### Polytypism, Disorder and Anion Exchange Properties of Divalent Ion (Zn, Co) containing Bayerite-derived Layered Double Hydroxides

Sylvia Britto and P. Vishnu Kamath\*

Department of Chemistry, Central College, Bangalore University, Bangalore 560 001,

India

\* Corresponding author.

E-mail: vishnukamath8@hotmail.com

#### **Supporting Information**

# SI.1. The layer structure and the stacking vectors used in the simulation of the PXRD patterns of ordered polytypes

The DIFFaX code requires the stacking direction to be along the *c* crystallographic axis and the cell parameters to be defined as *a*, *b*, *c* and  $\gamma$ . The assumption is that  $\alpha = \beta = 90^{\circ}$ . Such a convention is suited for hexagonal and rhombohedral crystal systems. The nickelalumite structure crystallizes in the monoclinic crystal system. To make this structure compatible with the DIFFaX code, the cell was 'orthogonalized' as  $a_o = a_m$ ,  $b_o = b_m$ ,  $c_o = c_m \text{Sin } \beta$ , (o: orthogonalized cell parameter, m: monoclinic cell parameter),  $\gamma_o = 90^{\circ}$ . The stacking vector ( $c_m/a_m \cos \beta$ , 0, 1) generates the monoclinic symmetry. A single layer (stacking unit) is defined using the position coordinates taken from the model structure (space group:  $P \ 12_1/n1$ , a = 10.291 Å, b = 8.892 Å, c = 17.268Å,  $\beta = 95.54^{\circ}$ ) with the following transformations for the orthogonalized cell:  $x_0 = x_m + z_m(c_m/a_m \cos \beta)$ ,  $y_o = y_m$ ,  $z_o = z_m$ . All the symmetry related atoms are explicitly defined and the point group is declared as 'unknown'. Such an option enables the DIFFaX code to evaluate the Laue symmetry. The computed symmetry is 2/m, compatible with the symmetry of the model structure.

## Structure of Layer 1 used for the simulation of the PXRD patterns of the $2M_1$ and $2M_2$ polytypes

| LAYER | 1 | (Atom | type, | Atom | labe  | el, 1 | х, | У,  | z,  | В, | S.O. | F) |        |
|-------|---|-------|-------|------|-------|-------|----|-----|-----|----|------|----|--------|
| Zn    |   | 1     | 0.24  | 98   | 0.00  | 06    | -0 | .0  | 072 | 0  | 1.   |    | 1.0000 |
| Zn    |   | 0     | 0.75  | )1 - | -0.00 | 06    | 0  | .0  | 072 | 0  | 1.   |    | 1.0000 |
| Al    |   | 0     | 0.49  | 98   | 0.17  | 714   | 0  | .0  | 016 | 0  | 1.   |    | 1.0000 |
| Al    |   | 1     | 0.50  | 01   | 0.82  | 286   | -0 | .0  | 016 | 0  | 1.   |    | 1.0000 |
| Al    |   | 2     | -0.00 | 02   | 0.82  | 259   | 0  | .0  | 045 | 0  | 1.   |    | 1.0000 |
| Al    |   | 2     | 0.00  | 02   | 0.17  | 741   | -0 | .0  | 045 | 0  | 1.   |    | 1.0000 |
| Al    |   | 2     | 0.25  | 11   | 0.66  | 511   | 0  | .0  | 024 | 0  | 1.   |    | 1.0000 |
| Al    |   | 2     | 0.74  | 39   | 0.33  | 389   | -0 | .0  | 024 | 0  | 1.   |    | 1.0000 |
| Al    |   | 2     | 0.25  | D 4  | 0.33  | 394   | -0 | .0  | 001 | 0  | 1.   |    | 1.0000 |
| Al    |   | 2     | 0.74  | 96   | 0.66  | 506   | 0  | .0  | 001 | 0  | 1.   |    | 1.0000 |
| S     |   | 3     | 0.46  | 94   | 0.89  | 906   | 0  | .2  | 594 | 0  | 1.   |    | 1.0000 |
| S     |   | 3     | 0.94  | 99   | 0.39  | 906   | 0  | .2  | 406 | 0  | 1.   |    | 1.0000 |
| 0     |   | 4     | 0.07  | 29   | 0.00  | )29   | 0  | .0. | 540 | 0  | 1.   |    | 1.0000 |
| 0     |   | 4     | 0.92  | 71 - | -0.00 | )29   | -0 | .0. | 540 | 0  | 1.   |    | 1.0000 |
| 0     |   | 1     | 0.56  | 89 - | -0.00 | 07    | 0  | .0  | 573 | 0  | 1.   |    | 1.0000 |
| 0     |   | 0     | 0.43  | 11   | 0.00  | 07    | -0 | .0  | 573 | 0  | 1.   |    | 1.0000 |
| 0     |   | 0     | 0.84  | 02   | 0.82  | 211   | 0  | .0  | 625 | 0  | 1.   |    | 1.0000 |
| 0     |   | 1     | 0.15  | 98   | 0.17  | 789   | -0 | .0  | 625 | 0  | 1.   |    | 1.0000 |
| 0     |   | 2     | 0.33  | 31   | 0.17  | 754   | 0  | .0. | 567 | 0  | 1.   |    | 1.0000 |
| 0     |   | 2     | 0.66  | 18   | 0.82  | 246   | -0 | .0  | 567 | 0  | 1.   |    | 1.0000 |
| 0     |   | 2     | 0.59  | 73   | 0.30  | 062   | 0  | .0. | 588 | 0  | 1.   |    | 1.0000 |
| 0     |   | 2     | 0.40  | 27   | 0.09  | 938   | -0 | .0. | 588 | 0  | 1.   |    | 1.0000 |
| 0     |   | 2     | 0.30  | 79   | 0.49  | 989   | 0  | .0  | 624 | 0  | 1.   |    | 1.0000 |
| 0     |   | 2     | 0.693 | 20   | 0.50  | )11   | -0 | .0  | 624 | 0  | 1.   |    | 1.0000 |
| 0     |   | 3     | 0.843 | 31   | 0.18  | 324   | 0  | .0  | 570 | 0  | 1.   |    | 1.0000 |
| 0     |   | 3     | 0.15  | 59   | 0.81  | L76   | -0 | .0  | 570 | 0  | 1.   |    | 1.0000 |

