
Supporting information

Ordered Mesoporous SnO₂ Based Photoanodes for High Performance Dye-Sensitized Solar Cells

Easwaramoorthi Ramasamy and Jinwoo Lee* Department of Chemical Engineering, School of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Korea Email: jinwoo03@postech.ac.kr

Synthesis of KIT-6 silica

Mesoporous KIT-6 silica was synthesized by following published procedures.¹ Nitrogen sorption isotherm in Figure.S1 indicates the mesoporous structure of the KIT-6 silica with pore size distribution centered at 8 nm. The Brunauer-Emmett-Teller (BET) surface area and pore volume of KIT-6 silica are 874 m²/g and 1.14 cm³/g, respectively.

Figure S1. N₂ sorption isotherm and the corresponding BJH pore size distribution (inset) of KIT-6 silica obtained from the adsorption isotherm.

Synthesis of ordered mesoporous SnO₂

Ordered mesoporous SnO_2 (here after, meso- SnO_2) was synthesized by using $SnCl_2.2H_2O$ as a tin precursor and KIT-6 silica as a hard template. Figure S2 schematically shows the possible scenario during the nanocasting process. The impregnation of $SnCl_2.2H_2O$ in both chiral channels resulted in meso- SnO_2 with 3 nm pores while filling in either one of two chiral channel leads to ~20 nm wide pores.^{2,3}

Figure S2. Schematic representation of ordered mesoporous SnO_2 with bimodal pores, replicated from KIT-6 silica template.

SEM and TEM images

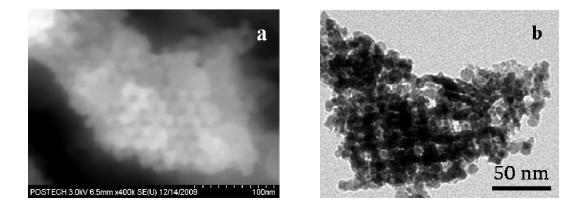


Figure S3. (a) SEM , and (b) TEM images of $meso-SnO_2$ powders. These two images show the large size pores which are generated by the impregnation of precursor in either one of two chiral channels.

Small angle X-ray scattering pattern

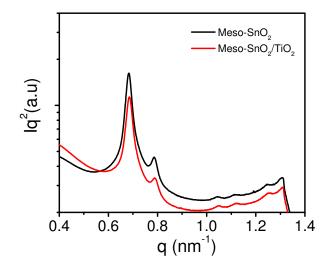


Figure S4. Small angle X-ray scattering (SAXS) pattern of meso-SnO₂ and meso-SnO₂/TiO₂ core-shell powders.

SEM cross section view of photoanodes

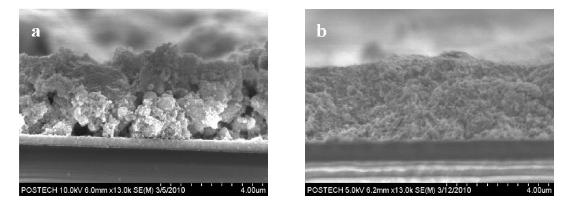
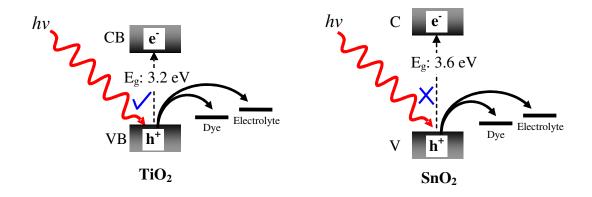



Figure S5. Cross-sectional SEM images of (a) $Meso-SnO_2$, and (b) $Nano-SnO_2$ photoanode.

Photoinduced degradation mechanisim in DSSCs

Figure S6. Schematic of photoinduced degradation mechanisim in DSSCs. Incident photon with sufficient energy liberates electron from the valence band of TiO_2 and thereby creating holes (h⁺). These holes are likely to i) oxidize the dye molecules and degrade the TiO_2 /dye interface, ii) irreversibly oxidize the Γ to I_3^- and leads to the unrecoverable loss of I_3^- ions in the redox electrolyte.^{4,5} These both outcomes are notably affect the overall stability of DSSCs. To prevent the photo-induced degradation in TiO_2

photoanode DSSCs, UV cut-off filter is typically placed on the front side of the device and accelerated aging tests are carried out.⁶ On the other hand, larger band gap of SnO_2 would create fewer oxidative holes in the valence band thereby minimize the dye degradation and improve the long-term stability of DSSCs.

References:

- 1. Kim, T. W.; Kleitz, F.; Paul, B.; Ryoo, R. J. Am. Chem. Soc. 2005, 127, 7601.
- 2. Shin, H. J.; Ryoo, R.; Liu, Z.; Terasaki, O. J. Am. Chem. Soc. 2001, 123, 1246.
- Jiao, F.; Hill, A. H.; Harrison, A.; Berko, A.; Chadwick, A.V.; Bruce, P. G. J. Am. Chem. Soc. 2008, 130, 5262.
- Hinsch, A.; Kroon, J. M.; Kern, R.; Uhlendorf, I.; Holzbock, J.; Meyer, A.; Ferber, J. Prog. Photovolt. Res. Appl. 2001, 9, 425.
- 5. Kay, A.; Grätzel, M. Chem. Mater. 2002, 14, 2930.
- Wang, P.; Zakeeruddin, S.M.; Moser, J.E.; Nazeeruddin, M.K.; Sekiguchi, T.; Grätzel, M. Nat. Mater. 2003, 2, 402.