Clean photodecomposition of 1-methyl-4-phenyl-1H-tetrazole-5(4H)-thiones to carbodiimides proceeds via a biradical

Olajide E. Alawode, Colette Robinson and Sundeep Rayat *
Department of Chemistry, Kansas State University, 213 CBC Building, Manhattan, KS 66506.
E-mail: sundeep@ksu.edu; Fax: 785-532-6666; Tel:785-532-6660

Supporting Information

Table of contents

Computational methods..S5
SCHEME S1. Resonance structures of 1b... 6

FIGURE S1. Ground state geometry of 1b..

FIGURE S2. Experimental absorption spectra of $\mathbf{1 b}$ in cyclohexane, THF and MeCN. The vertical excitations calculated at TDDFT/6-311+G* are shown as stick spectra...................S8

FIGURE S3. Molecular orbitals for B3LYP/6-311+G* optimized geometries of 1b in acetonitrileS9

TABLE S1. TDDFT/6-311+G* vertical excitation energies (E (λ) / eV (nm)), oscillator strengths (f), MO character and transition type of $\mathbf{1 b}$ in cyclohexane, THF and MeCN.S10

FIGURE S4. NMR spectra of 1a taken at 0 min (bottom) and at 15 min (top) of irradiation at
\qquad
FIGURE S5. NMR spectra of $\mathbf{1 b}$ taken at 0 min (bottom) and at 15 min (top) of irradiation at
\qquad

${ }^{1}$ H NMR spectrum of 8a.. 18
References..S19...........

Theoretical calculations on the electronic properties 1b

Ground state geometries

To gain insights into the electronic properties of $\mathbf{1 b}$, we performed DFT calculations employing 6-311+G*. The optimized ground state geometries of $\mathbf{1 b}$ at B3LYP/6-311+G* and their corresponding bond lengths are shown in Figure S 1 . The molecule display C_{1} symmetry. The dihedral angle between the tetrazolethione ring and the phenyl ring was 41.1°.

Frontier molecular orbitals

The electronic structure of $\mathbf{1 b}$ was analyzed in the presence of cyclohexane, THF and acetonitrile. The isodensity plots of the frontier molecular orbitals obtained at B3LYP/6$311+\mathrm{G}^{*}$ in acetonitrile are depicted in Figure S3 and they all exhibit π-type symmetry. The HOMO-3 for $\mathbf{1 b}$ exclusively localized over the aromatic ring while the HOMO-2 is delocalized over the entire molecule. The HOMO-1 is mainly localized on the tetrazolethione ring and has major contribution from the $\mathrm{C}_{5}-\mathrm{S} \pi$ bond (Refer to Scheme S 1 for the numbering of atoms). The HOMO is delocalized over the entire molecule showing bonding contributions from the aromatic ring.

The LUMOs exhibit a bonding character at the $\mathrm{N}_{1}-\mathrm{C}_{7}, \mathrm{C}_{8}-\mathrm{C}_{9}$ and $\mathrm{C}_{11}-\mathrm{C}_{12}$ bonds that supports the resonance structures $\mathbf{1 b}^{\prime}$ (Scheme S 1). The LUMO+1 is mainly localized over the tetrazolethione ring, while the LUMO+2 is a π^{*} orbital exclusively localized over the aromatic ring. $\mathrm{LUMO}+3$ is delocalized over the entire molecule.

Vertical excitation energies

In order to determine the nature of the electronic transitions that give rise to bands in the UV spectra of $\mathbf{1 b}$, time-dependent density functional calculations were carried out and thirty low lying singlet excited states were calculated. The vertical excitation energies, corresponding wavelengths, oscillator strengths, MO character and the transition type for the most intense transitions calculated at TDDFT/6-311+G* in cyclohexane, THF and MeCN are reported in Tables S1.

