm{H}), 4.49(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 6 \mathrm{H}), 3.45(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.65(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.2$ (3CO), 130.7, 127.3, 64.6, $52.6\left(2 \mathrm{CH}_{3}\right), 51.3,31.5,21.0$.

3.3 Dimethyl 2-((E)-4-acetoxybut-2-enyl)-2-((E)-penta-2,4-dienyl)malonate (15)

A solution of $14(0.366 \mathrm{~g}, 1.50 \mathrm{mmol}, 1 \mathrm{eq})$ in dry DMF (3 mL) was added to a suspension of NaH (72 mg of a 60% suspension in mineral oil, $1.80 \mathrm{mmol}, 1.2 \mathrm{eq}$) in dry DMF
(3 mL) at r.t. under N_{2}. The mixture was stirred at r.t. for 15 min . Then solution of diene $\mathbf{1 3}$ ($0.441 \mathrm{~g}, 3.00 \mathrm{mmol}, 2.00 \mathrm{eq}$) in dry DMF (2 mL) was added dropwise and the reaction was stirred at r.t. for 20 h . Then the mixture was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$, extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. Combined organic portions were washed with water $(10 \mathrm{~mL})$ and dried (anh. $\left.\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The solvent was evaporated and the residue was chromatographed on silica gel $\left(\mathrm{R}_{\mathrm{f}}=\right.$ $0.26,35 \% \mathrm{EtO}_{2}$ in pentanes) to afford dialkylated product $\mathbf{1 5}$ as a colorless viscous liquid in 86% yield ($400 \mathrm{mg}, 1.29 \mathrm{mmol}$) and. IR (neat): $v_{\max } 1738 \mathrm{~s}, 1449 \mathrm{~m}, 1368 \mathrm{~m}, 1235 \mathrm{~s}, 1207 \mathrm{~s}$, $1032 m, 1012 m, 975 m \mathrm{~cm}^{-1}$; MS(ESI): $m / z 333\left(\mathrm{M}^{+}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.26$ (dt, $J=$ $16.9,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{dd}, J=15.1,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.61(\mathrm{~m}, 2 \mathrm{H}), 5.47(\mathrm{dt}, J=15.1,7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.11(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 6 \mathrm{H})$, $2.61(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 4 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.0$ (2CO), 170.7, $136.5,135.3,129.3,128.7,127.5,116.7,64.6,57.8,52.5\left(2 \mathrm{CH}_{3}\right), 36.1,35.7,21.0$; HRMS (ESITOF) calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{6} \mathrm{Na} ; 333.1308$ found: 333.1297.

3.4 Dimethyl 2-((E)-4-oxobut-2-enyl)-2-((E)-penta-2,4-dienyl)malonate (5)

A solution of $15(0.314 \mathrm{~g}, 1.01 \mathrm{mmol}, 1 \mathrm{eq})$ in $\mathrm{MeOH}(3.37 \mathrm{~mL})$ was added to a solution of $\mathrm{K}_{2} \mathrm{CO}_{3}(0.307 \mathrm{~g}, 2.90 \mathrm{mmol}, 2.2 \mathrm{eq})$ in a mixture of $\mathrm{MeOH}(14.40 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(3.37 \mathrm{~mL})$ at r.t. The mixture was stirred at r.t. for 1 h , and then MeOH was removed under reduced pressure. The residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The combined organic layers were brine and dried (anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$). Volatiles were removed in vacuo and the residue was used in further step. IR (neat): $v_{\max } 3442 \mathrm{~m}, 1728 s, 1437 m, 1267 s, 1203 s, 1005 s \mathrm{~cm}^{-1} ; \mathrm{MS}(\mathrm{ESI}): m / z 286\left(\mathrm{M}^{+}+\right.$ $\mathrm{H}_{2} \mathrm{O}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.28\left(\mathrm{dt}, J=16.9,10.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CHCH}\right.$), $6.09(\mathrm{dd}, J$ $=15.1,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{dt}, J=15.3,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{sept}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.13(\mathrm{~d}, J=$ $16.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}),, 4.08(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 6 \mathrm{H}), 2.64(\mathrm{dd}, J=$ 9.9, 8.1 Hz, 4H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.2$ (2CO), 136.6, 135.2, 134.0, 127.6, 125.8, 116.7, 63.3, 58.0, $52.6\left(2 \mathrm{CH}_{3}\right), 35.9,35.6$.

The crude alcohol ($1.01 \mathrm{mmol}, 1 \mathrm{eq}$) was dissolved in $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ and then $\mathrm{MnO}_{2}(1.74$ $\mathrm{g}, 20 \mathrm{mmol}, 20 \mathrm{eq}$) was added. The reaction mixture was stirred at r.t. for 1 h . After removing MnO_{2} by filtration, the pure aldehyde 5 was obtained as pale yellow oil in 92% yield ${ }^{9}(0.245 \mathrm{~g}$, $0.92 \mathrm{mmol})$. IR (Neat): $v_{\max } 1733 s, 1692 m, 1437 m, 1205 s, 1008 \mathrm{~m} \mathrm{~cm}^{-1} ; \mathrm{MS}(\mathrm{ESI}): m / z 266\left(\mathrm{M}^{+}\right)$;
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.50(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{td}, J=15.1,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{td}$, $J=16.8,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{ddd}, J=15.1,10.4,9.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.47(\mathrm{td}, J=15.0,7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.15(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 6 \mathrm{H}), 2.86(\mathrm{dd}, J=7.5,1.1 \mathrm{~Hz}, 2 \mathrm{H})$, $2.70(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 193.5,170.5$ (2CO), 151.8, 136.2, $135.9(2 \mathrm{CH}), 126.6,117.4,57.5,52.9\left(2 \mathrm{CH}_{3}\right), 36.8,36.2$; HRMS (ESI-TOF) calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{5}$; 266.1154 found: 266.1154 .

