Total Syntheses of (+)-Epilupinine via An Intramolecular Nitrile Oxide-Alkene Cycloaddition

Deyong Su, Xinyan Wang,* Changwei Shao, Jimin Xu, Rui Zhu, Yuefei Hu* Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China wangxinyan@mail.tsinghua.edu.cn, yfh@mail.tsinghua.edu.cn,

Page 03-21: Materials and Methods.
Page 22-83: the ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra for compounds.

List of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra for compounds.

Page 22	${ }^{1} \mathrm{H}$ NMR of (R)-5•HCl	Page 23	${ }^{13} \mathrm{C}$ NMR of (R)-5•HCl
Page 24	${ }^{1} \mathrm{H}$ NMR of 11a	Page 25	${ }^{13} \mathrm{C}$ NMR of 11a
Page 26	${ }^{1} \mathrm{H}$ NMR of 12a	Page 27	${ }^{13} \mathrm{C}$ NMR of 12a
Page 28	${ }^{1} \mathrm{H}$ NMR of 12b	Page 29	${ }^{13} \mathrm{C}$ NMR of $\mathbf{1 2 b}$
Page 30	${ }^{1} \mathrm{H}$ NMR of 12c	Page 31	${ }^{13} \mathrm{C}$ NMR of 12c
Page 32	${ }^{1} \mathrm{H}$ NMR of 12d	Page 33	${ }^{13} \mathrm{C}$ NMR of 12d
Page 34	${ }^{1} \mathrm{H}$ NMR of 12e	Page 35	${ }^{13} \mathrm{C}$ NMR of 12e
Page 36	${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 2 f}$	Page 37	${ }^{13} \mathrm{C}$ NMR of $\mathbf{1 2 f}$
Page 38	${ }^{1} \mathrm{H}$ NMR of 12g	Page 39	${ }^{13} \mathrm{C}$ NMR of 12g
Page 40	${ }^{1} \mathrm{H}$ NMR of 12h	Page 41	${ }^{13} \mathrm{C}$ NMR of $\mathbf{1 2 h}$
Page 42	${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 2 i}$	Page 43	${ }^{13} \mathrm{C}$ NMR of 12i
Page 44	${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 2} \mathbf{j}$	Page 45	${ }^{13} \mathrm{C}$ NMR of $\mathbf{1 2 j}$
Page 46	${ }^{1} \mathrm{H}$ NMR of 12k	Page 47	${ }^{13} \mathrm{C}$ NMR of 12k
Page 48	${ }^{1} \mathrm{H}$ NMR of 13a	Page 49	${ }^{13} \mathrm{C}$ NMR of 13a
Page 50	${ }^{1} \mathrm{H}$ NMR of 13b	Page 51	${ }^{13} \mathrm{C}$ NMR of $\mathbf{1 3} \mathbf{b}$
Page 52	${ }^{1} \mathrm{H}$ NMR of 13c	Page 53	${ }^{13} \mathrm{C}$ NMR of 13c
Page 54	${ }^{1} \mathrm{H}$ NMR of 13d	Page 55	${ }^{13} \mathrm{C}$ NMR of 13d
Page 56	${ }^{1} \mathrm{H}$ NMR of 13e	Page 57	${ }^{13} \mathrm{C}$ NMR of 13e
Page 58	${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 3 f}$	Page 59	${ }^{13} \mathrm{C}$ NMR of $\mathbf{1 3 f}$
Page 60	${ }^{1} \mathrm{H}$ NMR of 13g	Page 61	${ }^{13} \mathrm{C}$ NMR of $\mathbf{1 3 g}$
Page 62	${ }^{1} \mathrm{H}$ NMR of 13h	Page 63	${ }^{13} \mathrm{C}$ NMR of $\mathbf{1 3} \mathrm{h}$
Page 64	${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 3 i}$	Page 65	${ }^{13} \mathrm{C}$ NMR of $\mathbf{1 3 i}$
Page 66	${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 3} \mathbf{j}$	Page 67	${ }^{13} \mathrm{C}$ NMR of $\mathbf{1 3} \mathbf{j}$
Page 68	${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 3 k}$	Page 69	${ }^{13} \mathrm{C}$ NMR of $\mathbf{1 3 k}$
Page 70	${ }^{1} \mathrm{H}$ NMR of 14a	Page 71	${ }^{13} \mathrm{C}$ NMR of 14a
Page 72	${ }^{1} \mathrm{H}$ NMR of 14b	Page 73	${ }^{13} \mathrm{C}$ NMR of $\mathbf{1 4 b}$
Page 74	${ }^{1} \mathrm{H}$ NMR of 14c	Page 75	${ }^{13} \mathrm{C}$ NMR of 14c
Page 76	${ }^{1} \mathrm{H}$ NMR of 14d	Page 77	${ }^{13} \mathrm{C}$ NMR of 14d
Page 78	${ }^{1} \mathrm{H}$ NMR of 15	Page 79	${ }^{13} \mathrm{C}$ NMR of 15
Page 80	${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 6}$	Page 81	${ }^{13} \mathrm{C}$ NMR of 16
Page 82	NMR of (+)-Epilupinine (2)	ge 83	MR of (+)-Epilupinine