The analysis of TDDFT wave function indicates that λ_{1} experimentally observed at 4.27, 4.35 and 4.41 eV in cyclohexane (Table 1), THF and MeCN corresponds to a transition from HOMO-1 or HOMO to the LUMO and is calculated at 4.07, 4.11 and 4.14 eV , respectively (Table S 1). The band λ_{2} experimentally found at $4.66,4.69$ and 4.77 eV in cyclohexane, THF and MeCN is comprised of transitions from HOMO-1/HOMO to LUMO +1 . It is calculated at $4.67,4.72$ and 4.74 eV in the three solvents, respectively. λ_{3} is predicted at $5.35,5.31$ and 5.34 eV and observed at $5.58,5.55$ and 5.61 eV in cyclohexane, THF and acetonitrile. This band is formed of many excited states consisiting of transitions from several MOs of similar energy including HOMO-3 \rightarrow LUMO/LUMO+1, HOMO$2 \rightarrow$ LUMO +2 , HOMO-1/HOMO \rightarrow LUMO+3/LUMO+2 and HOMO \rightarrow LUMO+2. λ_{4} appears experimentally at 5.98 and 6.32 eV in cyclohexane and acetonitrile and is calculated at 6.01 and 6.05 eV , respectively, consisting of transitions from HOMO-3 \rightarrow LUMO+2.

Furthermore, the analyses of the MOs indicate that all bands observed in the UV spectra of $\mathbf{1 b}$ are $\pi \rightarrow \pi^{*}$ in nature. λ_{1} is accompained by intramolecular charge transfer (CT) from the heterocycle to the phenyl ring; note that both HOMO-1 and HOMO are
localized on the tetrazolethione while LUMO is delocalized over the entire molecule and has bonding characteristics at the $\mathrm{N}_{1}-\mathrm{C}_{7}, \mathrm{C}_{8}-\mathrm{C}_{9}$ and $\mathrm{C}_{11}-\mathrm{C}_{12}$ bonds. Similarly, λ_{2} and λ_{3} correspond to a $\pi \rightarrow \pi^{*}$ transition, the latter is also associated with some degree of charge transfer within the molecule. λ_{4} is a $\pi \rightarrow \pi^{*}$ transition localized on the phenyl ring. In accordance with the experimental observations, the calculated transitions show modest dependence on the polarity of the solvent.

Computational methods. All calculations were carried out with Gaussian 03 package of programs ${ }^{1}$. B3LYP functional was used which combines Becke's three parameter exchange functional with the correlation functional of Lee, Yang, and Parr ${ }^{2,3}$. All calculations employed $6-311+G^{*}$ basis sets. All the geometry optimizations were followed by vibrational analyses to ensure the positive sign of all eigenvalues of the Hessian matrix and to confirm that the stationary point found was a true minimum on the potential energy surface. Vertical excitation energies were computed using time dependent density functional theory (TDDFT) ${ }^{4}$ at optimized geometries. The solvent effects on the ground state geometries and excitation energies were considered using the integral equation formalism of the polarized continuum model (IEFPCM). The molecular orbitals were visualized using GaussView.

SCHEME S1. Resonance structures of 1b.

FIGURE S1. Ground state geometry of $\mathbf{1 b}$.

Cartesian coordinates for the optimized 1b (B3LYP/6-311+G*)
C,2.7084261747,0.054524719,0.0728786708
C,3.2060872633,-1.1916962722,-0.3286284605
C,2.3306898737,-2.241015987,-0.566478237
C,0.9532810233,-2.074649813,-0.4213876501
C, $0.4766497696,-0.8318480406,0.0166268295$
C, 1.3347961087,0.2387733809,0.2411529849
N,-0.9308958755,-0.6632921944,0.1615271864
O,3.6352630818,1.0279999844,0.2821998276
C,3.1898298213,2.3258175696,0.6592921786
N,-1.6687765377,-1.6967318373,0.6726634833
$\mathrm{N},-2.886014086,-1.3454126561,0.6940861909$
N,-2.9744057203,-0.0849121403,0.2057484351
C,-1.7472296493,0.4046195901,-0.162754797
S, $-1.425397186,1.8937824505,-0.8357681342$
C,-4.2499463786,0.5969204821,0.093996936
H,4.2767354024,-1.3101190913,-0.4498720593
H,2.7211518329,-3.2034115066,-0.8793064655
H,0.2662534901,-2.8891291571,-0.6096738797
H,0.9238434123,1.1880906058,0.547450015
H,4.087787637,2.9363180753,0.7304534832
H,2.6875326629,2.3068177926,1.6318614767
H,2.5176465909,2.7501492554,-0.0922915772
Н,-5.0121215937,-0.0727346438,0.4860314433
Н,-4.4529034651,0.8354348284,-0.9505398098
Н,-4.2249416527,1.5238966055,0.6675995882