4. Synthesis of triene 6

($2 E, 4 E$)-hexa-2,4-dien-1-ol (16) ${ }^{7}$ was prepared according to the literature procedure.
4.1 Dimethyl 2-((Z)-4-acetoxybut-2-enyl)-2-((2E,4E)-hexa-2,4-dienyl)malonate (17) ${ }^{8}$

THF (1.30 mL) was added under N_{2} to a round bottom flask containing alcohol $\mathbf{1 6}$ (216 $\mathrm{mg}, 2.2 \mathrm{mmol}, 1.1 \mathrm{eq}$) and a stirring bar. The reaction flask was then placed into a dry ice/acetone bath $\left(-78^{\circ} \mathrm{C}\right) . n-\operatorname{BuLi}(1.60 \mathrm{M}$ in hexanes, $1.44 \mathrm{~mL}, 2.3 \mathrm{mmol}, 1.15 \mathrm{eq})$ was added dropwise over 5 min and the yellow solution was stirred for 15 min . Methanesulfonyl chloride ($0.19 \mathrm{~mL}, 2.40 \mathrm{mmol}, 1.20 \mathrm{eq}$) was then added dropwise causing the solution to become colorless. After 15 min a solution of $\mathrm{LiBr}(0.87 \mathrm{~g}$ in 2.3 mL of THF, $10 \mathrm{mmol}, 5 \mathrm{eq})$ was added and the reaction was then allowed to warm to r.t.. In a separate 2 necks of round bottom flask, NaH (92 mg of 60% suspension in mineral oil, $2.3 \mathrm{mmol}, 1.15 \mathrm{eq}$) was placed and washed with hexanes $(3 \times 5 \mathrm{~mL})$, the liquid phase was removed by syringe and then dried under vacuum. THF $(2.5 \mathrm{~mL})$ was added to the previous flask under N_{2} followed by the slow addition of a solution of dimethyl allylmalonate $14(0.488 \mathrm{~g}, 2.0 \mathrm{mmol}, 1 \mathrm{eq})$ in THF (2 mL). The reaction was stirred for 20 min at r.t. then placed into a dryice/acetone bath $\left(-78^{\circ} \mathrm{C}\right)$. The solution containing the diene was then transferred via cannula to the flask containing the malonate anion and the reaction was allowed to warm to r.t. and was stirred for 15 h . Sat. $\mathrm{NH}_{4} \mathrm{Cl}(7 \mathrm{~mL})$ was added and mixture was poured into a separating funnel and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with brine (25 mL) and dried ($\mathrm{anh} . \mathrm{MgSO}_{4}$). Volatiles were removed in vacuo. The residue was purified by f.c. $\left(\mathrm{R}_{\mathrm{f}}=0.20,20 \% \mathrm{Et}_{2} \mathrm{O}\right.$ in pentanes) affording a colorless
oil in 36% yield ($140 \mathrm{mg}, 0.43 \mathrm{mmol}$) in a $18: 1$ ratio of $\mathbf{1 7}$ and its isomer which was determined by ${ }^{1} \mathrm{H}$ NMR. Alkenyl bromide and starting material 14 were also obtained in 13% yield and 14% yield, respectively. IR (neat): $v_{\max } 1730 s, 1436 m, 1380 w, 1226 s, 1200 s, 1025 m, 990 m, 973 \mathrm{mcm}^{-}$ ${ }^{1}$; MS(ESI): m/z $324\left(\mathrm{M}^{+}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.06-5.91(\mathrm{~m}, 2 \mathrm{H}), 5.68-5.53(\mathrm{~m}, 3 \mathrm{H})$, $5.29(\mathrm{~m}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 6 \mathrm{H}), 2.60(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 4 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 1.71$ (d, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 171.0(2 \mathrm{CO}), 170.6,134.8,131.0,129.4$, $129.4,128.9,123.8,64.5,57.5,52.4\left(2 \mathrm{CH}_{3}\right), 36.0,35.5,20.9,18.0$; HRMS (ESI-TOF) calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{6} \mathrm{Na} ; 347.1465$ found: 347.1457 .
4.2 Dimethyl 2-((2E,4E)-hexa-2,4-dienyl)-2-((E)-4-oxobut-2-enyl)malonate (6)

A solution of $\mathbf{1 7}(200 \mathrm{mg}, 0.62 \mathrm{mmol}, 1 \mathrm{eq}) \mathrm{in} \mathrm{MeOH}(2.10 \mathrm{~mL})$ was added to a solution of $\mathrm{K}_{2} \mathrm{CO}_{3}(0.186 \mathrm{~g}, 1.35 \mathrm{mmol}, 2.2 \mathrm{eq})$ in a mixture of $\mathrm{MeOH}(8.60 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(2.10 \mathrm{~mL})$ at r.t. The mixture was stirred at r.t. for 30 min , and then MeOH was removed under reduced pressure. The residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic layers were brine and dried (anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$). Volatiles were removed in vacuo and the residue was used in next step. IR (neat): $v_{\max } 3456 \mathrm{br}, 1732 \mathrm{~s}, 1437 \mathrm{~m}, 1280 \mathrm{~m}, 1200 \mathrm{~s}, 991 \mathrm{~m} \mathrm{~cm}^{-1} ; \operatorname{MS}(\mathrm{ESI}): \mathrm{m} / \mathrm{z} 300$ $\left(\mathrm{M}^{+}+\mathrm{H}_{2} \mathrm{O}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.01$ (quin, $J=6.0 \mathrm{~Hz}, 2 \mathrm{H}$), 5.80-5.47 (m, 3H), 5.32 $(\mathrm{dt}, J=11.0,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{t}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 6 \mathrm{H}), 2.63(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 1.73$ $(\mathrm{d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.3$ (2CO), 134.8, 133.8, 131.11, 129.0, $126.0,124.0,63.4,58.1,52.5\left(2 \mathrm{CH}_{3}\right), 35.9,35.5,18.1$.

This crude alcohol was dissolved in $\mathrm{Et}_{2} \mathrm{O}(6 \mathrm{~mL})$ and then $\mathrm{MnO}_{2}(1.08 \mathrm{~g}, 12.40 \mathrm{mmol}, 20$ eq) was added. The reaction mixture was stirred at r.t. for 30 min . After removing MnO_{2} by filtration, give a trienal 6 as a colorless oil $\left(\mathrm{R}_{\mathrm{f}}=0.18,40 \% \mathrm{Et}_{2} \mathrm{O}\right.$ in pentanes) in 92% yield $(0.160$ $\mathrm{g}, 0.57 \mathrm{mmol}) .{ }^{9}$ IR (neat): $v_{\max } 1733 \mathrm{~s}, 1693 \mathrm{~m}, 1436 \mathrm{~m}, 1337 \mathrm{~m}, 1226 \mathrm{~s}, 1198 \mathrm{~s}, 1152 \mathrm{~s}, 990 \mathrm{~m} \mathrm{~cm}^{-1}$; $\operatorname{MS}(\mathrm{EI}): \mathrm{m} / \mathrm{z}(\%)$ relative intensity $280\left(\mathrm{M}^{+}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.50(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.74(\mathrm{dt}, J=11.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{dd}, J=15.6,7.9 \mathrm{~Hz}, 1 \mathrm{H}),, 6.09-5.95(\mathrm{~m}, 2 \mathrm{H}), 5.65$ (dq, $J=12.8,6.6,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 6 \mathrm{H}), 2.86(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.68(\mathrm{~d}, J=$ S10
$7.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.74(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 193.5,170.6$ (2CO), $152.0,135.8,135.5,130.8,129.7,123.1,57.6,52.8\left(2 \mathrm{CH}_{3}\right), 36.8,36.2,18.1$; HRMS (ESI-TOF) calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{5} ; 280.1311$ found: 280.1311 .