Materials and Methods

General Method: All melting points were determined on a Yanaco melting point apparatus and are uncorrected. IR spectra were recorded on a Nicolet FT-IR 5DX spectrometer. The ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$ NMR (75 MHz) spectra were recorded on a JEOL JNM-ECA 300 spectrometer in CDCl_{3} with TMS as internal reference. The J values are given in Hz . MS were recorded on a VG-ZAB-MS spectrometer with 70 eV. Elementary analysis data were obtained on a Perkin-Elmer-241C apparatus.

The starting material 3^{18} and the intermediate $\mathbf{4}^{10 \mathrm{~b}}$ were prepared by the reference methods.

(R) $-5 \cdot \mathrm{HCl}$
Preparation of (\boldsymbol{R})-2-vinylpiperidine Hydrochloride $[(\boldsymbol{R})-5 \cdot \mathbf{H C l}]$: To a cold solution (ice-water bath) of compound $4(1.02 \mathrm{~g}, 3 \mathrm{mmol})$ in dry THF (20 mL) was added $\mathrm{LiAlH}_{4}(170 \mathrm{mg}, 4.5 \mathrm{mmol})$ under N_{2}. After the reaction was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min (monitored by TLC), a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(30 \mathrm{~mL})$ was added to quench the reaction. Then the resultant mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{x}$ 10 mL). The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}$ and brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$.

After removal of the solvent, the residue was diluted by a solution of THF (4 mL), $\mathrm{CH}_{3} \mathrm{OH}(4 \mathrm{~mL})$ and aq. $\mathrm{NaOH}(6.0 \mathrm{M}, 2 \mathrm{~mL})$. The resultant mixture was stirred at 60
${ }^{\circ} \mathrm{C}$ for 6 h and then was cooled to room temperature. It was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 x 10 mL) and the combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After the solid was filtered off, the filtrate was immediately treated with saturated solution of HCl in $\mathrm{MeOH}(6 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ for 30 min . Then, the solvent was removed in vacuum and the residue was recrystallized from $\mathrm{MeOH}-\mathrm{Et}_{2} \mathrm{O}$ to give product (\boldsymbol{R})-5•HCl as a white crystal ($410 \mathrm{mg}, 93 \%$). It had $\mathrm{mp} 199-200{ }^{\circ} \mathrm{C}$ $\left(\mathrm{MeOH}-\mathrm{Et}_{2} \mathrm{O}\right) .[\alpha]_{\mathrm{D}}{ }^{20}=+5.5$ (c 0.2, CHCl_{3}); IR: v3440, 2983, 1252, $1013 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR: $\delta 9.53-9.40(\mathrm{~m}, 2 \mathrm{H}), 6.13-6.02(\mathrm{~m}, 1 \mathrm{H}), 5.56-5.37(\mathrm{~m}, 2 \mathrm{H}), 3.60-3.43(\mathrm{~m}, 2 \mathrm{H})$, 2.95-2.88 (m, 1H), 2.04-1.82 (m, 5H), 1.55-1.52 (m, 1H); ${ }^{13} \mathrm{C}$ NMR: $\delta 133.3,120.5$, 58.1, 44.2, 28.1, 21.8, 21.5; MS m/z (\%): 111 (${ }^{+}-\mathrm{HCl}, 1.71$), 84 (100). Anal. Calcd. For $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{ClN}$: C, 56.94; H, 9.56; N, 9.49. Found: C, 56.67; H, 9.43; N, 9.66.