| 0 | 4 | 0.3409  | 0.8251  | 0.05590  | 1. | 1.0000 |
|---|---|---------|---------|----------|----|--------|
| 0 | 4 | 0.6590  | 0.1749  | -0.05590 | 1. | 1.0000 |
| 0 | 1 | 0.5964  | 0.6949  | 0.05790  | 1. | 1.0000 |
| 0 | 0 | 0.4035  | 0.3051  | -0.05790 | 1. | 1.0000 |
| 0 | 0 | 0.1003  | 0.6963  | 0.06290  | 1. | 1.0000 |
| 0 | 1 | 0.8997  | 0.3037  | -0.06290 | 1. | 1.0000 |
| 0 | 2 | 0.0965  | 0.3055  | 0.05470  | 1. | 1.000  |
| 0 | 2 | 0.9035  | 0.6945  | -0.05470 | 1. | 1.0000 |
| 0 | 2 | 0.8030  | 0.4984  | 0.05950  | 1. | 1.0000 |
| 0 | 2 | 0.1970  | 0.5016  | -0.05950 | 1. | 1.0000 |
| 0 | 2 | -0.0035 | 0.4748  | 0.17170  | 1. | 1.000  |
| 0 | 2 | 0.4229  | 0.9748  | 0.32830  | 1. | 1.000  |
| 0 | 3 | 0.8692  | 0.4892  | 0.28900  | 1. | 1.000  |
| 0 | 3 | 0.5501  | 0.9892  | 0.21100  | 1. | 1.000  |
| 0 | 4 | 0.0635  | 0.3363  | 0.28550  | 1. | 1.000  |
| 0 | 4 | 0.3559  | 0.8363  | 0.21450  | 1. | 1.000  |
| 0 | 1 | 0.8729  | 0.2607  | 0.21420  | 1. | 1.0000 |
| 0 | 0 | 0.5464  | 0.7607  | 0.28580  | 1. | 1.000  |
| 0 | 0 | 0.8112  | 0.7775  | 0.22250  | 1. | 1.000  |
| 0 | 1 | 0.60820 | 0.27750 | 0.27750  | 1. | 1.0000 |
| 0 | 2 | 0.1958  | 0.0981  | 0.19380  | 1. | 1.000  |
| 0 | 2 | 0.2235  | 0.5981  | 0.30620  | 1. | 1.000  |
| 0 | 2 | 0.4954  | 0.50650 | 0.18650  | 1. | 1.000  |
| 0 | 2 | 0.9239  | 0.0065  | 0.31350  | 1. | 1.000  |
| 0 | 6 | 0.1097  | 0.9500  | 0.25000  | 1. | 1.000  |
| 0 | 6 | 0.3097  | 0.4500  | 0.25000  | 1. | 1.000  |
| 0 | 6 | 0.1797  | 0.6000  | 0.25000  | 1. | 1.000  |
| 0 | 6 | 0.2397  | 0.1000  | 0.25000  | 1. | 1.000  |