FIGURE S2. Experimental absorption spectra of $\mathbf{1 b}$ in cyclohexane, tetrahydrofuran and acetonitrile. The vertical excitations calculated at TDDFT/6-311+G* are shown as stick spectra.

-S9-

FIGURE S3. Molecular orbitals for B3LYP/6-311+G* optimized geometries of $\mathbf{1 b}$ in acetonitrile.

Table S1. TDDFT/6-311+G* vertical excitation energies (E (λ)/eV (nm)), oscillator strengths (f), MO character and transition type of 1b in cyclohexane, tetrahydrofuran and acetonitrile.

	State	e $\mathrm{E}(\lambda)$	f	MO Character	Type
Cyclohexane					
λ_{1}	2	4.07 (304.8)	0.168	$\mathrm{H}-1 \rightarrow \mathrm{~L} ; \mathrm{H} \rightarrow \mathrm{L}$	$\pi \rightarrow \pi^{*} / \mathrm{CT}$
λ_{2}	5	4.67 (264.5)	0.097	$\mathrm{H} \rightarrow \mathrm{L}+1 ; \mathrm{H}-1 \rightarrow \mathrm{~L}+1$	$\pi \rightarrow \pi^{*}$
λ_{3}	8	5.18 (239.3)	0.058	$\mathrm{H}-1 \rightarrow \mathrm{~L}+2$	$\pi \rightarrow \pi^{*}$
	9	5.29 (234.3)	0.091	$\mathrm{H}-3 \rightarrow \mathrm{~L} ; \mathrm{H} \rightarrow \mathrm{L}+2 ; \mathrm{H}-1 \rightarrow \mathrm{~L}+2 ; \mathrm{H}-1 \rightarrow \mathrm{~L}+3$	$\pi \rightarrow \pi^{*} / \mathrm{CT}$
	12	5.58 (221.8)	0.098	$\mathrm{H}-3 \rightarrow \mathrm{~L}+1 ; \mathrm{H}-1 \rightarrow \mathrm{~L}+2 ; \mathrm{H}-2 \rightarrow \mathrm{~L}+2$	$\pi \rightarrow \pi^{*}$
λ_{4}	17	6.01 (206.2)	0.488	$\mathrm{H}-2 \rightarrow \mathrm{~L}+3$	$\pi \rightarrow \pi^{*}$
Tetrahydrofuran					
λ_{1}	2	4.11 (301.5)	0.175	$\mathrm{H}-1 \rightarrow \mathrm{~L} ; \mathrm{H} \rightarrow \mathrm{L}$	$\pi \rightarrow \pi^{*} / \mathrm{CT}$
λ_{2}	5	4.72 (262.7)	0.099	$\mathrm{H} \rightarrow \mathrm{L}+1 ; \mathrm{H}-1 \rightarrow \mathrm{~L}+1$	$\pi \rightarrow \pi^{*}$
λ_{3}	8	5.29 (234.4)	0.075	$\mathrm{H}-1 \rightarrow \mathrm{~L}+2 ; \mathrm{H}-1 \rightarrow \mathrm{~L}+3 ; \mathrm{H} \rightarrow \mathrm{L}+2$	$\pi \rightarrow \pi^{*}$
		5.33 (232.5)	0.079	$\mathrm{H}-3 \rightarrow \mathrm{~L} ; \mathrm{H}-1 \rightarrow \mathrm{~L}+2 ; \mathrm{H} \rightarrow \mathrm{L}+2$	$\pi \rightarrow \pi^{*} / \mathrm{CT}$
$\lambda_{4}{ }^{a}$	17	6.03 (206.0)	0.430	$\mathrm{H}-2 \rightarrow \mathrm{~L}+3$	$\pi \rightarrow \pi^{*}$