11a

Preparation of (R)-3-(2-vinylpiperidin-1-yl)propan-1-ol (11a): The mixture of compound (\boldsymbol{R})-5•HCl ($2.00 \mathrm{~g}, 13.5 \mathrm{mmol}$), $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}(1.42 \mathrm{~g}, 15 \mathrm{mmol})$, dry $\mathrm{K}_{2} \mathrm{CO}_{3}(4.14 \mathrm{~g}, 30 \mathrm{mmol})$ and $\mathrm{KI}(2.49 \mathrm{~g}, 15 \mathrm{mmol})$ in acetone (50 mL) was refluxed for 2 h . Then the solid was filtrated off and the solvent was evaporated. The residue was purified by chromatography (silica gel, EtOAc) to give 2.18 g (95\%) of product 11a as a colorless oil, $[\alpha]_{D}{ }^{20}=+76.4$ (c $0.2, \mathrm{CHCl}_{3}$). IR: $v 3387,2933,2857,1053 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR: $\delta 5.78-5.67(\mathrm{~m}, 1 \mathrm{H}), 5.49(\mathrm{~s}, 1 \mathrm{H}), 5.10-4.99(\mathrm{~m}, 2 \mathrm{H}), 3.70-3.63(\mathrm{~m}, 2 \mathrm{H})$, 3.10-2.87 (m, 2H), 2.53-2.48 (m, 1H), 2.23-2.14 (m, 1H), 1.86-1.25 (m, 9H); ${ }^{13} \mathrm{C}$ NMR:
$\delta 141.0,116.0,66.9,64.2,54.9,51.7,33.5,27.1,25.5,23.3$; MS m/z (\%): $169\left(\mathrm{M}^{+}\right.$, 1.87), 124 (100). Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{NO}$: C, 70.96 ; H, 11.31; N, 8.28. Found: C, 71.21; H, 11.24; N, 8.32.

12a

Preparation of $N-[(2 R)$-2-vinyl-1-piperidine-propyl]- N-[(tert-butyldimethyl-

 silyl)oxy]-4-methyl-benzenesulfonamide (12a), A typical procedure of Mutsunobu reaction: To a stirred solution of 11a ($508 \mathrm{mg}, 3 \mathrm{mmol}$), TsNHOTBS ($915 \mathrm{mg}, 3.15$ mmol), $\mathrm{PPh}_{3}(1.58 \mathrm{~g}, 6 \mathrm{mmol})$ and THF (3 mL) in toluene (9 mL) was added a solution of DEAD ($784 \mathrm{mg}, 4.5 \mathrm{mmol}$) in toluene $(3 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under N_{2}. One hour later, the solvent was removed to give a residue, which was purified by chromatography (silica gel, 10% EtOAc in PE) to give $1.33 \mathrm{~g}(98 \%)$ of product 12a as a colorless oil, $[\alpha]_{\mathrm{D}}{ }^{20}=$ +21.0 (c 0.2, CHCl_{3}). IR: $v 2932,2856,1465 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR: $\delta 7.73$ (d, $J=8.2,2 \mathrm{H}$), $7.33(\mathrm{~d}, \mathrm{~J}=7.9,2 \mathrm{H}), 5.71-5.62(\mathrm{~m}, 1 \mathrm{H}), 5.12-4.98(\mathrm{~m}, 2 \mathrm{H}), 3.02-2.83(\mathrm{~m}, 3 \mathrm{H})$, 2.71-2.51 (m, 2H), 2.44 (s, 3H), 2.16-2.06 (m, 1H), 1.97-1.91 (m, 1H), 1.74-1.23 (m, 8H), $0.93(\mathrm{~s}, 9 \mathrm{H}), 0.30(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta 144.3,141.8,129.9,129.7$ (2C), 129.1 (2C), 115.3, 66.4, 54.3, 52.4, 51.9, 33.5, 25.9 (3C), 25.8, 23.7, 23.5, 21.5, 18.0. $-4,4$ (2C); MS m/z (\%): 452 ($\mathrm{M}^{+}, 1.08$), 44 (100). Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SSi}$: C, 61.02; H, 8.91; N, 6.19. Found: C, 61.25; H, 8.99; N, 6.06.By similar procedure, 3 -aminopropanols 11b-11k were converted into the corresponding 4-methyl-benzenesulfonamides 12b-12k.