5. Synthesis of triene 7

5.1 (2E,7E)- N-methoxy- N-methyldeca-2,7,9-trienamide (18)

To a solution of ester $\mathbf{1 0}$ and N, O-dimethylhydroxyamine hydrochloride ($0.585 \mathrm{~g}, 6$ $\mathrm{mmol}, 2 \mathrm{eq}$) in THF (6 mL), a solution of $i \mathrm{PrMgCl}(2 \mathrm{M}$ in THF, $6.75 \mathrm{~mL}, 13.5 \mathrm{mmol}, 4.5 \mathrm{eq}$) was added dropwise at $-5^{\circ} \mathrm{C}$. The mixture was stirred for 30 min , and then treated with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$. The two layer mixture was separated and organic phase was dried (anh. $\left.\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. After removal of the solvent, purification by f.c. on silica gel $\left(\mathrm{R}_{\mathrm{f}}=0.33,50 \% \mathrm{EtOAc}\right.$ in pentanes) gave a colorless oil of Weinreb amide 18 in 71% yield ($0.413 \mathrm{~g}, 1.96 \mathrm{mmol}$). IR (neat): $v_{\max } 2933 w, 1663 s, 1633 s, 1412 m, 1379 s, 1178 m, 1002 s, 979 s, 952 m, 898 m \mathrm{~cm}^{-1} ; \operatorname{MS}(E S I): m / z$ $210\left(\mathrm{M}^{+}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.96(\mathrm{td}, J=15.3,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{~d}, J=15.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.31(\mathrm{td}, J=16.9,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.10-6.01(\mathrm{~m}, 1 \mathrm{H}), 5.73-5.62(\mathrm{~m}, 1 \mathrm{H}), 5.09(\mathrm{~d}, J=16.9$ $\mathrm{Hz}, 1 \mathrm{H}), 5.00-4.94(\mathrm{~m}, 1 \mathrm{H}), 3.72-3.67(\mathrm{~m}, 1 \mathrm{H}), 3.23(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $167.0,147.4,137.2,134.4,131.6,119.0,115.1,61.7,32.4,32.0,31.9,27.8$; HRMS (ESI-TOF) calcd for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{NO}_{2}$: 210.1488; found: 210.1480.

5.2 (3E,8E)-undeca-3,8,10-trien-2-one (7)

A solution of $\mathrm{MeMgBr}(1 \mathrm{M}$ in THF, $3.9 \mathrm{~mL}, 3.94 \mathrm{mmol}, 2.2 \mathrm{eq}$) was added dropwise to a solution of Weinreb amide $\mathbf{1 8}(0.38 \mathrm{~g}, 1.79 \mathrm{mmol}, 1 \mathrm{eq})$ at $-30^{\circ} \mathrm{C}$. The reaction mixture was stirred at $-5^{\circ} \mathrm{C}$ for 35 min , and then the mixture was treated with sat. $\mathrm{NH}_{4} \mathrm{Cl}(15 \mathrm{~mL})$. The aq. phase was extracted with EtOAc ($3 \times 15 \mathrm{~mL}$), and the organic layer was washed with brine (15 mL), and dried (anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$). After removal of the solvent, purification by f.c. on silica gel $\left(\mathrm{R}_{\mathrm{f}}\right.$ $=0.19,5 \%$ EtOAc in pentanes) gave a pale yellow oil of trienone 7 in 85% yield $(0.25 \mathrm{~g}, 1.52$ mmol); IR (neat): $v_{\max } 2929 w, 1698 m, 1673 s, 1626 m, 1434 w, 1360 m, 1253 s, 1003 s, 978 s, 952 m$,
$898 \mathrm{~m} \mathrm{~cm}^{-1} ; \mathrm{MS}(\mathrm{EI}): \mathrm{m} / \mathrm{z}(\%)$ relative intensity $164\left(\mathrm{M}^{+}, 8\right), 149$ (8), 121 (99), 106 (20), 93 (24), 84 (90), 67 (100), 53 (38); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.80$ (td, $J=15.8,6.87 \mathrm{~Hz}, 1 \mathrm{H}$), 6.31 $(\mathrm{td}, J=16.9,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.05(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.67(\mathrm{td}, J=$ $15.2,7.2 \mathrm{~Hz}, 1 \mathrm{H},), 5.11(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{~m}, 5 \mathrm{H}), 2.13(\mathrm{q}, J$ $=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.59$ (quin, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$,): $\delta 198.6,148.0,137.0$, 134.0, 131.7, 131.5, 115.3, 31.9, 31.8, 27.5, 26.9; HRMS (ESI-TOF) calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{ONa}$: 165.1273; found: 165.1266.

6. ($3 \mathrm{a} R, 4 R, 7 \mathrm{aS}$)-2,3,3a,4,5,7a-hexahydro-1H-indene-4-carbaldehyde (19)

19

Racemic:

In a 10 mL Schlenk tube equipped with a magnetic stirring bar, under N_{2}, to stirred a triene $3(23 \mathrm{mg}, 0.15 \mathrm{mmol}, 1 \mathrm{eq})$ solution in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ at r.t. AlEt 2 Cl solution $(1 \mathrm{M}$ in hexanes, $0.075 \mathrm{~mL}, 0.075 \mathrm{mmol}, 0.5 \mathrm{eq})$ was added dropwise. The yellow reaction mixture was stirred at r.t. for 30 min and quenched with water $(1 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(1 \mathrm{~mL})$. The organic phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(5 \times 3 \mathrm{~mL})$, brine and dried (anh. $\left.\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The crude product was purified by f.c. to give the racemic adduct 19 in 65% yield ($14 \mathrm{mg}, 0.95 \mathrm{mmol}$).

