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Figure S1. Differential thermal analysis of the as-made glassy phase, where Tg, Tx1 and Tx2 represent 

the glass-transition, the first and the second crystallization temperatures, respectively. 
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Figure S2. Photoluminescence excitation (PLE) and photoluminescence (PL) spectra of the non-doped 

composite heat-treated at 700 oC. 
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Figure S3. Heat-treatment temperature-dependent peak position of PLE spectra of the non-doped 

composite. The PLE spectra were measured by monitoring the luminescence at the wavelength 

corresponding to the peak positions shown in Fig. 2(a). 
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Figure S4. XRD pattern of the composite heat-treated at 600 oC for 2 h. 
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Figure S5. Luminescence spectra of Er3+-doped as-made glass (red line) and the composite heat-treated 

at 680 oC for 2 h (green line). 
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Table S1. Reduced matrix elements of Er3+.1 

 (S′L′)J′ (SL)J [U(2)]2 [U(2)]4 [U(2)]6 λ(nm) 

Er3+ 4S3/2 4I15/2 0.0 0.0 0.2232 540 

 2H11/2 4I15/2 0.7236 0.4222 0.0927 520 

 

The Change of ligand field around rare-earth ions can be discussed by using Judd-Ofelt theory.2,3  

According to this theory, the transition probabilities are determined by the reduced matrix elements of 

unit tensor operators ( ) 2tU  and intensity parameter tΩ , given by equation (1). 
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The calculated matrix elements of Er3+,1 as presented in Table S1, show that the 520 and 540 nm 

transitions are dominated by Ω and Ω respectively. These two parameters indicate the symmetry and 

covalency properties between Er3+ ions and the hosts, respectively. 2

2  6 , 

Ω  creases with the increase of 

symmetry and 6Ω creases with the decrease of covalency. It can be concluded that the change of 

ligand field around Er3+ contributes to the variation of fluorescence intensity. For example, the selective 

incorporation of Er3+ into LaF3 nanocrystal in glass may leads to an intensity enhancement of 540 nm 

peak because of the decrease of covalency. 
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Table S2 The experimentally observed and calculated crystal field parameter (Dq), Racah parameters (B 

and C) and energy levels of Ni2+ in composite treated at 710 oC. 

 Experimental (cm-1) Theoretical (cm-1) 

Dq 

B 

C 

976 

894 

2982 

- 

- 

- 
3A2(F) → 3T2(F) 9728 9728 

→ 1E(D) 12658 13824 

→ 3T1(F) 

→ 1T2(D) 

→ 3T1(P) 

15924 

22075 

26738 

15917 

23236 

26802 

 

To calculate the crystal field and Racah parameters of Ni2+, the Tanabe-Sugano matrix was solved to 

obtain the following expressions:4-6 
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where ν1, ν3 and ν4 represent the electron transitions from 3A2g(F) ground state to 3T2g(F), 3T1g(F) and 

3T1g(P) excited states, respectively. The Dq, B and C parameters can be calculated by applying the 

experimentally observed electron transitions of Ni2+ to the obtained expressions. The results are shown 

in Table S2. 

By using the calculated crystal field and Racah parameters and the standard Tanabe-Sugano diagram 

of octahedral Ni2+, the theoretical energy levels can be determined. As shown in Table S2, the fitted 
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energy levels are consistent with the observed absorption peaks. The location of the energy levels of 

Ni2+ in the composite treated at 710 oC is indicated in the standard Tanabe-Sugano diagram (Fig. S6). 

 

Figure S6. Tanabe-Sugano diagram of octahedral Ni2+. Vertical dashed line shows the location of the 

energy levels of Ni2+ in the composite treated at 710 oC. 
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Figure S7. Absorption spectra of Ni2+-Er3+ codoped glass and the composite heat-treated at 650 and 710 

oC, respectively. The arrows indicate the origin of absorption bands. The results show that the 

characteristic absorption bands of five-fold Ni2+ absolutely disappear during the precipitation of Ga2O3 

nanocrystals, demonstrating the selective partition of Ni2+ into Ga2O3. 
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Figure S8. Schematic illustration of the experimental setup for space-selective micro-fabrication and 

upconversion luminescence measurement. 
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Figure S9. a) Ions distribution (F, Ga and Si) map and backscattering electron image (BEI) around the 

ultra-short pulse laser modified region, measured by EPMA. b) Photoluminescence investigation of the 

modified region via scanning the excitation laser from point A and along the direction marked by black 

arrow shown in a). 

 

 

S12

 



References: 

(1) Tanabe S.; Hayashi H., Hanada T.; Onodera N. Opt. Mater. 2002, 19, 343-349. 

(2) Judd B. R. Phys. Rev. 1962, 127, 750-761. 

(3) Tanabe S.; Ohyagi T.; Soga N.; Hanada T. Phys. Rev. B 1992, 46, 3305-3310. 

(4) Tanabe Y.; Sugano S. J. Phys. Soc. Jpn. 1954, 9, 753-766. 

(5) Tanabe Y.; Sugano S. J. Phys. Soc. Jpn. 1954, 9, 766-779. 

(6) Shigemura H.; Shojiya M.; Kanno R.; Kawamoto Y. J. Phys. Chem. B 1998, 102, 1920-1925. 

S13

 


