An Alternative Strategy for Adjusting the Association Specificity of Hydrogen-bonded Duplexes

Penghui Zhang, ${ }^{\dagger}$ Hongzhu Chu, ${ }^{\dagger}$ Xianghui Li, ${ }^{\dagger}$ Wen Feng, ${ }^{\dagger}$ Pengchi Deng, ${ }^{\dagger}$ Lihua Yuan, ${ }^{* \dagger}$ and Bing Gong ${ }^{*}$

${ }^{1}$ College of Chemistry, Key Laboratory for Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Analytical \& Testing Center of Sichuan University, Sichuan University, Chengdu 610064, China;
${ }^{2}$ Department of Chemistry, The State University of New York, Buffalo, NY 14260

Supporting Information

Contents

1. General Information S3
2. Synthesis and Characterization of New Compounds S3
3. Self-assembly of $\mathbf{1}$ and $\mathbf{2}$ S13
4. Self-assembly of $\mathbf{1}$ S16
5. Self-assembly of $\mathbf{2}$ S18
6. Self-assembly of $\mathbf{3}$ S20
7. ${ }^{1} \mathrm{H}$ NMR titration of $\mathbf{1} \cdot \mathbf{1}$ with $\mathbf{7}$ S23
8. ${ }^{1} \mathrm{H}$ NMR titration of $\mathbf{2 \cdot 2}$ with $\mathbf{7}$ S24
9. ${ }^{1} \mathrm{H}$ NMR titration of $\mathbf{1 / 2}$ with $\mathbf{7}$ S26
10. ${ }^{1} \mathrm{H}$ NMR titration of $\mathbf{3 . 3}$ with $\mathbf{7}$ S27
11. Self-assembly of $\mathbf{4}$ and $\mathbf{5}$ S27
12. Self-assembly of 4 S30
13. Self-assembly of $\mathbf{5}$ S32
14. Molecular Modeling of $\mathbf{1 / 2}$ S33
15. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{1 - 5}$ S37
16. References S42

1. General Information

The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ spectra were recorded on Bruker AVANCE AV II- $400 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right.$: $\left.400 \mathrm{MHz} ;{ }^{13} \mathrm{C}: 100 \mathrm{MHz}\right)$ and Bruker Avance AVANCE AV II- $600 \mathrm{MHz}\left({ }^{1} \mathrm{H}: 600\right.$ $\left.\mathrm{MHz} ;{ }^{13} \mathrm{C}: 150 \mathrm{MHz}\right)$. Chemical shifts are reported in δ values in ppm and coupling constants (J) are denoted in Hz. Multiplicities are denoted as follows: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{dd}=$ double doulet, and $\mathrm{m}=$ multiplet. High resolution mass (HRMS) data were obtained by WATERS Q-TOF Premier. Solvents for extraction and chromatography were reagent grade. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was distilled from CaH_{2} and THF was distilled from Na (s) prior to use. CDCl_{3} and DMSO-d d_{6} were from Cambridge Isotope Laboratories (CIL).

2. Synthesis and Characterization of New Compounds

13

$18+21$

Scheme S1. Synthetic route of compounds 1-5.

3,6-Dihydroxynaphthalene-2,7-dicarboxylic acid (9) ${ }^{1}$. A mixture of 2,7-dihydroxynaphthalene $\mathbf{8}(10.1 \mathrm{~g}, 62.9 \mathrm{mmol})$ and $\mathrm{KOH}(9.5 \mathrm{~g}, 158.4 \mathrm{mmol})$ in of $\mathrm{CH}_{3} \mathrm{OH}(100 \mathrm{~mL})$ was stirred for 4 h in pressure vessel at room temperature. Then 100 mL heat transfer oil was added and heated to $100^{\circ} \mathrm{C}$. After removal of $\mathrm{CH}_{3} \mathrm{OH}$ in vacuo, the pressure was increased to 6 MPa with $\mathrm{CO}_{2}(\mathrm{~g})$. The reaction was stirred for about 4 h at $310^{\circ} \mathrm{C}$. Then boiled water was added and the mixture was filtered quickly. The aqueous solution was acidified with 1 N HCl and filtered. The resulting brown solid was dissolved in acetone and filtered again. Then the filtrate was evaporated under reduced pressure to finally afford $9(2.6 \mathrm{~g}, 17 \%)$ as a yellow solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d d_{6}) 8.617 (s, 2H), 7.831 (s, 2H).

3,6-Bis((2-ethylhexyl)oxy)-7-(methoxycarbonyl)-2-naphthoic acid (10). A mixture of compound $9(2.0 \mathrm{~g}, 8.1 \mathrm{mmol})$, methanol $(300 \mathrm{~mL})$ and concentrated sulfuric acid $(10 \mathrm{~mL})$ was heated under reflux for 24 h . After cooling to room temperature, the solution was poured into ice water $(1000 \mathrm{~mL})$. The precipitate was filtered to give a yellow solid ($2.1 \mathrm{~g}, 95 \%$). A mixture of $\mathrm{K}_{2} \mathrm{CO}_{3}(3.3 \mathrm{~g}, 23.8 \mathrm{mmol})$ and the above
yellow solid ($1.9 \mathrm{~g}, 6.8 \mathrm{mmol}$) in DMF (50 mL) was stirred for 2 h at $80^{\circ} \mathrm{C}$. 3-(Bromomethyl)- heptane ($2.9 \mathrm{~g}, 14.9 \mathrm{mmol}$) was then added and the mixture was stirred for 6 h at $100^{\circ} \mathrm{C}$. The solvent was evaporated under reduced pressure and 1 N HCl was added until the $\mathrm{pH} \approx 4$. The mixture was extracted with ethyl acetate (3×100 mL) and dried over anhydrous sodium sulfate. After removal of the solvent, the residue was purified by column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{PE} 1: 3$, v/v) to give a yellow oil ($2.9 \mathrm{~g}, 85 \%$). Hydrolysis in the presence of NaOH at room temperature afforded $\mathbf{1 0}$ as a yellow oil ($1.8 \mathrm{~g}, 56 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.64(\mathrm{~s}, 1 \mathrm{H})$, $8.23(\mathrm{~s}, 1 \mathrm{H}), 7.10(\mathrm{~s}, 1 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 4.14(\mathrm{t}, J=5.26 \mathrm{~Hz}, 2 \mathrm{H}), 3.91(\mathrm{t}, J=9.62 \mathrm{~Hz}$, 2 H) ${ }^{13}{ }^{13} \mathrm{CNR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.03,10.09,12.98,13.06,21.87,22.02,22.96$, $27.92,28.02,28.67,29.45,29.53,38.14,51.02,70.09,71.44,104.81,105.28,115.29$, $120.86,121.15,133.18,135.96,138.93,154.95,157.18,164.29,165.38$.