12b
N-[3-[N-Allyl- N-butylamino]propyl]- N-(tert-butyldimethylsilyloxy)-4-methylbenzenesulfonamide (12b): It is a yellowish oil (97\%); IR: v 2956, 2931, $1359 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR: $\delta 7.73(\mathrm{~d}, J=7.9,2 \mathrm{H}), 7.33(\mathrm{~d}, J=7.9,2 \mathrm{H}), 5.86-5.74(\mathrm{~m}, 1 \mathrm{H}), 5.15-5.06$ (m, 2H), 3.07-2.92 (m, 4H), $2.45(\mathrm{~s}, 3 \mathrm{H}), 2.40-2.32(\mathrm{~m}, 4 \mathrm{H}), 1.73-1.63(\mathrm{~m}, 2 \mathrm{H})$, 1.45-1.19 (m, 5H), $0.92(\mathrm{~s}, 9 \mathrm{H}), 0.90-0.86(\mathrm{~m}, 2 \mathrm{H}), 0.30(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta 144.4$, 136.0, 129.9, 129.8 (2C), 129.2 (2C), 116.9, 57.1, 54.3, 53.4, 50.9, 29.1, 26.0 (3C), 24.7, 21.6, 20.5, 18.2, 14.0, -4.3 (2C); MS m/z (\%): 454 ($\mathrm{M}^{+}, 5.08$), 84 (100). Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{3}$ SSi: C, 60.75; H, 9.31; N, 6.16. Found: C, 60.51; H, 9.18; N, 6.29.

N-[3-(N,N-Diallylamino)propyl]-N-(tert-butyldimethylsilyloxy)-4-methyl-

 benzenesulfonamide (12c): It is a yellowish oil (96\%); IR: v 3074, 2955, 2929, 1471, $1358 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 7.73$ (d, $\left.J=7.9,2 \mathrm{H}\right), 7.33(\mathrm{~d}, J=7.9,2 \mathrm{H}), 5.86-5.74(\mathrm{~m}, 2 \mathrm{H})$, 5.16-5.08 (m, 4H), 3.03-3.01 (d, $J=6.2,4 H), 2.98-2.92(\mathrm{t}, J=6.9,2 H), 2.44-2.38(\mathrm{~m}$, 5H), 1.74-1.67 (m, 2H), 0.93 (s, 9H), 0.30 (s, 6H); ${ }^{13} \mathrm{C}$ NMR: $\delta 144.3,135.6$ (2C),130.0, 129.8 (2C), 129.1 (2C), 117.1 (2C), 56.7 (2C), 54.2, 50.4, 25.9 (3C), 24.7, 21.5, 18.1, -4.3 (2C). MS m / z (\%): $438\left(\mathrm{M}^{+}, 0.28\right), 110$ (100). Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SSi}: \mathrm{C}, 60.23$; H, 8.73; N, 6.39. Found: C, 60.46; H, 8.67; N, 6.46.

