Supplementary Material

High-accuracy theoretical study on the

thermochemistry of several formaldehyde derivatives

Balázs Nagy, ${ }^{*, \dagger, \ddagger}$ József Csontos, ${ }^{\text {II }}$ Mihály Kállay, ${ }^{\mathbb{I}}$ and Gyula Tasi ${ }^{\dagger}$
Department of Applied and Environmental Chemistry, University of Szeged, Rerrich B. tér 1., H-6720, Szeged, Hungary, Budapest University of Technology and Economics, and Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics,
Budapest P.O.Box 91, H-1521 Hungary
E-mail: n.balazs@chem.u-szeged.hu

[^0]
Total energies

It can be seen in Table 1 that beyond the HF level the largest contributions to the total energy can be attributed to the $\operatorname{CCSD}(\mathrm{T})$ and relativistic corrections. Generally, the $\operatorname{CCSD}(\mathrm{T})$ contribution is larger, however, for the three chlorine-containing molecules, $\mathrm{HClCO}, \mathrm{FClCO}$, and Cl_{2} the two effects are comparable, and for HClCO and Cl_{2} the relativistic correction even exceeds the $\mathrm{CCSD}(\mathrm{T})$ contribution. Nevertheless, this is expected because the relativistic effects are more enhanced for second-row than for first-row atoms. As it can be expected, the magnutide of the ZPE and DBOC contributions to the total energy is proportional to the number of bonds and molecular mass, respectively. The profound effect of the perturbative quadruple excitations, $\Delta E_{\operatorname{CCSDT}(\mathrm{Q})}$, is fairly obvious from the data, it exceeds the $\Delta E_{\text {CCSDT }}$ correction. Consequently, when high accuracy is the goal it seems, that quadruple excitations can not be neglected.

Table 1: Contributions to the total energies of the species studied in this work. All values are in atomic units.

| Species | E_{HF}^{∞} | $\Delta E_{\mathrm{CCSD}(\mathrm{T})}^{\mathrm{b}}$ | $\Delta E_{\mathrm{CCSDT}}^{\infty}$ | $\Delta E_{\mathrm{CCSDT}(\mathrm{Q})}{ }^{\mathrm{d}}$ | $\Delta E_{\text {REL }} \mathrm{e}$ | $\Delta E_{\text {ZPE }}{ }^{\mathrm{f}}$ | $\Delta E_{\text {DBOC }} \mathrm{g}$ | Total |
| :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{CF}_{2} \mathrm{O}$ | -311.770871 | -1.282173 | 0.000468 | -0.001916 | -0.254691 | 0.014212 | 0.009430 | -313.285540 |
| FCO | -212.216907 | -0.901979 | -0.000061 | -0.001654 | -0.163169 | 0.008231 | 0.006802 | -213.268737 |
| HFCO | -212.855046 | -0.936027 | 0.000237 | -0.001516 | -0.163056 | 0.020799 | 0.007046 | -213.927564 |
| HClCO | -572.881607 | -1.269522 | -0.000207 | -0.001508 | -1.516153 | 0.019033 | 0.010483 | -575.639482 |
| FClCO | -671.795733 | -1.618401 | 0.000098 | -0.001912 | -1.607806 | 0.012320 | 0.012861 | -674.998572 |
| cis-HOCO | -188.224981 | -0.884980 | 0.000094 | -0.001759 | -0.126637 | 0.020526 | 0.006757 | -189.210982 |
| trans-HOCO 2 | -188.225845 | -0.886943 | 0.000083 | -0.001779 | -0.126646 | 0.020850 | 0.006750 | -189.213530 |
| $\mathrm{NH}_{2} \mathrm{CO}$ | -168.393108 | -0.854451 | 0.000001 | -0.001572 | -0.102380 | 0.032845 | 0.006601 | -169.312064 |
| C | -37.693774 | -0.151042 | -0.000466 | -0.000021 | -0.016420 | 0.000000 | 0.001709 | -37.860013 |
| H_{2} | -1.133661 | -0.040912 | 0.000000 | 0.000000 | -0.000013 | 0.009930 | 0.000521 | -1.164135 |
| O_{2} | -149.691925 | -0.635217 | 0.000112 | -0.001908 | -0.110911 | 0.003642 | 0.004873 | -150.431334 |
| $\mathrm{~F}_{2}$ | -198.774570 | -0.756426 | 0.000100 | -0.001694 | -0.183848 | 0.002093 | 0.005350 | -199.708993 |
| Cl_{2} | -919.010527 | -1.395247 | -0.000841 | -0.000708 | -2.889747 | 0.001264 | 0.012185 | -923.283620 |
| $\mathrm{~N}_{2}$ | -108.993257 | -0.549274 | 0.000507 | -0.001685 | -0.062693 | 0.005380 | 0.004125 | -109.596897 |

Continued on Next Page...