7-((2-Ethylhexyl)carbamoyl)-3,6-bis((2-ethylhexyl)oxy)-2-naphthoic acid (11). A

 solution of compound 10 ($125.1 \mathrm{mg}, 0.26 \mathrm{mmol}$), N -(3-dimethylaminopropyl)-N'-ethyl-carbodiimide (EDCI) ($59.8 \mathrm{mg}, 0.31 \mathrm{mmol}$) and 1-hydroxy benzotriazole (HOBt) ($44.2 \mathrm{mg}, 0.33 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL}$) was stirred at room temperature for 2 h . 2-Ethylhexan-1-amine ($40.3 \mathrm{mg}, 0.31 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added and stirred in the dark for 24 h . After removal of the solvent under reduced pressure, the residue was purified by column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EA} 20: 1$, v/v) to provide a yellow oil. Hydrolysis with $1 \mathrm{~N} \mathrm{NaOH}(9 \mathrm{~mL})$ in methanol (15 mL) for 6 h afforded $\mathbf{1 1}$ ($108.2 \mathrm{mg}, 78 \%$) as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.91$ (s, $1 \mathrm{H}), 8.83(\mathrm{~s}, 1 \mathrm{H}), 8.79(\mathrm{~s}, 1 \mathrm{H}), 7.88(\mathrm{t}, J=5.62 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~s}, 1 \mathrm{H}), 7.14(\mathrm{~s}, 1 \mathrm{H})$, $4.21(\mathrm{~d}, J=9.22 \mathrm{~Hz}, 2 \mathrm{H}), 4.13(\mathrm{dd}, J=2.06 \mathrm{~Hz}, 2 \mathrm{H}), 3.45(\mathrm{~m}, 2 \mathrm{H}), 1.91(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 10.79,10.96,11.04,13.99,14.05,14.09,22.89,28.93$, 39.16, 39.59, 43.15, 71.72, 72.41, 105.91, 106.14, 111.55, 116.85, 122.36, 129.86, $135.46,137.26,139.33,155.88,157.29,160.31,164.65,165.35$.acid (12). A mixture of $\operatorname{EDCI}(53.7 \mathrm{mg}, 0.28 \mathrm{mmol})$, $\mathrm{HOBt}(37.8 \mathrm{mg}, 0.28 \mathrm{mmol})$ and compound $11(81.0 \mathrm{mg}, 0.14 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was stirred under N_{2} atmosphere for 2 h . Glycine ethyl ester hydrochloride ($29.3 \mathrm{mg}, 0.21 \mathrm{mmol}$) and triethylamine ($21.3 \mathrm{mg}, 0.21 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added. The above mixture was stirred for 24 h . Purification by column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EA} 30: 1, \mathrm{v} / \mathrm{v}$) provided a yellowish oil, which was subjected to hydrolysis with $1 \mathrm{~N} \mathrm{NaOH}(6 \mathrm{~mL})$ in methanol $(15 \mathrm{~mL})$ for 6 h to afford $\mathbf{1 2}(76.8 \mathrm{mg}, 82 \%)$ as a white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.75(\mathrm{~s}, 2 \mathrm{H}), 8.49(\mathrm{~s}, 1 \mathrm{H}), 7.93(\mathrm{t}, J=6.12$ $\mathrm{Hz}, 1 \mathrm{H}), 7.04(\mathrm{~s}, 2 \mathrm{H}), 4.97(\mathrm{~s}, 2 \mathrm{H}), 4.27(\mathrm{~m}, 4 \mathrm{H}), 3.37(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 9.78,9.89,9.94,21.68,22.03,23.05,23.27,23.72,27.89,27.96,28.24$, $28.69,29.55,29.65,30.14,30.91,38.02,38.36,38.56,42.19,70.55,70.89,104.65$, $118.40,119.52,120.12,121.83,134.45,137.70,155.57,164.26$.

3,6-Bis((2-ethylhexyl)oxy)naphthalene-2,7-dicarboxylic acid (13). 1) Compound $\mathbf{1 0}(1.2 \mathrm{~g}, 2.5 \mathrm{mmol})$ was dissolved in methanol (30 mL), to which 2.0 N solution of $\mathrm{NaOH}(8.0 \mathrm{mmol})$ was added. The mixture was heated under reflux for 4 h . Methanol was removed in vacuo. The aqueous layer was acidified by addition of concentrated HCl , which was then poured into ethyl acetate $(100 \mathrm{~mL})$. The organic layer was washed with distilled $\mathrm{H}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$, brine $(3 \times 50 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under reduced pressure to afford $\mathbf{1 3}(1.2 \mathrm{~g}, 99.5 \%)$ as a white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.83(\mathrm{~s}, 2 \mathrm{H}), 7.22(\mathrm{~s}, 2 \mathrm{H}), 4.25(\mathrm{~d}, J=5.53 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.04,14.00,22.89,28.92,30.50,39.13,72.61,106.42$, $117.69,122.79,137.44,140.35,156.79,165.29$.

2-(Isopentyloxy)ethyl-3,5-dinitrobenzoate (14). To a solution of 3,5-dinitrobenzoic $\operatorname{acid}(10.0 \mathrm{~g}, 47.1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$ was added oxalyl dichloride $(9.1 \mathrm{~g}, 51.9$ mmol) and a drop of DMF as the initiator. The suspension was stirred at room temperature for 2 h and then heated under reflux for 0.5 h . The solvent was evaporated under reduced pressure to give a faint-yellow solid, which was then
dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (100 mL) and added slowly to a solution of 2-(isopentyloxy) ethanol ($5.9 \mathrm{~g}, 44.8 \mathrm{mmol}$) and triethylamine ($4.8 \mathrm{~g}, 47.1 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$. After 2 h , the solvent was evaporated, and the residue was dissolved in ethyl acetate $(100 \mathrm{ml})$. The organic solution was washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 60 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of solvent gave the crude product $\mathbf{1 4}(13.6 \mathrm{~g}, 95 \%)$ as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.24(\mathrm{~s}, 1 \mathrm{H}), 9.20(\mathrm{~s}, 2 \mathrm{H}), 4.60(\mathrm{t}, J=1.23 \mathrm{~Hz}, 2 \mathrm{H}), 3.81$ $(\mathrm{t}, J=1.23 \mathrm{~Hz}, 2 \mathrm{H}), 3.56(\mathrm{t}, J=6.45 \mathrm{~Hz}, 2 \mathrm{H}), 1.72(\mathrm{~m}, 1 \mathrm{H}), 1.51(\mathrm{dd}, J=6.82 \mathrm{~Hz}$, $2 \mathrm{H}), 0.90(\mathrm{~d}, J=6.47 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 22.46,25.03,38.23$, $65.83,68.08,69.78,122.31,129.41,133.80,148.57,162.48$.