Asymmetric:
In a 50 mL Schlenk tube equipped with a magnetic stirring bar at r.t. and under $\mathrm{N}_{2}, \mathrm{Ru}$ catalyst $\mathbf{1 c}(73 \mathrm{mg}, 0.05 \mathrm{mmol}, 0.05 \mathrm{eq})$ was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.80 \mathrm{~mL})$. To the stirring mixture, 2,6-lutidine ($2.3 \mu \mathrm{~L}, 0.02 \mathrm{mmol}, 0.02 \mathrm{eq}$) and a solution of triene $3(150 \mathrm{mg}, 1.00$ $\mathrm{mmol}, 1 \mathrm{eq})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.50 \mathrm{~mL})$ were carefully added, and the resulting orange solution was stirred at r.t. and under N_{2} for 7 d . The reaction was then monitored by TLC. At the end of the reaction, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was removed under vacuum pump and hexane (20 mL) was added, and the mixture was suspended and filtered through a Celite 545 plug to give recoverable catalyst on Cilite. Volatiles were removed in vacuo and the residue was purified by f.c. using a silica gel column $\left(\mathrm{R}_{\mathrm{f}}=0.22,5 \% \mathrm{Et}_{2} \mathrm{O}\right.$ in pentanes) to give a pale yellow oil of adduct 19 in 92% isolated
yield ($138 \mathrm{mg}, 0.92 \mathrm{mmol}$). Chiral GC (Hydrodex $-\beta, \mathrm{H}_{2}, 100^{\circ} \mathrm{C} 30 \mathrm{~min}$ then heating $0.5^{\circ} \mathrm{C} / \mathrm{min}$ to $\left.120{ }^{\circ} \mathrm{C}\right)$: t_{R} of endo product $(\mathrm{min})=33.69(7.84), 35.30(92.16)$ and t_{R} of starting material $(\min)=47.69$ (1.16) Calculated : 99\% conv. and 84% ee. $[\alpha]^{23}{ }_{\mathrm{D}}=-93.5^{\circ}\left(c=1.05, \mathrm{CHCl}_{3}\right)$; IR (neat): $\gamma_{\max } 2954 m, 2870 m, 1726 s, 1639 w, 1454 w, 1437 w \mathrm{~cm}^{-1} ; \mathrm{MS}(\mathrm{EI}): m / z$ (\%) relative intensity $150\left(\mathrm{M}^{+}+1,9\right), 137$ (10), 121 (98), 91 (84), 79 (100), 81 (58), 55 (34); ${ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.68(\mathrm{dd}, J=2.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{~d}, J=9.85 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{dtd}, J=5.6,4.0$, $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{~m}, 1 \mathrm{H}), 2.37-2.20(\mathrm{~m}, 2 \mathrm{H}), 2.00-1.84(\mathrm{~m}, 3 \mathrm{H}), 1.80-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.43$ (ddd, J $=22.7,11.0,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.36-1.26(\mathrm{~m}, 1 \mathrm{H}), 1.16(q u i n, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3}): $\delta 203.8,130.0,125.1,52.6,44.5,44.0,28.6,27.5,25.7,22.3$; HRMS (ESI-TOF) calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}-\mathrm{H} ; 149.0966$ found: 149.0962. ${ }^{1} \mathrm{H}$ NMR and $[\alpha]^{23}{ }_{D}$ are in accordance with Yamamoto's data. ${ }^{4}$

Using $\left[\mathrm{Ru}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)((S, S)\right.$-BIPHOP-F)(acetone) $]\left[\mathrm{SbF}_{6}\right]$ (1b), the reaction was run in the same scale at r.t. for 9 d to afford the corresponding adduct 19 in 82% yield with 72% ee.
7. (3aR,4R,7aS)-4-methyl-2,3,3a,4,5,7a-hexahydro-1H-indene-4-carbaldehyde (20)

20

Racemic:

In a 10 mL Schlenk tube equipped with a magnetic stirring bar, under N_{2}, a solution of triene $4(20 \mathrm{mg}, 0.12 \mathrm{mmol}, 1 \mathrm{eq})$ was stirred in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ at r.t.. $\mathrm{AlEt}_{2} \mathrm{Cl}$ solution $(1 \mathrm{M}$ in hexanes, $0.12 \mathrm{~mL}, 0.12 \mathrm{mmol}, 1 \mathrm{eq}$) was added dropwise. The yellow reaction mixture was stirred at -78 to $0{ }^{\circ} \mathrm{C}$ for overnight and quenched with water (2 mL) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$. The organic phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organic phases were brine and dried (anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$). A 99:1 mixture of endo:exo adducts $\mathbf{2 0}$ was obtained in 90% yield (18 $\mathrm{mg}, 0.11 \mathrm{mmol}$).