Table 1 - Continued

${ }^{\text {a }} E_{\mathrm{HF}}^{\infty}$ was obtained by extrapolating the aug-cc-pCVXZ $(X=\mathrm{T}, \mathrm{Q}, 5) \mathrm{HF}-\mathrm{SCF}$ energies.
${ }^{\mathrm{b}} \Delta E_{\mathrm{CCSD}(\mathrm{T})}^{\infty}$ is the all-electron $\operatorname{CCSD}(\mathrm{T})$ correlation energy extrapolated to the basis set limit using the aug-cc-pCVXZ ($X=\mathrm{Q}, 5$) basis sets.
${ }^{\mathrm{c}} \Delta E_{\mathrm{CCSDT}}^{\infty}$ is defined by extrapolating the difference $E_{\mathrm{CCSDT}}-E_{\mathrm{CCSD}(\mathrm{T})}$ using the cc-pVTZ and cc-pVQZ basis sets in the frozen-core approximation.
${ }^{\mathrm{d}} \Delta E_{\mathrm{CCSDT}(\mathrm{Q})}$ is defined as $E_{\mathrm{CCSDT}(\mathrm{Q})}-E_{\mathrm{CCSDT}}$ using the cc-pVDZ basis set.
${ }^{\mathrm{e}} \Delta E_{\text {REL }}$ was obtained at the $\operatorname{CCSD}(\mathrm{T}) /$ aug-cc-pCVTZ level of theory. For the carbon atom it includes the spin-orbit correction of $-0.000135 \mathrm{E}_{h}$.
${ }^{\mathrm{f}}$ Harmonic and anharmonic contributions to the ZPEs along with the G_{0} corrections were calculated at the $\operatorname{CCSD}(\mathrm{T}) / \mathrm{cc}-$ pVQZ level of theory with all electrons correlated.
${ }^{\mathrm{g}} \Delta E_{\mathrm{DBOC}}$ was taken from CCSD/aug-cc-pCVTZ calculations.

Table 2: $\Delta E_{\mathrm{CCSDT}(\mathrm{Q})}$ obtained with cc-pVDZ and cc-pVTZ basis sets. All values are in atomic units.

Species	cc-pVDZ	cc-pVTZ
$\mathrm{CF}_{2} \mathrm{O}$	-0.001916	-0.001621
FCO	-0.001654	-0.001543
HFCO	-0.001516	-0.001348
HClCO	-0.001508	-0.001668
cis-HOCO	-0.001759	-0.001681
trans-HOCO	-0.001779	-0.001705
$\mathrm{NH}_{2} \mathrm{CO}$	-0.001572	-0.001579
C	-0.000021	-0.000033
O_{2}	-0.001908	-0.001826
$\mathrm{~F}_{2}$	-0.001694	-0.001577
Cl_{2}	-0.000708	-0.000983
$\mathrm{~N}_{2}$	-0.001685	-0.001793

Table 3: Calculated bond lengths (in \AA), bond angles (in degrees), rotational constants (in $\mathbf{G H z}$), harmonic vibrational frequencies (in cm ${ }^{-1}$), anharmonicity constants (in cm^{-1}), and G_{0} terms (in cm^{-1}) for the species studied in this work.

Species	Bond lengths	Bond angles	Rotational constants	Harmonic vibrational frequencies	Anharmonicity constants	G_{0}
$\mathrm{F}_{2} \mathrm{CO}$	$R(\mathrm{CF})=1.30862$	$\langle(\mathrm{FCO})=126.06$	5.925	$\omega_{1}=591$	$x_{11}=0.0$	-0.9
	$R(\mathrm{CO})=1.17053$		11.814	$\omega_{2}=629$	$x_{12}=0.3$	
			11.885	$\omega_{3}=790$	$x_{13}=0.0$	
				$\omega_{4}=986$	$x_{14}=-3.5$	
				$\omega_{5}=1286$	$x_{15}=-6.6$	
				$\omega_{6}=1984$	$x_{16}=-1.3$	
					$x_{22}=0.1$	
					$x_{23}=0.8$	
					$x_{24}=-0.9$	
					$x_{25}=-4.2$	
					$x_{26}=-6.2$	
					$x_{33}=-0.4$	
					$x_{34}=-2.9$	
					$x_{35}=-6.1$	

Continued on Next Page...