2-(Isopentyloxy)ethyl-3-amino-5-nitrobenzoate (15). A mixture of compound 14 $(0.5 \mathrm{~g}, 1.9 \mathrm{mmol})$ and powder $\mathrm{Fe}(0.5 \mathrm{~g}, 9.6 \mathrm{mmol})$ in $\mathrm{AcOH}(30 \mathrm{~mL})$ was stirred in ice bath for 2 h . After removal of the Fe , the filtrate was concentrated in vacuo and then $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added. The organic layer was extracted with aqueous saturated sodium bicarbonate ($3 \times 60 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under reduced pressure to give a solid. Further separation by chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EA}$ $4: 1, \mathrm{v} / \mathrm{v}$) afforded $15(0.3 \mathrm{~g}, 55 \%)$ as a yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $8.22(\mathrm{~s}, 1 \mathrm{H}), 7.65(\mathrm{~s}, 1 \mathrm{H}), 7.63(\mathrm{~s}, 1 \mathrm{H}), 4.49(\mathrm{t}, J=4.72 \mathrm{~Hz}, 2 \mathrm{H}), 4.15(\mathrm{~s}, 2 \mathrm{H}), 3.76(\mathrm{t}$, $J=4.86 \mathrm{~Hz}, 2 \mathrm{H}), 3.55(\mathrm{t}, J=6.58 \mathrm{~Hz}, 2 \mathrm{H}), 1.71(\mathrm{~m}, 1 \mathrm{H}), 1.50(\mathrm{dd}, J=6.72 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 22.57,25.07,38.30,64.85,68.39,69.90,112.46$, 113.59, 120.98, 132.25, 147.94, 149.15, 164.96.

2-(Isopentyloxy)ethyl-3-amino-5-(2-ethylhexanamido)benzoate (16). 2-Ethylhexanoyl chloride ($0.7 \mathrm{~g}, 4.0 \mathrm{mmol}$) was added to the solution of compound $15(1.0 \mathrm{~g}$, $3.4 \mathrm{mmol})$ and triethyl amine $(0.4 \mathrm{~g}, 4.1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$. The mixture was stirred under reflux for 12 h . Water was added and the mixture was stirred for about half an hour. Then the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under reduced pressure. The residue was purified by column chromatography (eluent: $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EA} 15: 1, \mathrm{v} / \mathrm{v}\right)$ to give a yellow solid, which was then reduced by Pd-C $(0.3 \mathrm{~g})$ to afford 16 as a yellow solid $(0.9 \mathrm{~g}, 70 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.70$ (s, $1 \mathrm{H}), 7.17(\mathrm{~s}, 1 \mathrm{H}), 7.14(\mathrm{~s}, 1 \mathrm{H}), 7.10(\mathrm{~s}, 1 \mathrm{H}), 4.43(\mathrm{t}, J=4.83 \mathrm{~Hz}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 2 \mathrm{H})$,
$3.74(\mathrm{t}, J=4.83 \mathrm{~Hz}, 2 \mathrm{H}), 3.53(\mathrm{t}, J=6.82 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.68,11.89,13.84,22.54,22.73,24.93,26.04,29.47,29.70,31.52,32.42,38.22$, 47.07, 49.94, 64.04, 68.43, 69.75, 131.03, 139.18, 147.48, 166.64, 175.42, 180.13.

2-(Isopentyloxy)ethyl3-(2-aminoacetamido)-5-(2-ethylhexanamido)benzoate (17). A solution of 2-(tert-butoxy-carbonylamino) acetic acid ($0.5 \mathrm{~g}, 2.8 \mathrm{mmol}$), EDCI (0.6 $\mathrm{g}, 3.1 \mathrm{mmol})$ and $\mathrm{HOBt}(0.4 \mathrm{~g}, 3.1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was stirred for 2 h at room temperature followed by addition of compound $\mathbf{1 6}(1.0 \mathrm{~g}, 2.6 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (20 mL). The mixture was stirred in the dark for 24 h . After removal of the solvent, the residue was purified by column chromatography (eluent: PE/EA 12:1, v/v) to give a yellow oil, which was subsequently stirred in the mixed solution of $\mathrm{CF}_{3} \mathrm{OOH}(5 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ for 3 h to give $\mathbf{1 7}(0.9 \mathrm{~g}, 78 \%)$ as a yellow solid. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.60(\mathrm{~s}, 1 \mathrm{H}), 8.29(\mathrm{~s}, 1 \mathrm{H}), 8.02(\mathrm{~s}, 1 \mathrm{H}), 7.92(\mathrm{~s}, 1 \mathrm{H}), 7.40(\mathrm{~s}, 1 \mathrm{H})$, $4.46(\mathrm{t}, J=4.83 \mathrm{~Hz}, 2 \mathrm{H}), 3.76(\mathrm{t}, J=4.83 \mathrm{~Hz}, 2 \mathrm{H}), 3.54(\mathrm{t}, J=6.82 \mathrm{~Hz}, 2 \mathrm{H}), 3.49(\mathrm{~s}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.95,12.90,21.56,21.75,23.97,25.01,28.70$, $31.35,37.28,44.05,48.77,63.29,67.42,68.81,114.74,115.08,115.90,129.96$, 137.24, 138.16, 165.11, 170.77, 174.58.

Naphthalene-2,7-diamine (18). A classic Bucherer synthesis was employed. A mixture of the naphthalene-2,7-diol $\mathbf{8}(1.0 \mathrm{~g}, 6.3 \mathrm{mmol})$ and $\mathrm{NaHSO}_{3}(1.9 \mathrm{~g}, 18.7$ $\mathrm{mmol})$ in cooled $\mathrm{NH}_{3} \cdot \mathrm{H}_{2} \mathrm{O}(200 \mathrm{~mL})$ was placed in the pressure reactor. The vessel was sealed and heated to $170^{\circ} \mathrm{C}$ and the mixture was stirred for 7 h . The solid was taken up in ethyl acetate and then extracted with 1 N HCl . The extracts was made basic with solid KOH . The resulting precipitate was filtered and vacuum dried to afford a tan solid ($0.8 \mathrm{~g}, 85 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43(\mathrm{~d}, J=8.43 \mathrm{~Hz}$, 2 H), 7.21 (s, 2H), 6.62 (dd, $J=7.24 \mathrm{~Hz}, 2 \mathrm{H}$), 3.69 (s, 4H); ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 106.91,114.87,122.69,129.09,136.65,144.64$.
\mathbf{N}-(7-aminonaphthalen-2-yl)acetamide (19). Acetyl chloride ($0.5 \mathrm{~g}, 6.3 \mathrm{mmol}$) was added to a mixture of compound $\mathbf{1 8}(1.0 \mathrm{~g}, 6.3 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(1.0 \mathrm{~g}, 9.5 \mathrm{mmol})$ and
$\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$ followed by stirring for 20 min at room temperature. After removal of the solvent, the residue was purified by column chromatography (eluent: $\mathrm{CHCl}_{3} / \mathrm{CH}_{3} \mathrm{OH} 50: 1, \mathrm{v} / \mathrm{v}$) to give $19(0.6 \mathrm{~g}, 45 \%)$ as a white solid. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.59(\mathrm{~s}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=8.11 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=8.20 \mathrm{~Hz}, 1 \mathrm{H}), 7.24$ (s, 1H), $7.17(\mathrm{dd}, J=8.20 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=2.59 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{dd}, J=8.20 \mathrm{~Hz}$, $1 \mathrm{H}), 3.86(\mathrm{~s}, 2 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}$) $\delta 24.38,107.49$, $114.05,116.16,117.83,124.98,128.85,129.23,136.83,138.20,147.61,168.91$.