12d

N-[3-(N-Allyl- N-but-3-enyl)aminopropyl]- N-(tert-butyldimethylsilyloxy)-4-

 methyl-benzenesulfonamide (12d): It is a yellowish oil (96\%); IR: v 3075, 2928, 1598, 1465, $1359 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 7.73$ (d, $\left.J=8.3,2 \mathrm{H}\right), 7.33(\mathrm{~d}, J=8.3,2 \mathrm{H})$, 5.83-5.70 (m, 2H), 5.16-4.94 (m, 4H), 3.04-3.02 (d, J = 6.2, 2H), 2.97-2.91 (m, 2H), 2.47-2.38 (m, 7H), 2.14-2.10 (m, 2H), 1.73-1.63 (m, 2H), 0.92 (s, 9H), 0.29 (s, 6H); ${ }^{13} \mathrm{C}$ NMR: $\delta 144.3,136.6,135.7,129.9,129.7$ (2C), 129.1 (2C), 116.9, 115.3, 56.9, 54.2, 53.0, 50.7, 31.3, 25.9 (3C), 24.7, 21.5, 18.1, -4.3 (2C); MS m/z (\%): $452\left(\mathrm{M}^{+}\right.$, 0.24), 84 (100). Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SSi}$: C, 61.02 ; $\mathrm{H}, 8.91$; N, 6.19. Found: C, 61.19; H, 9.10; N, 6.06.

12e
N-[3-(N-But-3-enyl-N-butyl)aminopropyl]-N-(tert-butyldimethylsilyloxy)-4-m ethyl-benzenesulfonamide (12e): It is a colorless oil (97\%). IR: v 3073, 2955, 1598, $1462,1357 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR: $\delta 7.73(\mathrm{~d}, J=8.3,2 \mathrm{H}), 7.33(\mathrm{~d}, J=7.9,2 \mathrm{H}), 5.80-5.71(\mathrm{~m}$, 1H), 5.04-4.94 (m, 2H), 2.96-2.91 (m, 2H), 2.45-2.32 (m, 9H), 2.16-2.08 (m, 2H),
$1.70-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.22(\mathrm{~m}, 4 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.91-0.81(\mathrm{~m}, 3 \mathrm{H}), 0.30(\mathrm{~s}, 6 \mathrm{H})$; ${ }^{13}$ C NMR: $\delta 144.3,136.9,129.9,129.8$ (2C), 129.1 (2C), 115.2, 54.4, 53.5, 53.3, 51.2, 31.4, 29.2, 25.9 (3C), 24.8, 21.5, 20.5, 18.1, 14.0, -4.3 (2C); MS m/z (\%): 468 (M^{+}, 1.42), 427 (100). Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SSi}: ~ \mathrm{C}, 61.49$; $\mathrm{H}, 9.46$; N, 5.98. Found: C, 61.57; H, 9.63; N, 5.88.

$12 f$
N-[3-(N-benzyl- N-but-3-enyl)aminopropyl]- N-(tert-butyldimethylsilyloxy)-4-methyl-benzenesulfonamide (12f): It is a colorless oil (96\%); IR: v 2959, 2931, 1457, $1358 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 7.71(\mathrm{~d}, J=7.9,2 \mathrm{H}), 7.32-7.20(\mathrm{~m}, 7 \mathrm{H}), 5.80-5.65(\mathrm{~m}, 1 \mathrm{H})$, 5.02-4.92 (m, 2H), 3.50 (s, 2H), 2.95-2.90 (m, 2H), 2.48-2.37 (m, 7H), 2.23-2.14 (m, 2H), 1.74-1.65 (m, 2H), $0.91(\mathrm{~s}, 9 \mathrm{H}), 0.27(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta 144.3,139.6,136.8$, 129.84, 129.79 (2C), 129.1 (2C), 128.6 (2C), 128.0 (2C), 126.7, 115.4, 58.3, 54.3, 53.0, 50.9, 31.4, 26.0 (3C), 24.8, 21.6, 18.1, -4.3 (2C); MS m/z (\%): 502 ($\mathrm{M}^{+}, 1.10$), 91 (100). Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{3}$ SSi: C, 64.50; H, 8.42; N, 5.57. Found: C, 64.55; H, 8.36; N, 5.61.