#### LAYER 2 (Atom type, Atom label, x, y, z, B, S.O.F)

| Zn | 1 | 0.2498  | -0.0006 | -0.00720 | 1. | 1.0000 |
|----|---|---------|---------|----------|----|--------|
| Zn | 0 | 0.7501  | 0.0006  | 0.00720  | 1. | 1.0000 |
| Al | 0 | 0.4998  | -0.1714 | 0.00160  | 1. | 1.0000 |
| Al | 1 | 0.5001  | -0.8286 | -0.00160 | 1. | 1.0000 |
| Al | 2 | -0.0002 | -0.8259 | 0.00450  | 1. | 1.0000 |
| Al | 2 | 0.0002  | -0.1741 | -0.00450 | 1. | 1.0000 |
| Al | 2 | 0.2511  | -0.6611 | 0.00240  | 1. | 1.0000 |
| Al | 2 | 0.7489  | -0.3389 | -0.00240 | 1. | 1.0000 |
| Al | 2 | 0.2504  | -0.3394 | -0.00010 | 1. | 1.0000 |
| Al | 2 | 0.7496  | -0.6606 | 0.00010  | 1. | 1.0000 |
| S  | 3 | 0.4694  | -0.8906 | 0.25940  | 1. | 1.0000 |
| S  | 3 | 0.9499  | -0.3906 | 0.24060  | 1. | 1.0000 |
| 0  | 4 | 0.0729  | -0.0029 | 0.05400  | 1. | 1.0000 |
| 0  | 4 | 0.9271  | 0.0029  | -0.05400 | 1. | 1.0000 |
| 0  | 1 | 0.5689  | 0.0007  | 0.05730  | 1. | 1.0000 |
| 0  | 0 | 0.4311  | -0.0007 | -0.05730 | 1. | 1.0000 |
| 0  | 0 | 0.8402  | -0.8211 | 0.06250  | 1. | 1.0000 |
| 0  | 1 | 0.1598  | -0.1789 | -0.06250 | 1. | 1.0000 |
| 0  | 2 | 0.3381  | -0.1754 | 0.05670  | 1. | 1.0000 |
| 0  | 2 | 0.6618  | -0.8246 | -0.05670 | 1. | 1.0000 |
| 0  | 2 | 0.5973  | -0.3062 | 0.05880  | 1. | 1.0000 |
| 0  | 2 | 0.4027  | -0.0938 | -0.05880 | 1. | 1.0000 |
| 0  | 2 | 0.3079  | -0.4989 | 0.06240  | 1. | 1.0000 |
| 0  | 2 | 0.6920  | -0.5011 | -0.06240 | 1. | 1.0000 |