5-((2-Ethylhexyl)carbamoyl)-2,4-bis((2-ethylhexyl)oxy)benzoic acid (20) $\mathbf{2}^{\mathbf{2}}$. Colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.36(\mathrm{~s}, 1 \mathrm{H}), 8.94(\mathrm{~s}, 1 \mathrm{H}), 7.44(\mathrm{~s}, 1 \mathrm{H}), 6.46$ $(\mathrm{s}, 1 \mathrm{H}), 4.08(\mathrm{~d}, J=4.99 \mathrm{~Hz}, 2 \mathrm{H}), 4.01(\mathrm{dd}, J=5.51 \mathrm{~Hz}, 2 \mathrm{H}), 3.33(\mathrm{~m}, 2 \mathrm{H}), 1.78(\mathrm{~m}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.96,22.57,25.88,26.24,26.77,28.96,29.16$, 29.20, 29.23,29.32, 29.66, 31.59, 31.71, 31.78, 39.93, 69.85, 70.66, 96.62, 111.21, 138.70, 160.59, 163.55, 164.06, 194.64.

2-(5-((2-Ethylhexyl)carbamoyl)-2,4-bis((2-ethylhexyl)oxy)benzamido)acetic acid (21). A mixture of $\operatorname{EDCI}(0.8 \mathrm{~g}, 4.2 \mathrm{mmol}), \mathrm{HOBt}(0.6 \mathrm{~g}, 4.3 \mathrm{mmol})$ and $20(1.1 \mathrm{~g}, 2.1$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was stirred under N_{2} atmosphere for 2 h . Glycine ethyl ester hydrochloride ($0.4 \mathrm{~g}, 2.4 \mathrm{mmol}$) and triethylamine ($0.3 \mathrm{~g}, 2.5 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(10 \mathrm{~mL})$ was added to the above solution followed by stirring for 24 h . After removing the solvent, the residue was purified by column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EA}$ $30: 1, \mathrm{v} / \mathrm{v}$) to give a colorless oil. Hydrolysis with $1 \mathrm{~N} \mathrm{NaOH}(5.0 \mathrm{mmol})$ in methanol (30 mL) for 6 h afforded $21(1.1 \mathrm{~g}, 86 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.97(\mathrm{~s}, 1 \mathrm{H}), 8.20(\mathrm{t}, J=4.82 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{t}, J=5.64 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~s}$, $1 \mathrm{H}), 4.29(\mathrm{~d}, J=4.82 \mathrm{~Hz}, 2 \mathrm{H}), 4.05(\mathrm{~d}, J=4.82 \mathrm{~Hz}, 2 \mathrm{H}), 3.40(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.74,10.76,10.83,10.99,13.99,14.04,22.96,23.01,23.80,23.95$, 24.22, 28.85, 28.88, 29.00, 30.35, 30.57, 31.08, 38.94, 39.40, 39.48, 42.24, 42.97, $71.79,72.21,96.26,114.23,114.58,136.99,160.57,160.75,164.82,164.92,172.14$.
\mathbf{N}^{1}-(2-((7-acetamidonaphthalen-2-yl)amino)-2-oxoethyl)- $\mathbf{N}^{\mathbf{3}}$-(2-ethylhexyl)-4,6-bis ((2-ethylhexyl)oxy)isophthalamide (1). A mixture of EDCI ($120.8 \mathrm{mg}, 0.6 \mathrm{mmol}$), HOBt ($89.4 \mathrm{mg}, 0.7 \mathrm{mmol}$) and compound $21(260.0 \mathrm{mg}, 0.4 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (25 mL) was stirred under N_{2} atmosphere for 2 h . Then compound 19 ($84.1 \mathrm{mg}, 0.4 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added to the above solution followed by stirring for 24 h at room temperature. After removal of the solvent, the residue was purified by column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH} 30: 1$, v/v) to give $\mathbf{1}(250.0 \mathrm{mg}, 77 \%)$ as a yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.41(\mathrm{~s}, 1 \mathrm{H}), 8.99(\mathrm{~s}, 1 \mathrm{H}), 8.52(\mathrm{~s}, 1 \mathrm{H})$, $8.46(\mathrm{t}, J=4.92 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{~s}, 1 \mathrm{H}), 7.54(\mathrm{t}, J=5.38 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~m}$, $4 \mathrm{H}), 6.41(\mathrm{~s}, 1 \mathrm{H}), 4.29(\mathrm{~d}, J=4.54 \mathrm{~Hz}, 2 \mathrm{H}), 3.97(\mathrm{~m}, 4 \mathrm{H}), 3.33(\mathrm{~s}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.82,10.83,10.99,11.05,14.00,14.06,14.09,14.13,22.70,23.02$, 23.05, 23.92, 23.98, 24.27, 24.48, 28.93, 28.95, 28.98, 29.06, 29.38, 29.71, 30.53, 30.60, 31.16, 31.94, 39.02, 39.45, 39.61, 42.97, 45.19, 71.84, 72.47, 96.39, 114.09, $115.21,116.11,116.60,119.29,127.65,127.98,128.16,134.06,136.09,136.25$, 136.78, 160.67, 160.73, 164.77,165.35, 167.39, 169.16; HRMS (ESI), m/z calcd for $\left[\mathrm{C}_{46} \mathrm{H}_{68} \mathrm{~N}_{4} \mathrm{O}_{6}+\mathrm{H}\right]^{+}$773.5217; found: 773.5227.