Asymmetric:
In a 50 mL Schlenk tube equipped with a magnetic stirring bar at r.t. and under $\mathrm{N}_{2}, \mathrm{Ru}$ catalyst $\mathbf{1 b}$ ($70 \mathrm{mg}, 0.05 \mathrm{mmol}, 0.05 \mathrm{eq}$) was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.80 \mathrm{~mL})$. To the stirring
mixture, 2,6-lutidine ($2.3 \mu \mathrm{~L}, 0.02 \mathrm{mmol}, 0.02 \mathrm{eq}$) and a solution of triene $4(164 \mathrm{mg}, 1.00$ $\mathrm{mmol}, 1 \mathrm{eq})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.50 \mathrm{~mL})$ was carefully added, and the resulting yellow solution was stirred at r.t. and under N_{2} for 7 d . The reaction was then monitored by TLC. At the end of the reaction, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was removed under vacuum pump and hexane (20 mL) was added, and the mixture was suspended and filtered through a Celite 545 plug to give recoverable catalyst on Cilite. Volatiles were removed in vacuo and the residue was purified by f.c. using a silica gel column $\left(\mathrm{R}_{\mathrm{f}}=0.36,10 \% \mathrm{Et}_{2} \mathrm{O}\right.$ in pentanes) to give a pale yellow oil of adduct in 82% isolated yield ($135 \mathrm{mg}, 0.82 \mathrm{mmol}$). Chiral GC (Hydrodex $-\beta, \mathrm{H}_{2}, 100{ }^{\circ} \mathrm{C} 30 \mathrm{~min}$ then heating $0.5^{\circ} \mathrm{C} / \mathrm{min}$ to $\left.120^{\circ} \mathrm{C}\right)$: t_{R} of exo product $(\mathrm{min})=34.82(15.56), 38.03(0.79)$ and t_{R} of endo product $(\mathrm{min})=$ 40.85 (4.26), 41.52 (79.38). Calculated: 100% conv., a $16: 84$ ratio of exo:endo isomers and 92% ee for both isomers; IR (neat): $v_{\max } 1726 s, 1634 w, 1456 m, 691 \mathrm{~m} \mathrm{~cm}^{-1} ; \mathrm{MS}(\mathrm{ESI}): m / z 164\left(\mathrm{M}^{+}\right)$;
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.49(\mathrm{~s}, 1 \mathrm{H}), 5.85(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.61(\mathrm{tdd}, J=9.9,4.6,2.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.45$ (ddd, $J=18.0,6.2,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.04-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.76(\mathrm{dp}, J=18.0,2.1$ $\mathrm{Hz}, 1 \mathrm{H}), 1.76-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.35-1.11(\mathrm{~m}, 2 \mathrm{H}), 1.03(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 205.6,129.4,124.3,47.8,46.4,39.2,33.4,28.7,23.7,22.1,12.5$; HRMS (ESITOF) calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}$; 164.1201 found: 164.1199. ${ }^{1} \mathrm{H}$ NMR is in accordance with Yamamoto's data. ${ }^{5}$

Using $\left[\mathrm{Ru}\left(\eta^{5}-\mathrm{C}_{8} \mathrm{H}_{7}\right)((S, S)\right.$-BIPHOP-F)(acetone) $]\left[\mathrm{SbF}_{6}\right]$ (1c), the reaction was run in the same scale at r.t. for 6 d to afford the corresponding adduct 20 in a $81: 19$ mixture of endo:exo isomers with 84% ee and 90% ee respectively (85% yield, $139 \mathrm{mg}, 0.85 \mathrm{mmol}$).

8. dimethyl (3aR,4R,7aS)-4-formyl-1,3,3a,4,5,7a-hexahydro-2H-indene-2,2dicarboxylate (21)

Racemic:

To a solution of triene $5(20 \mathrm{mg}, 0.07 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$, silica gel and 1 drops of conc. HCl were added, and then stirred at r.t. for overnight. After filtration, the endo adduct 21 was obtained in quantitative yield.

Asymmetric:

In a 20 mL Schlenk tube equipped with a magnetic stirring bar at r.t. and under $\mathrm{N}_{2}, \mathrm{Ru}$ catalyst (1c) ($14.6 \mathrm{mg}, 0.010 \mathrm{mmol}, 0.05 \mathrm{eq}$) was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.70 \mathrm{~mL})$. To the stirring mixture, 2,6-lutidine ($1.2 \mu \mathrm{~L}, 0.010 \mathrm{mmol}, 0.05 \mathrm{eq})$ and a solution of triene $5(56 \mathrm{mg}, 0.2$ $\mathrm{mmol}, 1 \mathrm{eq})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.70 \mathrm{~mL})$ was carefully added, and the resulting orange solution was stirred at r.t. and under N_{2} for 4 h . The reaction was then monitored by IR (peak at $1692 \mathrm{~cm}^{-1}$ of α, β-unsaturated aldehyde was disappeared) ${ }^{10}$. At the end of the reaction, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was removed under vacuum pump and hexane (10 mL) was added, and the mixture was suspended and filtered through a Celite 545 plug to give recoverable catalyst on Cilite. Volatiles were removed in vacuo and the residue was purified by f.c. using a silica gel column $\left(\mathrm{R}_{\mathrm{f}}=0.26,35 \% \mathrm{Et}_{2} \mathrm{O}\right.$ in pentanes) to give a pale yellow oil of endo-adduct in quantitative yield ($56 \mathrm{mg}, 0.2 \mathrm{mmol}$). $[\alpha]^{23}{ }_{\mathrm{D}}=-16.1^{0}$ $\left(c=1.35, \mathrm{CHCl}_{3}\right.$); IR (neat): $v_{\max } 1731 s, 1436 m, 1266 m, 905 s, 728 s \mathrm{~cm}^{-1} ; \mathrm{MS}(\mathrm{ESI}): m / z 266$ $\left(\mathrm{M}^{+}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.68(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{dd}, J=9.8,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, 5.67 (ddd, $J=9.8,6.3,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 2.74(\mathrm{dd}, J=13.0,6.3 \mathrm{~Hz}, 1 \mathrm{H})$, $2.66(\mathrm{dd}, J=13.0,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{dtd}, J=11.2,8.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{~m}, 2 \mathrm{H}), 2.17(\mathrm{~m}, 1 \mathrm{H})$, $1.87(\mathrm{t}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.67(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 203.0,173.0$ (2CO), 128.3, 126.3, 58.7, $53.12\left(2 \mathrm{CH}_{3}\right), 52.13,43.8,43.2,38.2,37.4,25.8$; HRMS (ESI-TOF) calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{5} ; 266.1154$ found: 266.1157.

To determine enantiomeric ratio, aldehyde adduct was changed to chiral imine derivative 29. The $92: 8$ ratio of emine protons was shown to give 84% ee by ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) at $7.66(\mathrm{~d}, J=6 \mathrm{~Hz})$ and $7.64(\mathrm{~d}, J=6.5 \mathrm{~Hz})$.

Using $\left[\mathrm{Ru}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)((S, S)\right.$-BIPHOP-F)(acetone) $]\left[\mathrm{SbF}_{6}\right]$ (1b), the reaction was run in the same scale at r.t. for 5 h to afford the corresponding endo-adduct 21 in quantitative yield with 43% ee ($28 \mathrm{mg}, 0.10 \mathrm{mmol}$).
9. dimethyl (3 a R,4R,5R,7aS)-4-formyl-5-methyl-1,3,3a,4,5,7a-hexahydro-2H-indene-2,2-dicarboxylate (22)

22
Racemic:
A solution of triene $\mathbf{6}(20 \mathrm{mg}, 0.07 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was then put silica gel and stirred at r.t. overnight. After removal silica gel by filtration, the adduct 22 was obtained in quantitative yield.