Table 3 - Continued

Species	Bond lengths	Bond angles	Rotational constants	Harmonic vibrational frequencies	Anharmonicity constants	G_{0}
					$x_{36}=-7.2$	
					$x_{44}=-10.0$	
					$x_{45}=-11.2$	
					$x_{46}=28.2$	
					$x_{55}=-5.3$	
					$x_{56}=-6.0$	
					$x_{66}=-10.7$	
FCO	$R(\mathrm{CF})=1.32289$	$\langle(\mathrm{FCO})=127.78$	10.888	$\omega_{1}=642$	$x_{11}=-0.7$	2.2
	$R(\mathrm{CO})=1.16728$		11.545	$\omega_{2}=1072$	$x_{12}=-11.4$	
			191.389	$\omega_{3}=1922$	$x_{13}=-6.3$	
					$x_{22}=-7.7$	
					$x_{23}=-15.7$	
					$x_{33}=-12.8$	
HFCO	$R(\mathrm{CH})=1.08896$	$\langle(\mathrm{HCO})=127.61$	10.484	$\omega_{1}=676$	$x_{11}=-0.4$	-4.1
	$R(\mathrm{CF})=1.33682$	$\langle(\mathrm{FCO})=122.82$	11.829	$\omega_{2}=1040$	$x_{12}=-0.8$	

Continued on Next Page...

Table 3 - Continued

Species	Bond lengths	Bond angles	Rotational constants	Harmonic vibrational frequencies	Anharmonicity constants	G_{0}
$R(\mathrm{CO})=1.17793$			92.250	$\omega_{3}=1106$	$x_{13}=-7.6$	
				$\omega_{4}=1386$	$x_{14}=-0.5$	
				$\omega_{5}=1884$	$x_{15}=-5.5$	
				$\omega_{6}=3134$	$x_{16}=0.4$	
					$x_{22}=-4.3$	
					$x_{23}=-3.6$	
					$x_{24}=2.4$	
					$x_{25}=-7.8$	
					$x_{26}=-16.4$	
					$x_{33}=-7.1$	
					$x_{34}=-6.9$	
					$x_{35}=-5.6$	
					$x_{36}=0.3$	
					$x_{44}=-9.1$	
					$x_{45}=3.9$	

Continued on Next Page...

Table 3 - Continued

Species	Bond lengths	Bond angles	Rotational constants	Harmonic vibrational frequencies	Anharmonicity constants	G_{0}
					$x_{46}=-27.9$	
					$x_{55}=-10.7$	
					$x_{56}=-8.8$	
					$x_{66}=-59.9$	
HClCO	$R(\mathrm{CH})=1.09073$	$\langle(\mathrm{HCO})=126.29$	5.701	$\omega_{1}=465$	$x_{11}=-0.8$	-4.5
	$R(\mathrm{CCl})=1.76609$	$\langle(\mathrm{ClCO})=123.51$	6.146	$\omega_{2}=756$	$x_{12}=-5.1$	
	$R(\mathrm{CO})=1.18183$		78.703	$\omega_{3}=955$	$x_{13}=-1.4$	
				$\omega_{4}=1345$	$x_{14}=-2.3$	
				$\omega_{5}=1824$	$x_{15}=-0.5$	
				$\omega_{6}=3090$	$x_{16}=1.4$	
					$x_{22}=-5.4$	
					$x_{23}=-1.8$	
					$x_{24}=-3.4$	
					$x_{25}=6.3$	
					$x_{26}=-1.3$	

Continued on Next Page...

Table 3 - Continued

Species	Bond lengths	Bond angles	Rotational constants	Harmonic vibrational frequencies	Anharmonicity constants	G_{0}
					$x_{33}=1.7$	
					$x_{34}=6.0$	
					$x_{35}=-8.8$	
					$x_{36}=-12.9$	
					$x_{44}=-10.2$	
					$x_{45}=13.8$	
					$x_{46}=-29.1$	
					$x_{55}=-11.8$	
					$x_{56}=-15.8$	
					$x_{66}=-63.8$	
FClCO	$R(\mathrm{CF})=1.32082$	$\langle(\mathrm{FCO})=124.10$	3.660	$\omega_{1}=413$	$x_{11}=0.1$	-0.4
	$R(\mathrm{CCl})=1.72607$	$\langle(\mathrm{ClCO})=126.35$	5.286	$\omega_{2}=508$	$x_{12}=-0.6$	
	$R(\mathrm{CO})=1.17303$		11.895	$\omega_{3}=679$	$x_{13}=-0.1$	
				$\omega_{4}=778$	$x_{14}=-1.7$	
				$\omega_{5}=1134$	$x_{15}=-3.8$	

Continued on Next Page...