2-(Isopentyloxy)ethyl-3-(2-ethylhexanamido)-5-(2-(7-((2-ethylhexyl)carbamoyl)-

 3, 6-bis((2-ethylhexyl)oxy)-2-naphthamido)acetamido)benzoate (2). A mixture of EDCI ($37.4 \mathrm{mg}, 0.2 \mathrm{mmol}$), HOBt ($26.9 \mathrm{mg}, 0.2 \mathrm{mmol}$) and compound $11(75.6 \mathrm{mg}$, $0.1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was stirred under N_{2} atmosphere for 2 h . Then compound $\mathbf{1 7}(70.1 \mathrm{mg}, 0.2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added to the above solution, which was stirred for 24 h at room temperature. After removal of the solvent, the residue was purified by column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH} 40: 1$, v/v) to give $2(114.8 \mathrm{mg}, 87 \%)$ as a white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.02(\mathrm{~s}, 1 \mathrm{H})$, $8.82(\mathrm{~s}, 1 \mathrm{H}), 8.80(\mathrm{~s}, 1 \mathrm{H}), 8.77(\mathrm{t}, J=5.01 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{~s}, 1 \mathrm{H}), 8.04(\mathrm{~s}, 1 \mathrm{H}), 7.96$ (s, $1 \mathrm{H}), 7.94(\mathrm{t}, J=5.76 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~s}, 1 \mathrm{H}), 7.15(\mathrm{~s}, 1 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H}), 4.44(\mathrm{t}, J=5.20$ $\mathrm{Hz}, 2 \mathrm{H}), 4.38(\mathrm{~d}, J=4.44 \mathrm{~Hz}, 2 \mathrm{H}), 4.14(\mathrm{~m}, 4 \mathrm{H}), 3.73(\mathrm{t}, J=4.59 \mathrm{~Hz}, 2 \mathrm{H}), 3.52(\mathrm{t}, J$ $=6.58 \mathrm{~Hz}, 2 \mathrm{H}), 3.46(\mathrm{~d}, J=4.59 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.79$,$10.81,10.94,10.98,11.98,13.86,14.00,14.04,22.58,22.73,23.02,23.04,24.09$, $24.34,26.04,28.94,28.97,29.75,30.69,32.39,38.40,39.11,39.41,39.65,43.19$, 45.43, 50.33, 64.29, 68.48, 69.89, 71.66, 72.16, 105.73, 105.83, 116.36, 117.09, 117.36, 120.35, 121.68, 122.84, 131.52, 135.56, 138.56, 138.75, 156.47, 156.71, 165.03, 165.96, 167.55, 174.73; HRMS (ESI), m/z calcd for $\left[\mathrm{C}_{60} \mathrm{H}_{94} \mathrm{~N}_{4} \mathrm{O}_{9}+\mathrm{H}\right]^{+}$ 1015.7099; found: 1015.7025.
\mathbf{N}^{2}-(2-((7-acetamidonaphthalen-2-yl)amino)-2-oxoethyl)- \mathbf{N}^{7}-(2-ethylhexyl)-3,6-bis ((2-ethylhexyl)oxy)naphthalene-2,7-dicarboxamide (3). The mixture of EDCI (46.0 $\mathrm{mg}, 0.3 \mathrm{mmol})$, $\mathrm{HOBt}(32.4 \mathrm{mg}, 0.3 \mathrm{mmol})$ and compound $12(77.0 \mathrm{mg}, 0.1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was stirred under N_{2} atmosphere for 2 h . Then compound 19 (28.8 $\mathrm{mg}, 0.2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ was added to the above solution, which was stirred for 36 h at room temperature. After removal of the solvent, the residue was purified by column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH} 50: 1 / 30: 1, \mathrm{v} / \mathrm{v}$) to afford 3 (64.2 $\mathrm{mg}, 65 \%$) as a yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.95(\mathrm{~s}, 1 \mathrm{H}), 9.19(\mathrm{~s}, 1 \mathrm{H})$, $9.11(\mathrm{~s}, 1 \mathrm{H}), 9.01(\mathrm{~s}, 1 \mathrm{H}), 8.96(\mathrm{~s}, 1 \mathrm{H}), 8.17(\mathrm{~s}, 1 \mathrm{H}), 8.02(\mathrm{t}, J=5.19 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}$, $J=9.63 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~s}, 1 \mathrm{H}), 7.78(\mathrm{~s}, 2 \mathrm{H}), 7.76(\mathrm{~s}, 1 \mathrm{H}), 7.19(\mathrm{~s}, 2 \mathrm{H}), 4.71(\mathrm{~s}, 2 \mathrm{H})$, $4.17(\mathrm{~d}, J=6.39 \mathrm{~Hz}, 4 \mathrm{H}), 3.50(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.81,10.85$, 10.94, 14.02, 14.04, 14.07, 22.67, 22.96, 23.04, 23.10, 23.78, 23.94, 24.11, 24.36, $24.50,28.93,28.98,29.34,29.68,30.21,30.39,30.61,30.70,31.18,31.91,38.82$, $39.41,39.58,43.48,71.84,72.77,106.10,115.18,116.26,120.49,120.74,121.70$, $122.71,128.30,128.53,134.04,135.01,136.85,138.89,156.56,156.87,165.46$, 165.54, 166.80; HRMS (ESI), m/z calcd for $\left[\mathrm{C}_{50} \mathrm{H}_{70} \mathrm{~N}_{4} \mathrm{O}_{6}+\mathrm{H}\right]^{+}$823.5374; found: 823.5381.