| 0 | 3 | 0.8431  | -0.1824  | 0.05700  | 1. | 1.0000 |
|---|---|---------|----------|----------|----|--------|
| 0 | 3 | 0.1569  | -0.8176  | -0.05700 | 1. | 1.0000 |
| 0 | 4 | 0.3409  | -0.8251  | 0.05590  | 1. | 1.0000 |
| 0 | 4 | 0.6590  | -0.1749  | -0.05590 | 1. | 1.0000 |
| 0 | 1 | 0.5964  | -0.6949  | 0.05790  | 1. | 1.0000 |
| 0 | 0 | 0.4035  | -0.3051  | -0.05790 | 1. | 1.0000 |
| 0 | 0 | 0.1003  | -0.6963  | 0.06290  | 1. | 1.0000 |
| 0 | 1 | 0.8997  | -0.3037  | -0.06290 | 1. | 1.0000 |
| 0 | 2 | 0.0965  | -0.3055  | 0.05470  | 1. | 1.000  |
| 0 | 2 | 0.9035  | -0.6945  | -0.05470 | 1. | 1.0000 |
| 0 | 2 | 0.8030  | -0.4984  | 0.05950  | 1. | 1.0000 |
| 0 | 2 | 0.1970  | -0.5016  | -0.05950 | 1. | 1.0000 |
| 0 | 2 | -0.0035 | -0.4748  | 0.17170  | 1. | 1.000  |
| 0 | 2 | 0.4229  | -0.9748  | 0.32830  | 1. | 1.000  |
| 0 | 3 | 0.8692  | -0.4892  | 0.28900  | 1. | 1.000  |
| 0 | 3 | 0.5501  | -0.9892  | 0.21100  | 1. | 1.000  |
| 0 | 4 | 0.0635  | -0.3363  | 0.28550  | 1. | 1.000  |
| 0 | 4 | 0.3559  | -0.8363  | 0.21450  | 1. | 1.000  |
| 0 | 1 | 0.8729  | -0.2607  | 0.21420  | 1. | 1.0000 |
| 0 | 0 | 0.5464  | -0.7607  | 0.28580  | 1. | 1.000  |
| 0 | 0 | 0.8112  | -0.7775  | 0.22250  | 1. | 1.000  |
| 0 | 1 | 0.60820 | -0.27750 | 0.27750  | 1. | 1.0000 |
| 0 | 2 | 0.1958  | -0.0981  | 0.19380  | 1. | 1.000  |
| 0 | 2 | 0.2235  | -0.5981  | 0.30620  | 1. | 1.000  |
| 0 | 2 | 0.4954  | -0.50650 | 0.18650  | 1. | 1.000  |
| 0 | 2 | 0.9239  | -0.0065  | 0.31350  | 1. | 1.000  |
| 0 | 6 | 0.1097  | -0.9500  | 0.25000  | 1. | 1.000  |
| 0 | 6 | 0.3097  | -0.4500  | 0.25000  | 1. | 1.000  |
| 0 | 6 | 0.1797  | -0.6000  | 0.25000  | 1. | 1.000  |
| 0 | 6 | 0.2397  | -0.1000  | 0.25000  | 1. | 1.000  |

| Stacking vectors used for ordered 2M <sub>1</sub> |               |            |       |     |  |  |  |
|---------------------------------------------------|---------------|------------|-------|-----|--|--|--|
| Transitions                                       | Probabilities | Stacking v | ector |     |  |  |  |
|                                                   |               | x          | У     | Z   |  |  |  |
| L1→L1                                             | 0.0           | 0          | 0     | 1   |  |  |  |
| L1→L2                                             | 1.0           | -0.5809    | 0.5   | 0.5 |  |  |  |
| L2→L1                                             | 1.0           | -0.5809    | 0.5   | 0.5 |  |  |  |
| L2→L2                                             | 0.0           | 0          | 0     | 1   |  |  |  |
| Stacking vectors used for ordered 2M <sub>2</sub> |               |            |       |     |  |  |  |
| L1 →L1                                            | 0.0           | 0.0        | 0     | 1   |  |  |  |
| L1→L2                                             | 1.0           | -0.5809    | 0     | 0.5 |  |  |  |
| L2→L1                                             | 1.0           | -0.5809    | 0     | 0.5 |  |  |  |
| L2→L2                                             | 0.0           | 0.0        | 0     | 1   |  |  |  |

| La<br>La | Layer $3 = 1$<br>Layer $4 = 2$        |               |               |     |     |  |  |  |
|----------|---------------------------------------|---------------|---------------|-----|-----|--|--|--|
|          | $10\% 2M_2$ motifs in $2M_1$ polytype |               |               |     |     |  |  |  |
|          | -                                     | 11 5 5        | 1             |     |     |  |  |  |
|          | Transitions                           | Probabilities | Stacking vect | or  |     |  |  |  |
|          |                                       |               | x             | У   | z   |  |  |  |
|          | L1→L1                                 | 0.0           | 0             | 0   | 1   |  |  |  |
|          | L1→L2                                 | 0.9           | -0.5809       | 0.5 | 0.5 |  |  |  |
|          | L1→L3                                 | 0.0           | 0             | 0   | 1   |  |  |  |
|          | L1→L4                                 | 0.1           | -0.5809       | 0   | 0.5 |  |  |  |
|          | L2→L1                                 | 0.9           | -0.5809       | 0.5 | 0.5 |  |  |  |
|          | L2→L2                                 | 0.0           | 0             | 0   | 1   |  |  |  |
|          | L2→L3                                 | 0.1           | -0.5809       | 0   | 0.5 |  |  |  |
|          | L2→L4                                 | 0.0           | 0             | 0   | 1   |  |  |  |
|          | 12.11                                 | 0.0           | 0             | 0   | 1   |  |  |  |
|          | $L_{3} \rightarrow L_{1}$             | 0.0           | 0 5800        | 0   | 1   |  |  |  |
|          | $L_3 \rightarrow L_2$                 | 0.1           | -0.3809       | 0   | 0.5 |  |  |  |
|          | $L_3 \rightarrow L_3$                 | 0.0           | 0 5800        | 05  | 0.5 |  |  |  |
|          | LJ->L4                                | 0.9           | -0.3809       | 0.5 | 0.5 |  |  |  |
|          | L4→L1                                 | 0.1           | -0.5809       | 0   | 0.5 |  |  |  |
|          | L4→L2                                 | 0.0           | 0             | 0   | 1   |  |  |  |
|          | L4→L3                                 | 0.9           | -0.5809       | 0.5 | 0.5 |  |  |  |
|          | L4→L4                                 | 0.0           | 0             | 0   | 1   |  |  |  |
|          |                                       |               |               |     |     |  |  |  |