Asymmetric:

In a 20 mL Schlenk tube equipped with a magnetic stirring bar at r.t. and under $\mathrm{N}_{2}, \mathrm{Ru}$ catalyst (1c) ($7.3 \mathrm{mg}, 0.005 \mathrm{mmol}, 0.05 \mathrm{eq}$) was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.35 \mathrm{~mL})$. To the stirring mixture, 2,6-lutidine ($0.6 \mu \mathrm{~L}, 0.005 \mathrm{mmol}, 0.05 \mathrm{eq}$) and a solution of triene $\mathbf{6}$ (freshly
prepared from the allylic alcohol by oxidation with $\mathrm{MnO}_{2}, 28 \mathrm{mg}, 0.10 \mathrm{mmol}, 1 \mathrm{eq}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.35 \mathrm{~mL})$ was carefully added at r.t., and the resulting orange solution mixture was stirred under N_{2} for 4 h . The reaction was then monitored by IR (peak at $1693 \mathrm{~cm}^{-1}$ of $\alpha, \beta-$ unsaturated aldehyde was disappeared) ${ }^{10}$. At the end of the reaction, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was removed under vacuum pump and hexane (10 mL) was added, and the mixture was suspended and filtered through a Celite 545 plug to give recoverable catalyst on Cilite. Volatiles were removed in vacuo and the residue was purified by f.c. using a silica gel column $\left(R_{f}=0.17,40 \% \mathrm{Et}_{2} \mathrm{O}\right.$ in pentanes $)$ to give a pale yellow oil of adduct in quantitative yield; Chiral GC (CP-Chirasil-DexCB, $\mathrm{H}_{2}, 160$ ${ }^{\circ} \mathrm{C}$ isothermal, 45 min): t_{R} of endo product $(\mathrm{min})=30.35$ (77.73), 32.67 (22.27) Calculated: 56\% ee; IR (neat): $\gamma_{\max } 1726 s, 1473 m, 1435 m, 1252 s, 1197 m, 1154 m, 1091 m, 912 \mathrm{~m}^{-1}$; MS(ESI): $m / z 280\left(\mathrm{M}^{+}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.74(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.75(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H})$ 5.56 (ddd, $J=9.8,4.0,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.73$ (s, 3H), 3.71 (s, 3H), 2.86 (m, 2H), 2.62 (ddd, $J=11.0$, $6.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{dd}, J=12.7,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{~m}, 1 \mathrm{H}), 1.84(\mathrm{ddd}, J=21.6,11.0,5.7 \mathrm{~Hz}$, $1 \mathrm{H}), 1.74(\mathrm{t}, J=12.7 \mathrm{~Hz}, 2 \mathrm{H}), 0.97(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 203.5$, 173.1, 172.9, 133.2, 127.1, 58.7, 55.8, 52.9, 52.9, 44.4, 38.2, 37.8, 37.2, 31.6, 17.5; HRMS (ESITOF) calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{5} ; 280.1311$ found: 280.1310 .

In the case of using $\left[\mathrm{Ru}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)((S, S)\right.$-BIPHOP-F)(acetone) $]\left[\mathrm{SbF}_{6}\right]$ (1b), the reaction was run in the same scale at r.t. for 5 h to afford the corresponding endo-adduct 22 in quantitative yield with 55% ee ($28 \mathrm{mg}, 0.10 \mathrm{mmol}$).

10. 1-[(3a,4,7a)-2,3,3a,4,5,7a-hexahydro-1H-inden-4-yl]ethanone (23)

23
Racemic:
In a 10 mL round-bottom flask equipped with a magnetic stirring bar, under N_{2}, to stirred a triene $7(30 \mathrm{mg}, 0.18 \mathrm{mmol}, 1 \mathrm{eq})$ solution in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.2 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}, \mathrm{AlEt}_{2} \mathrm{Cl}$ solution (1 M in hexanes, $0.072 \mathrm{~mL}, 0.072 \mathrm{mmol}, 0.4 \mathrm{eq}$) was added dropwise. The yellow reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ to r.t. for 2 h and quenched with water (2 mL) and $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL})$.

The organic phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(5 \times 3 \mathrm{~mL})$. The combined organic layers were brine and dried (anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$). A $>99: 1$ mixture of endo:exo adducts and complete conversion were determined by ${ }^{1} \mathrm{H}$ NMR. The crude reaction was purified with f.c. $\left(\mathrm{R}_{\mathrm{f}}=0.31,5 \% \mathrm{Et}_{2} \mathrm{O}\right.$ in pentanes) to give a colorless oil in 67% yield ($20 \mathrm{mg}, 0.12 \mathrm{mmol}$). Chiral GC (Hydrodex- β, H_{2}, $100^{\circ} \mathrm{C} 30 \mathrm{~min}$ then heating $0.5^{\circ} \mathrm{C} / \mathrm{min}$ to $120^{\circ} \mathrm{C}$): t_{R} of endo product $(\mathrm{min})=47.24,49.04$ and t_{R} of starting material $(\min)=61.01$; IR (neat): $v_{\max } 2924 s, 2870 s, 1708 s, 1454 m, 1377 w, 1059 s$ $\mathrm{cm}^{-1} ; \mathrm{MS}(\mathrm{EI}): \mathrm{m} / \mathrm{z}(\%)$ relative intensity $164\left(\mathrm{M}^{+}, 10\right), 146$ (10), 121 (100), 93 (22), 91 (30), 79 (47), 77 (14), 67 (26), 55 (12); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.78$ (d, $J=9.8 \mathrm{~Hz}, 1 \mathrm{H}$), 5.53 (ddd, $J=9.8,6.5,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{dt}, J=10.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.29-2.13(\mathrm{~m}, 2 \mathrm{H}), 2.12-2.08(\mathrm{~m}$, $3 \mathrm{H}), 1.90-1.60(\mathrm{~m}, 3 \mathrm{H}), 1.42(\mathrm{~m}, 1 \mathrm{H}), 1.36-1.10(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 211.8$, 129.9, 125.6, 53.3, 45.6, 44.4, 29.4, 29.3, 28.8, 28.2, 22.1. HRMS (ESI-TOF) calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{O}$; 164.1201 found: 164.1200 .