Bis(2-(isopentyloxy)ethyl)-5,5'-((2,2'-((3,6-bis((2-ethylhexyl)oxy)naphthalene-2,7-dicarbonyl)bis(azanediyl))bis(acetyl))bis(azanediyl))bis(3-(2-ethylhexanamido)be -nzoate) (4). A mixture of EDCI ($155.3 \mathrm{mg}, 0.8 \mathrm{mmol}$), HOBt ($131.5 \mathrm{mg}, 1.0 \mathrm{mmol}$) and compound $\mathbf{1 3}(153.1 \mathrm{mg}, 0.3 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was stirred under N_{2}
atmosphere for 4 h . Then compound $\mathbf{1 7}(340.1 \mathrm{mg}, 0.7 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added to the above solution followed by stirring for 36 h at room temperature. After removal of the solvent, the residue was washed with ethyl acetate $(6 \times 10 \mathrm{~mL})$ giving $4(385.2 \mathrm{mg}, 89 \%)$ as a white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.28(\mathrm{~s}, 2 \mathrm{H}), 9.25$ (s, 2H), 8.86 ($\mathrm{s}, 2 \mathrm{H}$), 8.23 ($\mathrm{s}, 2 \mathrm{H}$), 8.09 ($\mathrm{s}, 2 \mathrm{H}), 7.97$ (s, 2H), 7.35 (s, 2H), 7.19 ($\mathrm{s}, 2 \mathrm{H}$), $4.55(\mathrm{~s}, 4 \mathrm{H}), 4.50(\mathrm{t}, J=4.33 \mathrm{~Hz}, 4 \mathrm{H}), 4.19(\mathrm{~d}, J=5.83 \mathrm{~Hz}, 4 \mathrm{H}), 3.79(\mathrm{t}, J=4.95 \mathrm{~Hz}$, $4 \mathrm{H}), 3.55(\mathrm{t}, J=7.17 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.80,10.92,14.02$, 22.58, 22.66, 23.03, 24.06, 24.31, 25.03, 28.87, 28.96, 29.33, 29.67, 30.60, 31.90, $38.41,38.95,39.40,39.64,43.17,45.38,64.21,68.48,69.87,71.66,72.22,105.72$, $117.44,120.65,121.58,122.84,131.59,135.27,138.69,156.53,156.63,165.04$, 165.82, 165.89, 167.47; HRMS (ESI), m/z calcd for $\left[\mathrm{C}_{76} \mathrm{H}_{114} \mathrm{~N}_{6} \mathrm{O}_{14}+\mathrm{H}\right]^{+}$1335.8471; found: 1335.8510 .
$\mathbf{N}^{1}, \mathbf{N}^{1}$-((naphthalene-2,7-diylbis(azanediyl))bis(2-oxoethane-2,1-diyl))bis(N3-(2-et -hylhexyl)-4,6-bis((2-ethylhexyl)oxy)isophthalamide) (5). The mixture of EDCI ($0.1 \mathrm{~g}, 0.7 \mathrm{mmol}$), HOBt ($0.1 \mathrm{~g}, 0.7 \mathrm{mmol}$) and compound $21(0.2 \mathrm{~g}, 0.3 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was stirred under N_{2} atmosphere for 2 h . Then compound $\mathbf{1 8}$ (17.8 $\mathrm{mg}, 0.1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ was added to the above solution, which was stirred for 24 h at room temperature and heated under reflux for 6 h . After removal of the solvent, the residue was purified by column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}$ $60: 1 / 40: 1, \mathrm{v} / \mathrm{v}$) to afford 5 ($134.6 \mathrm{mg}, 86 \%$) as a yellow solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 9.09(\mathrm{~s}, 2 \mathrm{H}), 8.46(\mathrm{t}, J=5.62 \mathrm{~Hz}, 2 \mathrm{H}), 8.14(\mathrm{~s}, 2 \mathrm{H}), 7.68(\mathrm{~d}, J=8.86 \mathrm{~Hz}$, $2 \mathrm{H}), 7.58(\mathrm{t}, J=5.62 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{~d}, J=8.86 \mathrm{~Hz}, 2 \mathrm{H}), 6.51(\mathrm{~s}, 2 \mathrm{H}), 4.35(\mathrm{~d}, J=$ $5.24 \mathrm{~Hz}, 4 \mathrm{H}), 4.09(\mathrm{~d}, J=5.62 \mathrm{~Hz}, 4 \mathrm{H}), 3.41(\mathrm{~d}, J=5.62 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(100$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.84,11.01,11.04,14.05,14.09,23.01,23.05,23.97,24.28,28.95$, 29.04, 29.69, 30.60, 31.16, 39.02, 30.43, 39.62, 42.88, 45.34, 71.78, 72.45, 96.40, $114.20,115.19,116.26,119.14,127.69,128.29,134.31,136.05,136.91,160.60$, 160.66, 164.56, 165.30, 167.37; HRMS (ESI), m/z calcd for $\left[\mathrm{C}_{78} \mathrm{H}_{122} \mathrm{~N}_{6} \mathrm{O}_{10}+\mathrm{H}\right]^{+}$ 1303.9301; found: 1303.9319 .

3. Self-assembly of 1 and 2

Figure S1. Representation of molecular duplex 1-2.

Figure S2. Stacked partial ${ }^{1}$ H NMR spectra of compound $\mathbf{1}(1.8 \mathrm{mM})$ when titrated with 2, from 0 equivalent to 1.8 equivalents in CDCl_{3} at 298 K .

Nonlinear regression analysis is according to the reference 3.

Figure S3. Determination of the binding constant of $\mathbf{1 \cdot 2}$ in CDCl_{3} at 298 K . Fitting result based on $\mathbf{1}-\mathrm{H}^{\mathrm{a}}$.

Figure S4. Determination of the binding constant of $\mathbf{1 . 2}$ in CDCl_{3} at 298K. Fitting result based on $\mathbf{1}-\mathrm{H}^{\mathrm{b}}$.

Figure S5. Partial NOESY spectrum of $\mathbf{1 . 2}(10 \mathrm{mM})$ in $\mathrm{CDCl}_{3}(600 \mathrm{MHz}, 298 \mathrm{~K})$.

Figure S6. ESI-HRMS spectrum of $\mathbf{1 \cdot 2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{CN}(1: 3)$.

4. Self-assembly of 1

Figure S7. Representation of molecular duplex 1•1.

Figure S8. Stacked partial ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{1}$ at different concentrations in CDCl_{3} at 298 K .

Figure S9. Determination of the binding constant of $\mathbf{1 - 1}$ in CDCl_{3} at 298 K . Fitting result based on H^{a}.

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{dimer}}=33.302 \pm 3.17859 \mathrm{M}^{-1} \\
& \mathrm{R}^{2}=0.99901
\end{aligned}
$$

Figure S10. Determination of the binding constant of $\mathbf{1 \cdot 1}$ in CDCl_{3} at 298 K . Fitting result based on H^{b}.

5. Self-assembly of 2

Figure S11. Representation of molecular duplex $\mathbf{2 \cdot 2}$

Figure S12. Stacked partial ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{2}$ at different concentrations in CDCl_{3} at 298 K .

Figure S13. Determination of the binding constant of $\mathbf{2 . 2}$ in CDCl_{3} at 298K. Fitting result based on H^{a}.

Figure S14. Determination of the binding constant of $\mathbf{2 \cdot 2}$ in CDCl_{3} at 298 K . Fitting result based on H^{b}.

6. Self-assembly of 3

Figure S15. Representation of molecular duplex 3.3.

Figure S16. Stacked partial ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{3}$ at different concentrations in CDCl_{3} at 298 K .

Figure S17. Determination of the binding constant of $\mathbf{3 \cdot 3}$ in CDCl_{3} at 298 K . Fitting result based on H^{a}.

Figure S18. Determination of the binding constant of $\mathbf{3} \cdot \mathbf{3}$ in CDCl_{3} at 298 K . Fitting
result based on H^{b}.

Figure S19. Partial NOESY spectrum of $\mathbf{3}(10 \mathrm{mM})$ in $\mathrm{CDCl}_{3}(600 \mathrm{MHz}, 298 \mathrm{~K})$.