SI.2. Stacking vectors and probabilities used for an illustrative DIFFaX simulation of the PXRD pattern of a faulted crystal

| d (obs)<br>Å | d (calc)<br>Å | hkℓ   |
|--------------|---------------|-------|
| 8.541        | 8.528         | 002   |
| 7.902        | 7.898         | 011   |
| 6.723        | 6.726         | -110  |
| 6.401        | 6.401         | -111  |
| 6.125        | 6.123         | 111   |
| 5.453        | 5.456         | -112  |
| 5.116        | 5.122         | 112   |
| 4.797        | 4.793         | 013   |
| 4.599        | 4.600         | -202  |
| 4.267        | 4.264         | 004   |
| 4.212        | 4.213         | 211   |
| 3.709        | 3.712         | -114  |
| 3.361        | 3.363         | -220  |
| 3.341        | 3.341         | -221  |
| 3.256        | 3.258         | 123   |
| 3.186        | 3.186         | 015   |
| 3.062        | 3.062         | 222   |
| 2.728        | 2.728         | -224  |
| 2.599        | 2.600         | 215   |
| 2.521        | 2.522         | 133   |
| 2.300        | 2.299         | 233   |
| 2.223        | 2.222         | 420   |
| 2.005        | 2.005         | 235   |
| 1.814        | 1.814         | -237  |
| 1.726        | 1.726         | 237   |
| 1.563        | 1.563         | -2210 |
| 1.485        | 1.485         | -543  |
| 1.463        | 1.463         | -450  |
|              |               |       |

SI. 3. Observed and Calculated *d* – spacings of the ZA-1 LDH.

a = 10.305(3) Å, b = 8.911(2) Å, c = 17.141(2) Å,  $\beta = 95.68(2)^{\circ}$ 

SI. 4. PXRD pattern of LDH prepared from (a) bayerite (ZA-1) and (b) by ageing ZnO in  $Al_2(SO_4)_3$  (ZA-2).



SI. 5. Simulated PXRD patterns of the bayerite-based LDH with different disc diameters (R) (a)  $R = \infty$ , (b) R = 2000 Å, (c) R = 1000 Å (Line shape: Lorentzian broadening of 0.3° 20).



SI. 6. Simulated PXRD patterns of the bayerite-based LDH with different crystallite thickness (n, number of layers) (a)  $n = \infty$ , (b) n = 20, (c) n = 10. (Line shape: Lorentzian broadening of  $0.3^{\circ} 2\theta$ ).



SI. 7. PXRD pattern of the ZA-2 LDH and the DIFFaX simulations obtained by the interstratification of different proportions of the hydrated phase (*d*-spacing, 10.7 Å).



SI. 8. IR spectrum of product obtained on hydrothermal treatment of bayerite in  $Zn(NO_3)_2$  solution.



SI. 9. IR spectrum of product obtained on exchange of NO<sub>3</sub> with (a)  $CrO_4^{2-}$  and (b)  $MoO_4^{2-}$  from solution.



SI. 10. PXRD pattern of the (a) bayerite-based Zn-Al-NO<sub>3</sub> LDH and the product obtained after exchange of NO<sub>3</sub> for (b) Cl<sup>-</sup> and (c)  $CO_3^{2^-}$ . Features marked by the asterisk correspond to Al(OH)<sub>3</sub>.