12g
N-[3-[3,4-dihydroisoquinolin-2(1H)-yl]propyl]-N-(tert-butyldimethylsilyloxy)-
4-methyl-benzenesulfonamide (12g): It is a colorless oil (99\%); IR: v 3746, 2938,
$1462,1353 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR: $\delta 7.73(\mathrm{~d}, J=7.9,2 \mathrm{H}), 7.29(\mathrm{~d}, J=7.9,2 \mathrm{H}), 7.12-7.05(\mathrm{~m}$, $3 H), ~ 6.98-6.95(\mathrm{~m}, 1 \mathrm{H}), 3.55(\mathrm{~s}, 2 \mathrm{H}), 3.05-3.00(\mathrm{~m}, 2 \mathrm{H}), 2.86-2.82(\mathrm{~m}, 2 \mathrm{H}), 2.68-2.63$ (m, 2H), 2.53-2.47 (m, 2H), 2.40 (s, 3H), 1.88-1.83 (m, 2H), 0.93 (s, 9H), 0.31 (s, 6H); ${ }^{13} \mathrm{C}$ NMR: $\delta 144.3,134.6,134.1,129.8,129.7$ (2C), 129.1 (2C), 128.4, 126.3, 125.9, 125.4, 55.9, 55.4, 54.2, 50.7, 28.9, 25.9 (3C), 24.7, 21.5, 18.0, -4.4 (2C); MS m/z (\%): $474\left(\mathrm{M}^{+}, 0.69\right), 146$ (100). Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SSi}: \mathrm{C}, 63.25 ; \mathrm{H}, 8.07$; $\mathrm{N}, 5.90$. Found: C, 63.37; H, 8.12; N, 5.83.

12h
N-[3-(Piperidin-1-yl)propyl]- N-(tert-butyldimethylsilyloxy)-4-methyl-benzene
sulfonamide (12h): It is a colorless oil (96\%); IR: v 2932, 2857, 2804, 2768, 1467, $1358 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR: $\delta 7.73(\mathrm{~d}, J=8.3,2 \mathrm{H}), 7.34(\mathrm{~d}, J=8.3,2 \mathrm{H}), 2.97-2.92(\mathrm{~m}, 2 \mathrm{H})$, 2.45 (s, 3H), 2.30-2.24 (m, 6H), 1.80-1.71 (m, 2H), 1.58-1.50 (m, 4H), 1.42-1.40 (m, 2H), 0.92 (s, 9 H), 0.30 (s, 6H); ${ }^{13} \mathrm{C}$ NMR: $\delta 144.3,129.8,129.7$ (2C), 129.1 (2C), 56.4, 54.4, 54.3 (2C), 25.9 (3C), 25.8 (2C), 24.34, 24.26, 21.5, 18.0, -4.4 (2C); MS m/z (\%): $426\left(\mathrm{M}^{+}, 4.68\right)$, 271 (100). Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{3}$ SSi: C, 59.11; H, 8.98; N, 6.57. Found: C, 59.28; H, 8.79; N, 6.51.

12i
N-[3-(Pyrrolidin-1-yl)propyl]-N-(tert-butyldimethylsilyloxy)-4-methyl-benzen
esulfonamide (12i): It is a colorless oil (93\%); IR: v 2957, 2931, 2858, 2791, 1466, $1357 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 7.73(\mathrm{~d}, J=7.9,2 \mathrm{H}), 7.33(\mathrm{~d}, J=7.9,2 \mathrm{H}), 3.00-2.96(\mathrm{~m}, 2 \mathrm{H})$, 2.44-2.39 (m, 9H), 1.83-1.74 (m, 6H), $0.92(\mathrm{~s}, 9 \mathrm{H}), 0.30(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta 144.4$, 129.9, 129.8 (2C), 129.2 (2C), 54.4, 54.1 (2C), 53.8, 26.6, 25.9 (3C), 23.3 (2C), 21.6, 18.1, -4.3 (2C); MS m/z (\%): $412\left(\mathrm{M}^{+}, 0.22\right), 84$ (100). Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SSi}$: C, 58.21; H, 8.79; N, 6.79. Found: C, 58.39; H, 8.67; N, 6.91.

