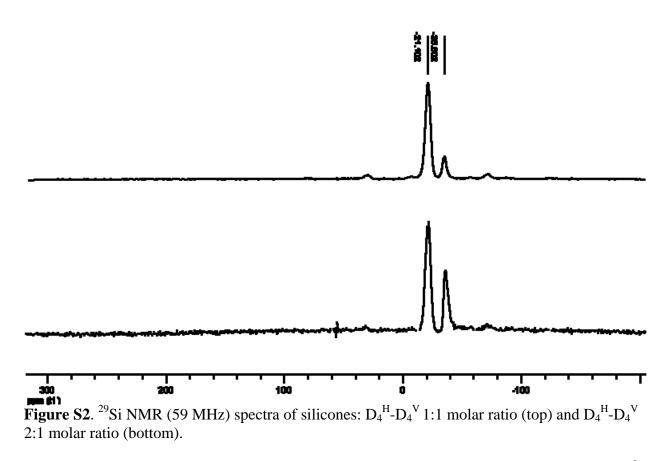
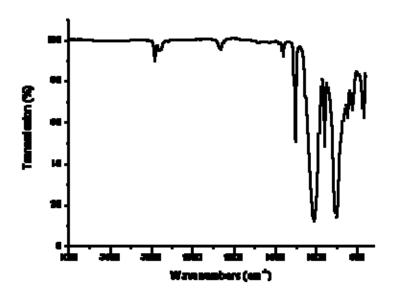

Supporting Information


Rediscovering Silicones. Molecularly Smooth, Low Surface Energy, Unfilled, UV/vis-Transparent, Extremely Crosslinked, Thermally Stable, Hard and Elastic PDMS

Peiwen Zheng and Thomas J. McCarthy *

Solid-State NMR: ¹³C and ²⁹Si spectra were recorded using a Bruker DSX300 spectrometer. D_4^{H-} $D_4^{V-}1-1$: ¹³C NMR (75 MHz) -0.312 (CH₃), 8.899 (CH₂), 137.378 (CH=CH₂); ²⁹Si NMR (59 MHz) -35.770 (Si-C-C, Si-C=C, and Si-C), -21.326 (Si-C-C-Si). $D_4^{H-}D_4^{V-}2-1$: ¹³C NMR (75 MHz) -1.087 (CH₃), 8.341 (CH₂); ²⁹Si NMR (59 MHz) -36.231(Si-C-C and Si-C), -21.134(Si-C-C-Si).

Figure S1. ¹³C NMR (75 MHz) spectra of silicones: $D_4^{H}-D_4^{V}$ 1:1 molar ratio (top) and $D_4^{H}-D_4^{V}$ 2:1 molar ratio (bottom).



Differential Scanning Calorimetry: A TA DSC Q200 was used. The sample was heated to 150 $^{\circ}$ C and then cooled to -150 $^{\circ}$ C and finally heated again to 150 $^{\circ}$ C (10 $^{\circ}$ C/min heating and cooling).

Figure S3. DSC data for $D_4^{H}-D_4^{V}$ (2:1 molar ratio).

Attenuated total reflection infrared (ATR-IR) spectroscopy: An ATR-IR spectrum of $D_4^{H}-D_4^{V}2:1$ molar ratio was recorded using a Perkin Elmer 100 FT-IR spectrometer. Assignments: 2884-2960 cm⁻¹, CH₃ stretching; 2158 cm⁻¹, Si-H stretching; 1408 cm⁻¹, CH₂ deformation; 1260 cm⁻¹, Si-CH₃ stretching; 1026 cm⁻¹, Si-O stretching; 908 cm⁻¹, Si-H bending; 756 cm⁻¹, CH₃ rocking and Si-C stretching.

Figure S4. Infrared spectrum of $D_4^{H}-D_4^{V}$ (2:1 molar ratio).