11. (1R)-1-phenylethanaminium (3aS,4R,6R,7R,7aR)-7-chloro-6-hydroxyoctahydro-

 1 H -indene-4-carboxylate (24)

To solution of aldehyde $19(80 \mathrm{mg}, 0.53 \mathrm{mmol}, 1 \mathrm{eq})$ in $t \mathrm{BuOH}(24 \mathrm{~mL})$ was added 2-methyl-2-butene (7.3 mL , $68.9 \mathrm{mmol}, 130 \mathrm{eq}$), followed by $\mathrm{NaH}_{2} \mathrm{PO}_{4} .2 \mathrm{H}_{2} \mathrm{O}(3.12 \mathrm{~g}, 20.14$ mmol, 38 eq) and $\mathrm{NaClO}_{2}(0.527 \mathrm{~g}, 5.83 \mathrm{mmol}, 11 \mathrm{eq})$ in water (19 mL). After 1 h , the reaction was quenched by the addition of sat. $\mathrm{NH}_{4} \mathrm{Cl}(30 \mathrm{~mL})$ and extracted with $\mathrm{EtOAc}(3 \times 30 \mathrm{~mL})$. The combined organic layers were washed with brine (15 mL), dried (anh. MgSO_{4}). Volatiles were removed in vacuo. The chiral amine was added to the crude oxidized product to afford white solid. Decantation by using syringe and recrystallization from warm ethanol, then cooling down to r.t. afforded white crystal of 24 in 60% yield $(110 \mathrm{mg}, 0.32 \mathrm{mmol})$; IR $\left(\mathrm{CHCl}_{3}\right): v_{\max } 3262 \mathrm{~m}$, $2931 m, 1643 s, 1530 s, 1399 m, 1258 m, 1108 \mathrm{~m} \mathrm{~cm}^{-1}$; MS(ESI): $m / z(\%)$ relative intensity $217.3\left(\mathrm{M}^{-}\right.$) and $122.3\left(\mathrm{M}^{+}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.51-7.37(\mathrm{~m}, 5 \mathrm{H}), 5.10-4.80(\mathrm{~m}, 4 \mathrm{H}), 4.43(\mathrm{q}$,
$J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 4.09(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{td}, J=12.0,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.10$ (td, $J=13.4,2.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.02 (br.s, 1H), 1.95-1.75 (m, 3H), 1.72-1.56 (m, 7H), 1.24 (m, 1H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 183.8,140.9,130.4(2 \mathrm{CH}), 130.0,127.7(2 \mathrm{CH}), 72.5,64.5,52.4$, 48.1, 44.2, 41.7, 32.5, 30.6, 27.7, 22.3, 21.5; Elemental analysis: C, 63.61; H, 7.71; N, 4.12; found C, 63.53; H, 7.78; N, 4.08.

12. Hydrazone derivatives 25-28

General procedure:

A solution of aldehyde ($0.2 \mathrm{mmol}, 1 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ and anhydride MgSO_{4} were placed in the reaction flask and cooled to $0^{\circ} \mathrm{C}$. SAMP ($29 \mu \mathrm{~L}, 0.22 \mathrm{mmol}, 1.1 \mathrm{eq}$) was carefully added to the mixture. After stirring at $0{ }^{\circ} \mathrm{C}$ for 2 h , the reaction mixture was filtered through Celite plug. Volatiles were removed in vacuo. The residue was purified by f.c. to afford the hydrazone derivatives.

12.1 (2S)- $N-[(1 E)-(3 a R, 4 R, 7 a S)-2,3,3 a, 4,5,7 a-h e x a h y d r o-1 H-i n d e n-4-y l m e t h y l e n e]-$
 2-(methoxymethyl)pyrrolidin-1-amine (25)

Obtained as a yellow liquid in 95% yield: $\mathrm{R}_{\mathrm{f}}=0.26$ ($20 \% \mathrm{Et}_{2} \mathrm{O}$ in pentanes); IR (neat): $v_{\max }$ 3016m, 2951s, 2868s, 1638w, 1602w, 1455m, 1339m, 1196m, 1117s $\mathrm{cm}^{-1} ; \operatorname{MS}(\mathrm{ESI}): m / z 263$ $\left(\mathrm{M}^{+}+\mathrm{H}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.62(\mathrm{~d}, J=6.46 \mathrm{~Hz}, 1 \mathrm{H}), 5.87(\mathrm{~d}, J=9.80 \mathrm{~Hz}, 1 \mathrm{H})$, 5.64 (ddd, $J=9.59,6.61,2.72 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{dd}, J=8.7,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.34-3.50(\mathrm{~m}, 6 \mathrm{H}), 2.78$ $(\mathrm{q}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{tt}, J=10.8,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{dddd}, J=18.2,8.4,4.2,2.2 \mathrm{~Hz}, 1 \mathrm{H})$,
2.22-2.08 (m, 1H), 2.05-1.64(m, 9H), 1.44-1.14 (m, 3H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 142.4$, $129.9,126.6,74.8,63.5,59.3,50.5,47.7,44.7,43.5,31.8,29.5,28.1,26.6,22.2,22.1$; HRMS (ESI-TOF) calcd for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O} ; 263.2117$ found: 263.2119.

12.2 (2S)-2-(methoxymethyl)-N-\{(1E)-[(3aR,4R,7aS)-4-methyl-2,3,3a,4,5,7a-hexahydro- 1 H -inden-4-yl]methylene $\}$ pyrrolidin-1-amine (26)

Obtained as a yellow liquid in 96% yield: $\mathrm{R}_{\mathrm{f}}=0.33\left(20 \% \mathrm{EtO}_{2}\right.$ in pentane); IR (neat): $v_{\max }$ 3014m, 2954s, 2870s, 1638w, 1603w, 1457m, 1340m, 1196m, 1119s cmr ; MS(ESI): m/z 277.3 $\left(\mathrm{M}^{+}+\mathrm{H}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.71(\mathrm{~s}, 1 \mathrm{H}$ of exo), $6.65(\mathrm{~s}, 1 \mathrm{H}$ of endo), $5.83(\mathrm{~d}, J=$ $9.9 \mathrm{~Hz}, 1 \mathrm{H}$ of endo), 5.64 (ddt, $J=9.7,4.8,2.5 \mathrm{~Hz}, 1 \mathrm{H}$ of endo), 5.56 (dtd, $J=7.2,4.8,2.3 \mathrm{~Hz}$, 1H of exo), $5.43(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}$ of exo), $3.65(\mathrm{dt}, J=9.1,3.1 \mathrm{~Hz}, 2 \mathrm{H}$ of endo and exo), 3.543.29 ($\mathrm{m}, 12 \mathrm{H}$ of endo and exo), 2.80-2.60 (m, 2H of endo and exo), 2.50-2.35 (m, 2H of endo and exo), 2.15-1.77 (m, 14H of endo and exo), 1.76-1.59 (m, 6H of endo and exo), 1.54-1.43 (m, 2 H of endo and exo), 1.34-1.14 (m, 4H of endo and exo), 1.09 (d, J=4.5 Hz, 3H of exo), 1.04 (s, 3 H of endo); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ of endo $146.6,128.8,126.3,74.7,63.6,59.3,50.9$, 50.2, 40.2, 38.8, 38.6, 29.3, 26.6, 24.1, 22.0, 21.9, 16.4; HRMS (ESI-TOF) calcd for $\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}$; 277.2274 found: 277.2274.