Table 3 - Continued

Species	Bond lengths	Bond angles	Rotational constants	Harmonic vibrational frequencies	Anharmonicity constants	G_{0}
				$\omega_{6}=1920$	$x_{16}=-0.9$	
					$x_{22}=-0.6$	
					$x_{23}=-0.4$	
					$x_{24}=-1.6$	
					$x_{25}=-2.6$	
					$x_{26}=-2.4$	
					$x_{33}=-0.2$	
					$x_{34}=-1.3$	
					$x_{35}=-6.5$	
					$x_{36}=-5.3$	
					$x_{44}=-1.0$	
					$x_{45}=-28.2$	
					$x_{46}=17.0$	
					$x_{55}=-5.1$	
					$x_{56}=8.1$	

Continued on Next Page...

Table 3 - Continued

Species	Bond lengths	Bond angles	Rotational constants	Harmonic vibrational frequencies	Anharmonicity constants	
					$x_{66}=-11.8$	
cis-HOCO	$R(\mathrm{C}=\mathrm{O})=1.18149$	$\langle(\mathrm{COH})=108.10$	10.927	$\omega_{1}=582$	$x_{11}=-17.8$	-12.3
	$R(\mathrm{C}-\mathrm{O})=1.32642$	$\langle(\mathrm{OCO})=130.28$	11.839	$\omega_{2}=608$	$x_{12}=1.6$	
	$R(\mathrm{OH})=0.97020$		141.998	$\omega_{3}=1089$	$x_{13}=-8.7$	
				$\omega_{4}=1319$	$x_{14}=17.8$	
				$\omega_{5}=1873$	$x_{15}=-0.9$	
				$\omega_{6}=3671$	$x_{16}=1.1$	
					$x_{22}=0.5$	
					$x_{23}=-6.3$	
					$x_{24}=0.4$	
					$x_{25}=-8.9$	
					$x_{26}=-4.1$	
					$x_{33}=-7.5$	
					$x_{34}=-18.0$	
					$x_{35}=-12.7$	

Continued on Next Page...

Table 3 - Continued

Species	Bond lengths	Bond angles	Rotational constants	Harmonic vibrational frequencies	Anharmonicity constants	G_{0}
					$x_{36}=-2.5$	
					$x_{44}=-7.3$	
					$x_{45}=-8.3$	
					$x_{46}=-24.9$	
					$x_{55}=-13.3$	
					$x_{56}=2.0$	
					$x_{66}=-97.9$	
trans-HOCO	$R(\mathrm{C}=\mathrm{O})=1.17630$	$\langle(\mathrm{COH})=107.83$	10.778	$\omega_{1}=539$	$x_{11}=-12.9$	-12.3
	$R(\mathrm{C}-\mathrm{O})=1.33928$	$\langle(\mathrm{OCO})=127.09$	11.518	$\omega_{2}=625$	$x_{12}=3.2$	
	$R(\mathrm{OH})=0.96068$		167.784	$\omega_{3}=1098$	$x_{13}=8.0$	
				$\omega_{4}=1263$	$x_{14}=-6.4$	
				$\omega_{5}=1913$	$x_{15}=-1.6$	
				$\omega_{6}=3841$	$x_{16}=-9.5$	
					$x_{22}=-0.9$	
					$x_{23}=-8.1$	

Continued on Next Page...

Table 3 - Continued

Species	Bond lengths	Bond angles	Rotational constants	Harmonic vibrational frequencies	Anharmonicity constants	G_{0}
					$x_{24}=1.6$	
					$x_{25}=-5.7$	
					$x_{26}=-2.1$	
					$x_{33}=-8.7$	
					$x_{34}=-10.1$	
					$x_{35}=-14.1$	
					$x_{36}=-4.8$	
					$x_{44}=-12.3$	
					$x_{45}=-5.6$	
					$x_{46}=-16.9$	
					$x_{55}=-13.0$	
					$x_{56}=-1.4$	
					$x_{66}=-83.3$	
$\mathrm{NH}_{2} \mathrm{CO}$	$R(\mathrm{CO})=1.19092$	$\langle(\mathrm{NCO})=129.74$	10.335	$\omega_{1}=182$	$x_{11}=184.3$	73.9
	$R(\mathrm{CN})=1.33941$	$\left\langle\left(\mathrm{H}_{s} \mathrm{NC}\right) \underline{\mathrm{a}}=120.68\right.$	11.248	$\omega_{2}=537$	$x_{12}=11.9$	

Continued on Next Page...