Acetonitrile

λ_{1}	2	$4.14(300.0)$	0.173	$\mathrm{H}-1 \rightarrow \mathrm{~L} ; \mathrm{H} \rightarrow \mathrm{L}$	$\pi \rightarrow \pi^{* /} \mathrm{CT}$
λ_{2}	5	$4.74(261.7)$	0.094	$\mathrm{H} \rightarrow \mathrm{L}+1 ; \mathrm{H}-1 \rightarrow \mathrm{~L}+1$	$\pi \rightarrow \pi^{*}$
λ_{3}	8	$5.33(232.6)$	0.093	$\mathrm{H}-1 \rightarrow \mathrm{~L}+2 ; \mathrm{H}-1 \rightarrow \mathrm{~L}+3 ; \mathrm{H} \rightarrow \mathrm{L}+2$	$\pi \rightarrow \pi^{*}$
	9	$5.36(231.2)$	0.057	$\mathrm{H}-3 \rightarrow \mathrm{~L} ; \mathrm{H}-1 \rightarrow \mathrm{~L}+2 ; \mathrm{H} \rightarrow \mathrm{L}+2$	$\pi \rightarrow \pi^{* / C T}$
λ_{4}	17	$6.05(205.0)$	0.395	$\mathrm{H}-2 \rightarrow \mathrm{~L}+3$	$\pi \rightarrow \pi^{*}$

FIGURE S4. NMR spectra of 1a taken at 0 min (bottom) and at 15 min (top) of irradiation at 254 nm

FIGURE S5. NMR spectra of $\mathbf{1 b}$ taken at 0 min (bottom) and at 15 min (top) of irradiation at 254 nm

Acquisition Time (sec)	2.0487	Comment	Std proton	Date	Jun 152009	Date Stamp	Jun 152009
File Name	C:IDATAIOLAIOLA-NMRISUNDEEP-NMRIMMPTT254AIHG254A-0-2MINS					Frequency (MHz)	399.75
Nucleus	1H	Number of Transients	32	Original Points Count	13103	Points Count	16384
Pulse Sequence	s2pul	Receiver Gain	56.00	Solvent ACETONITRILE-d3	ACETONITRILE-d3		
Spectrum Offset (Hz)	2391.0803	Sweep Width (Hz)	6395.91	Temperature (degree C) 25.000			

6395.91

Temperature (degree C) 25.000 \qquad

-S15-

-S16-

-S17-

9/29/2010 6:19:32 PM

-S18-

-S19-

References

1. Frisch, M. J. T., G. W.; Schlegel, H. B.; Scuseria, G. E.;; Robb, M. A. C., J. R.; Zakrzewski, V. G.; Montgomery, J. A.,; Jr.; Stratmann, R. E. B., J. C.; Dapprich, S.; Millam, J. M.;; Daniels, A. D. K., K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.;; Barone, V. C., M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo,; C.; Clifford, S. O., J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.;; Morokuma, K. M., D. K.; Rabuck, A. D.; Raghavachari, K.;; Foresman, J. B. C., J.; Ortiz, J. V.; Baboul, A. G.; Stefanov,; B. B.; Liu, G. L., A.; Piskorz, P.; Komaromi, I.; Gomperts, R.;; Martin, R. L. F., D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.;; Nanayakkara, A. C., M.; Gill, P. M. W.; Johnson, B.; Chen,; W.; Wong, M. W. A., J. L.; Gonzalez, C.; Head-Gordon, M.;; Replogle, E. S. P., J. A. Gaussian 03, Revision E.01, Gaussian Inc.: Pittsburg, PA, 2003.
2. Becke, A. D., Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, (7), 5648-52.
3. Lee, C.; Yang, W.; Parr, R. G., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B: Condens. Matter 1988, 37, (2), 785-9.
4. Casida, M. E., Time-dependent density functional response theory for molecules. Recent Adv. Comput. Chem. 1995, 1, 155-192.