12.3 Dimethyl (3aR,4R,7aS)-4-[(E)-\{[(2S)-2-(methoxymethyl)pyrrolidin-1-yl] imino\}methyl]-1,3,3a,4,5,7a-hexahydro-2H-indene-2,2-dicarboxylate (27)

Obtained as a yellow liquid in 86% yield: $\mathrm{R}_{\mathrm{f}}=0.21\left(40 \% \mathrm{EtO}_{2}\right.$ in pentanes); IR (neat): $v_{\max }$ 3019w, 2953m, 2919m, 1732s, 1601w, 1435m, 1251s, 1196s, 1159s, 1110s cm^{-1}; MS(ESI): m / z $378\left(\mathrm{M}^{+}+\mathrm{H}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.55(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H})$, $5.73-5.63(\mathrm{~m}, 1 \mathrm{H}), 3.763(\mathrm{~s}, 3 \mathrm{H}), 3.758(\mathrm{~s}, 3 \mathrm{H}), 3.64-3.57(\mathrm{~m}, 1 \mathrm{H}), 3.50-3.34(\mathrm{~m}, 6 \mathrm{H}), 2.86-$ $2.60(\mathrm{~m}, 3 \mathrm{H}), 2.44(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.16(\mathrm{~m}, 2 \mathrm{H}), 2.06-1.90(\mathrm{~m}, 3 \mathrm{H}), 1.89-1.78(\mathrm{~m}$, $2 \mathrm{H}), 1.72(\mathrm{t}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.62(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 173.2,140.1$, $127.9,127.5,77.4,77.1,76.8,63.4,59.2,58.2,52.8,50.3,46.7,43.8,43.0,38.7,37.9,31.5,26.6$, 22.2; HRMS (ESI-TOF) calcd for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{5} ; 379.2227$ found: 379.2239.

12.4 Dimethyl (3aR,4R,5R,7aS)-4-[(E)-\{[(2S)-2-(methoxymethyl)pyrrolidin-1-yl] imino\}methyl]-5-methyl-1,3,3a,4,5,7a-hexahydro-2H-indene-2,2-dicarboxylate (28)

Obtained as a yellow liquid in 84% yield: $\mathrm{R}_{\mathrm{f}}=0.19$ ($40 \% \mathrm{EtO}_{2}$ in pentanes); IR (neat): $V_{\text {max }}$ $3018 w, 2954 m, 2927 m, 1733 s, 1598 w, 1435 m, 1251 s, 1196 s, 1153 s, 1114 s \mathrm{~cm}^{-1} ; \operatorname{MS}(E S I): m / z$ $378\left(\mathrm{M}^{+}+\mathrm{H}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.65(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.76(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H})$, 5.63-5.56 (m, 1H), $3.77(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.64-3.55(\mathrm{~m}, 1 \mathrm{H}), 3.53-3.34(\mathrm{~m}, 6 \mathrm{H}), 2.90-2.47$ $(\mathrm{m}, 4 \mathrm{H}), 2.12(\mathrm{~m}, 1 \mathrm{H}), 2.07-1.61(\mathrm{~m}, 8 \mathrm{H}), 1.03(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 173.3,173.2,139.3,134.5,126.6,74.9,63.2,59.2,58.5,52.74,52.71,50.7,46.6,44.9$, 41.5, 38.6, 37.8, 35.3, 26.7, 22.2, 17.0. HRMS (ESI-TOF) calcd for $\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{5} ; 393.2383$ found: 379.2402.

References

1. Spino, C.; Crawford, J. Tetrahedron Lett. 1994, 35, 5559.
2. Spino, C.; Crawford, J.; Bishop J. J. Org. Chem. 1995, 60, 844.
3. Roush, W. R.; Gillis, H. R.; Ko, A. I. J. Chem. Am. Soc. 1982, 104, 2269.
4. Ishihara, K.; Kurihara, H.; Yamamoto, H. J. Chem. Am. Soc. 1996, 118, 3049.
5. Furuta, K.; Kanematsu, A.; Yamamoto, H.; Takaoka, S. Tetrahedron Lett. 1989, 30, 7231.
6. Nakanishi, H.; Miyazawa, N. Japanese Kokai Tokkyo Koho 2008, 15.
7. Bross, H; Schneider, R; Hopf, H. Tetrahedron Lett. 1979, 23, 2129.
8. Wender, P. A.; Christy, J. P. J. Chem. Am. Soc. 2006, 128, 5354.
9. Trienes 5 and $\mathbf{6}$ cannot be purified by f.c. on silica gel because it undergoes IMDA reaction spontaneously. Therefore, the alcohol intermediate was stored and freshly oxidized to trienal 6 before do asymmetric IMDA reaction.
10. The IMDA reaction cannot follow by TLC because R_{f} of starting material and adduct are similar.

	\％
\％	－㶳
	－素
$\xrightarrow[\substack{\text { ass } \\ \text { ba }}]{ }$	
	建
－	\square
smor	－
	－
	老
0_{0}^{0}	－
詨《》n	
	－

			${ }^{\frac{88}{88}}$		
4 MmR 800 NH					
w					
	1				
	dull				
管高	管	笭	H		

甞．	最 ．	\％	\％	$\stackrel{\text { \％}}{\text { ¢ }}$
＂n－				素：
$\stackrel{y}{x}=$				
${ }_{85}^{25}$				建 ${ }^{\text {a }}$
				聿：
asme				
爯				
	m			