Figure S20. ESI-MS spectrum of $\mathbf{3 \cdot 3}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}(3: 1)$.

7. ${ }^{1} \mathrm{H}$ NMR titration of $\mathbf{1} \cdot 1$ with 7

Figure S21. Representation of molecular duplex 1•1 and $\mathbf{7 .}$

Figure S22. Stacked partial ${ }^{1} \mathrm{H}$ NMR spectra of heterodimer $\mathbf{1 \cdot 1}(2.0 \mathrm{mM})$ when titrated with 7 , from 0 equivalent to 1.5 equivalents in CDCl_{3} at 298 K .

Figure S23. Determination of the binding constant of $\mathbf{1 . 7}$ in CDCl_{3} at 298 K . Fitting result based on $\mathbf{1}-\mathrm{H}^{\mathrm{a}}$.

8. ${ }^{1} \mathbf{H}$ NMR titration of $\mathbf{2 \cdot 2}$ with 7

Figure S24. Representation of molecular duplex 2-2 and 7.

Figure S25. Stacked partial ${ }^{1} \mathrm{H}$ NMR spectra of heterodimer $2 \cdot 2(2.0 \mathrm{mM})$ when titrated with 7, from 0 equivalent to 1.5 equivalents in CDCl_{3} at 298 K .

Figure S26. Determination of the binding constant of $\mathbf{2 . 7}$ in CDCl_{3} at 298K. Fitting result based on $\mathbf{2}-\mathrm{H}^{\mathrm{a}}$.

9. ${ }^{1} \mathbf{H}$ NMR titration of $\mathbf{1 \cdot 2}$ with 7

Figure S27. Representation of molecular duplex 1-2 and 7.

Figure S28. Stacked partial ${ }^{1} \mathrm{H}$ NMR spectra of heterodimer $\mathbf{1 . 2}(2.0 \mathrm{mM})$ when titrated with 7, from 0 equivalent to 2.0 equivalents in CDCl_{3} at 298 K .

10. ${ }^{1} \mathrm{H}$ NMR titration of $\mathbf{3 \cdot 3}$ with 7

Figure S29. Representation of molecular duplex $3 \cdot 3$ and 7.

Figure S30. Stacked partial ${ }^{1} \mathrm{H}$ NMR spectra of homodimer $\mathbf{3 . 3}(2.0 \mathrm{mM})$ when titrated with 7, from 0 equivalent to 2.0 equivalents in CDCl_{3} at 298 K .

11. Self-assembly of 4 and 5

Figure S31. Representation of molecular duplex $\mathbf{4 \cdot 5}$.

Figure S32. Stacked partial ${ }^{1} \mathrm{H}$ NMR spectra of compound $5(1.0 \mathrm{mM})$ when titrated with $\mathbf{4}$, from 0 equivalent to 2.0 equivalents in $\mathrm{CDCl}_{3}-5 \% \mathrm{DMSO}-\mathrm{d}_{6}$ at 298 K .

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{a}}=241897.68609 \pm 77033.2033 \mathrm{M}^{-1} \\
& \mathrm{R}^{2}=0.99958
\end{aligned}
$$

Figure S33. Determination of the binding constant of $\mathbf{4 . 5}$ in $\mathrm{CDCl}_{3}-5 \% \mathrm{DMSO}_{6}$ d d_{6} at 298 K . Fitting result based on $5-\mathrm{H}^{\mathrm{a}}$.

Figure S34. Partial NOESY spectra of $\mathbf{4 \cdot 5}(5 \mathrm{mM})$ in $\mathrm{CDCl}_{3}(600 \mathrm{MHz}, 298 \mathrm{~K})$.

Figure S35. ESI-HRMS spectrum of $\mathbf{4 . 5}$ in $\mathrm{CHCl}_{3} / \mathrm{CH}_{3} \mathrm{OH}$ (1:1).

12. Self-assembly of 4

Figure S36. Representation of molecular duplex 4•4.

Figure S37. Stacked partial ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{4}$ at different concentrations in CDCl_{3} at 298 K .

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{dimer}}=41.64557 \pm 2.95682 \mathrm{M}^{-1} \\
& \mathrm{R}^{2}=0.99962
\end{aligned}
$$

Figure S38. Determination of the binding constant of $\mathbf{4 \cdot 4}$ in CDCl_{3} at 298 K . Fitting result based on H^{a}.

13. Self-assembly of 5

Figure S39. Representation of molecular duplex 5.5.

Figure S40. Stacked partial ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{5}$ at different concentrations in CDCl_{3} at 298 K .

$$
\begin{aligned}
& \mathrm{K}_{\text {dimer }}=51.99114 \pm 4.29852 \mathrm{M}^{-1} \\
& \mathrm{R}^{2}=0.99921
\end{aligned}
$$

Figure S41. Determination of the binding constant of $\mathbf{5 . 5}$ in CDCl_{3} at 298 K . Fitting result based on H^{a}.

14. Molecular Modeling of $\mathbf{1 . 2}$

Figure 42. Optimized structure of heterodimer $\mathbf{1 - 2}$ obtained by DFT calculation at the

B3LYP/6-31G** level. ${ }^{4}$ Substituents replaced with methyl groups for simplicity.
Table S1. Atomic Coordinates for the Optimized Structure of the heterodimer 1-2.

Center Number	Atomic Number	Coordinates (Angstroms)		
		X	Y	Z
1	6	2.975410	-3.361096	-0.085668
2	6	3.043473	-4.783951	-0.140124
3	6	4.266637	-5.405916	-0.222193
4	6	5.480885	-4.672987	-0.252876
5	6	5.411590	-3.244021	-0.207008
6	6	4.142114	-2.617427	-0.129951
7	6	6.756879	-5.290930	-0.311902
8	6	7.914183	-4.546405	-0.320853
9	6	7.850612	-3.126151	-0.302601
10	6	6.618566	-2.500844	-0.247493
11	7	9.020105	-2.322108	-0.262240
12	7	1.751711	-2.666890	0.043474
13	6	10.087921	-2.299641	-1.115153
14	6	10.215477	-3.380797	-2.171822
15	8	10.943955	-1.411929	-1.027399
16	6	-4.335477	-2.826136	0.350036
17	6	-4.604074	-3.977156	-0.431335
18	6	-5.913077	-4.458728	-0.533848
19	6	-6.955225	-3.851727	0.171839
20	6	-6.696873	-2.765252	1.025353
21	6	-5.395868	-2.258717	1.057927
22	8	-8.216591	-4.364147	0.020124
23	8	-3.554963	-4.552107	-1.078449
24	6	-7.731565	-2.048143	1.842437
25	6	-3.019197	-2.108091	0.453425
26	8	-7.792033	-0.811153	1.833616
27	7	-8.570016	-2.766422	2.631182
28	8	-2.985967	-0.938612	0.881207
29	7	-1.893549	-2.752189	0.098320
30	6	-8.529274	-4.180194	2.972369
31	6	-0.600072	-2.115068	0.177574
32	8	0.187946	-4.333472	-0.307411
33	6	0.485948	-3.168384	-0.053818
34	6	2.839583	3.801061	0.579758
35	6	2.727204	2.370016	0.683590
36	6	3.895803	1.642409	0.766111
37	6	5.173302	2.239118	0.722657