Table 3 - Continued

Species	Bond lengths	Bond angles	Rotational constants	Harmonic vibrational frequencies	Anharmonicity constants	G_{0}
	$R\left(\mathrm{NH}_{s}\right) \underline{\mathrm{a}}=1.00721$	$\left\langle\left(\mathrm{H}_{a} \mathrm{NC}\right) \stackrel{\text { a }}{ }=119.92\right.$	127.355	$\omega_{3}=623$	$x_{13}=-71.2$	
	$R\left(\mathrm{NH}_{a}\right)=0.99832$			$\omega_{4}=1100$	$x_{14}=30.8$	
				$\omega_{5}=1242$	$x_{15}=-18.9$	
				$\omega_{6}=1618$	$x_{16}=14.1$	
				$\omega_{7}=1870$	$x_{17}=8.9$	
				$\omega_{8}=3559$	$x_{18}=-40.9$	
					$x_{19}=-65.7$	
					$x_{22}=0.3$	
					$x_{23}=0.3$	
					$x_{24}=9.3$	
					$x_{25}=-5.9$	
					$x_{26}=-8.9$	
					$x_{27}=-2.8$	
					$x_{28}=-3.7$	
					$x_{29}=-2.0$	

Continued on Next Page...

Table 3 - Continued

Species	Bond lengths	Bond angles	Rotational constants
	Harmonic vibrational frequencies	Anharmonicity G_{0} constants	
	$x_{33}=43.9$		
$x_{34}=0.6$			
$x_{35}=-197.8$			
$x_{36}=1.3$			
$x_{37}=-2.6$			
$x_{38}=-0.3$			
$x_{39}=-3.2$			
$x_{44}=-2.7$			
$x_{45}=-5.8$			
$x_{46}=-18.3$			
$x_{47}=-7.5$			
	$x_{48}=-3.6$		
$x_{49}=-9.6$			
$x_{55}=-5.9$			
$x_{56}=-7.6$			

Continued on Next Page...

Table 3 - Continued

Species	Bond lengths	Bond angles	Rotational constants	Harmonic vibrational frequencies	Anharmonicity constants	G_{0}
					$x_{57}=-5.6$	
					$x_{58}=-9.9$	
					$x_{59}=-1.2$	
					$x_{66}=-9.0$	
					$x_{67}=-3.0$	
					$x_{68}=-12.9$	
					$x_{69}=-22.2$	
					$x_{77}=-12.6$	
					$x_{78}=2.4$	
					$x_{79}=-2.1$	
					$x_{88}=-60.3$	
					$x_{89}=-68.3$	
					$x_{99}=-55.5$	
H_{2}	$R(\mathrm{HH})=0.74186$		1822.287	$\omega_{1}=4403$	$x_{11}=-122.4$	8.3
O_{2}	$R(\mathrm{OO})=1.20577$		43.465	$\omega_{1}=1604$	$x_{11}=-11.3$	0.3

Continued on Next Page...

Table 3 - Continued

Species	Bond lengths		Bond angles	Rotational	Harmonic vibrational	Anharmonicity
		G_{0}				
constants	frequencies	constants				
F_{2}	$R(\mathrm{FF})=1.41112$		26.718	$\omega_{1}=925$	$x_{11}=-11.5$	-0.2
Cl_{2}	$R(\mathrm{ClCl})=1.99984$		7.227	$\omega_{1}=556$	$x_{11}=-2.6$	0.0
$\mathrm{~N}_{2}$	$R(\mathrm{NN})=1.09809$		59.862	$\omega_{1}=2368$	$x_{11}=-13.9$	0.1

${ }^{\text {a }} \mathrm{H}_{s}$ and H_{a} denote the H atom in the syn and anti position, respectively, relative to the carbonyl oxigen atom.

[^0]: *To whom correspondence should be addressed
 ${ }^{\dagger}$ University of Szeged
 ${ }^{*}$ Budapest University of Technology and Economics
 ${ }^{\text {II}}$ Budapest University of Technology and Economics