38	6	5.275985	3.657109	0.609508
39	6	4.078583	4.415974	0.549444
40	6	6.356315	1.468698	0.748766
41	6	7.608325	2.030316	0.619768
42	6	7.708413	3.458692	0.577157
43	6	6.567562	4.245262	0.566494
44	8	8.975060	3.955166	0.580471
45	8	1.668494	4.494856	0.506742
46	6	8.743916	1.041128	0.573852
47	6	1.454736	1.561877	0.687288
48	7	9.739392	1.167318	-0.330779
49	8	8.685007	0.044991	1.317991
50	6	9.815319	2.060118	-1.475728
51	6	-4.789867	3.798273	-0.254213
52	6	-4.577160	2.443320	0.028310
53	6	-5.647367	1.542426	-0.053756
54	6	-6.930570	1.968727	-0.409436
55	6	-7.151818	3.324399	-0.675374
56	6	-6.077169	4.219804	-0.606257
57	7	-7.958627	0.996936	-0.428150
58	7	-3.326572	1.893874	0.365309
59	6	-8.897430	0.717857	-1.390822
60	6	-9.004145	1.631667	-2.598878
61	1	-7.911796	0.290922	0.313451
62	8	-9.634616	-0.259545	-1.271844
63	6	-2.111361	2.510142	0.439161
64	6	-0.974868	1.515911	0.696356
65	8	-1.899484	3.711441	0.303457
66	1	-3.319964	0.884813	0.525370
67	6	-6.259977	5.674934	-0.884507
68	8	-5.379123	6.509436	-0.823262
69	8	-7.536994	5.981329	-1.222913
70	7	0.280552	2.219650	0.739727
71	8	1.498711	0.317157	0.653577
72	1	1.821322	-1.666458	0.234412
73	1	8.986214	-1.517040	0.380320
74	6	9.155180	5.364885	0.602068
75	6	1.685324	5.911178	0.360648
76	6	-7.776860	7.369213	-1.495508
77	6	-9.094060	-3.584743	-0.821631
78	6	-3.767774	-5.720117	-1.868465
79	1	2.126861	-5.354685	-0.119171
80	1	4.310538	-6.491400	-0.258798
81	1	4.089464	-1.532426	-0.107809

82	1	6.812106	-6.376321	-0.325447
83	1	8.880750	-5.037357	-0.314258
84	1	6.575508	-1.417253	-0.243548
85	1	10.838126	-2.986241	-2.975238
86	1	10.720674	-4.257263	-1.752469
87	1	9.250418	-3.705614	-2.566424
88	1	-6.161483	-5.300031	-1.167302
89	1	-5.185200	-1.387268	1.666366
90	1	-9.235966	-2.179731	3.117480
91	1	-1.910609	-3.709692	-0.235644
92	1	-8.738948	-4.295777	4.039565
93	1	-9.252408	-4.763571	2.395628
94	1	-7.534406	-4.581261	2.775802
95	1	-0.459769	-1.627507	1.147111
96	1	-0.493957	-1.323035	-0.574014
97	1	3.808875	0.566012	0.859655
98	1	4.151626	5.493818	0.468845
99	1	6.288677	0.393207	0.864391
100	1	6.642971	5.325518	0.530471
101	1	10.356421	0.350169	-0.358120
102	1	10.206253	1.492044	-2.324211
103	1	8.827260	2.440474	-1.743588
104	1	10.474411	2.913206	-1.288438
105	1	-3.981158	4.512423	-0.202670
106	1	-5.479553	0.489942	0.147396
107	1	-8.142605	3.689302	-0.907421
108	1	-9.468685	1.059506	-3.402541
109	1	-9.652376	2.484637	-2.372001
110	1	-8.037911	2.023879	-2.923670
111	1	-0.969285	0.768472	-0.102424
112	1	-1.165287	0.959098	1.621782
113	1	0.246307	3.232378	0.684609
114	1	10.232942	5.527248	0.632791
115	1	8.740937	5.837909	-0.296944
116	1	8.694209	5.811793	1.490869
117	1	0.638696	6.209072	0.302311
118	1	2.160138	6.392741	1.223172
119	1	2.205815	6.206174	-0.557522
120	1	-8.835777	7.442061	-1.743436
121	1	-7.545029	7.980373	-0.619672
122	1	-7.162317	7.710207	-2.332487
123	1	-10.074065	-4.058266	-0.750412
124	1	-9.163060	-2.539982	-0.504960
125	1	-8.747395	-3.618871	-1.861095

126	1	-2.783639	-6.002747	-2.241347
127	1	-4.180882	-6.536462	-1.265830
128	1	-4.434847	-5.510966	-2.712081

B3LYP/6-31+G** optimized Cartesian coordinates are listed. The total electronic energy (HF) was calculated to be -3505.4785968 hartree.

15. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR Spectra of 1-5

Figure S43. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1}$.

Figure S44. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of 2.

Figure S45. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of 3 .

Figure S46. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of 4.

Figure S47. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of 5 .

16. References

(1) Heinrich, M.; Wilhelm, L. US1896457, 1933-02-07.
(2) Zeng, H.; Ickes, H.; Flowers, R. A.; Gong, B. J. Org. Chem. 2001, 66, 3574.
(3) (a) Wilcox, C. S. In Frontiers in Supramolecular Organic Chemistry and Photochemistry; Schneider, H.-J., Durr, H., Eds.; VCH: New York, 1991. (b) Connors, K. A. Binding Constants; Wiley: New York, 1987. (c) Deans, R.; Cooke, G.; Rotello, V. M. J. Org. Chem. 1997, 62, 836. (d) Bisson, A. P.; Carver, F. J.; Eggleston, D. S.; Haltiwanger, R. C.; Hunter, C. A.; Livingstone, D. L.; McCabe, J. F.; Rotger, C.; Rowan, A. E. J. Am. Chem. Soc. 2000, 122, 8856.
(4) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.; Stratmann, J., R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Rega, N.; Salvador, P.; Dannenberg, J. J.; Malick, D. K.; Rabuck, A. D.; Raghavachari,
K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 03, Revision D.01, Gaussian, Inc., Wallingford, CT, 2004.