12j

N-(3-Morpholinopropyl)- N-(tert-butyldimethylsilyloxy)-4-methyl-benzenesulf

 onamide (12j): It is a colorless oil (98\%); IR: v 2943, 1358, $1169 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: δ 7.73 (d, $J=7.9,2 H$), 7.34 (d, $J=7.9,2 H$), 3.69-3.66 (m, 4H), 3.00-2.95 (m, 2H), 2.45 (s, 3H), 2.40-2.31 (m, 6H), 1.78-1.73 (m, 2H), $0.92(\mathrm{~s}, 9 \mathrm{H}), 0.30(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta 144.4,129.8,129.7$ (2C), 129.1 (2C), 66.8 (2C), 55.9, 54.1, 53.4 (2C), 25.9 (3C), 24.0, 21.5, 18.0, -4.4 (2C); MS m/z (\%): $428\left(\mathrm{M}^{+}, 0.53\right), 100$ (100); Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{4}$ SSi: C, 56.04; H, 8.46; N, 6.54. Found: C, 56.21; H, 8.30; N, 6.63.
N-[3-(4-Methylpiperazin-1-yl)propyl]-N-(tert-butyldimethylsilyloxy)-4-methyl -benzenesulfonamide (12k): It is a colorless oil (93\%), IR: v 2934, 1462, $1358 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR: $\delta 7.73$ (d, $J=8.3,2 \mathrm{H}$), 7.34 (d, $J=8.3,2 \mathrm{H}$), 2.99-2.93 (m, 2H), 2.45-2.28
(m, 16H), 1.76-1.71 (m, 2H), $0.92(\mathrm{~s}, 9 \mathrm{H}), 0.29(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta 144.3,129.8$, 129.7 (2C), 129.1 (2C), 55.5, 54.9 (2C), 54.1, 52.9 (2C), 45.9, 25.9 (3C), 24.2, 21.5, 18.0, -4.4 (2C); MS $m / z(\%): 442\left(\mathrm{M}^{+}+\mathrm{H}, 100\right)$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{39} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{SSi}: \mathrm{C}$, 57.10; H, 8.90; N, 9.51. Found: C, 57.29; H, 8.73; N, 9.48.

13a

Preparation of (R)-2-Vinyl-1-piperidinepropanal Oxime (13a), A Typical

 Procedure of Oximation: A stirred mixture of compound 12a (453 mg, 1.0 mmol) and CsF (301 mg, 2 mmol) in MeCN (10 mL) was heated at $60^{\circ} \mathrm{C}$ under N_{2} for 2 h . After it was cooled to room temperature, saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added to quench the reaction. The resultant mixture was extracted by EtOAc ($3 \times 30 \mathrm{~mL}$) and combined organic layers were washed with brine (20 mL) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of the solvent gave a residue, which was purified by chromatography (silica gel, 30\% EtOAc in PE) to give $171 \mathrm{mg}(94 \%, E: Z=72: 28)$ of product 13a as a white crystal. It had mp $43-45{ }^{\circ} \mathrm{C}(\mathrm{PE} / \mathrm{EtOAc}),[\alpha]_{\mathrm{D}}{ }^{20}=+11.2\left(\mathrm{c} 0.2, \mathrm{CHCl}_{3}\right)$. IR: $v 3305,3179,3073,2931$, 2854, 2789, $2726 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (as a mixture of $E: Z$ isomers): $\delta 11.06$ (s, br, 1H), 7.37-7.32 (m, 0.28H, minor), 6.70-6.67 (m, 0.72H, major), 5.88-5.74 (m, 1H), 5.18-5.04 $(\mathrm{m}, 2 \mathrm{H}), 3.02-2.87(\mathrm{~m}, 2 \mathrm{H}), 2.75-2.63(\mathrm{~m}, 1 \mathrm{H}), 2.62-2.33(\mathrm{~m}, 3 \mathrm{H}), 2.17-2.08(\mathrm{~m}, 1 \mathrm{H})$, 1.74-1.45 (m, 5H), 1.37-1.25 (m, 1H); ${ }^{13} \mathrm{C}$ NMR: δ 149.8, 149.1, 140.7, 115.9, 66.2, 66.0, 51.9, $51.7,51.5,51.2,32.8,25.8,25.2,23.5,21.4 ; \mathrm{MS} \mathrm{m/z}(\%): 182\left(\mathrm{M}^{+}, 0.42\right)$, 124 (100). Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 65.90$; $\mathrm{H}, 9.95$; $\mathrm{N}, 15.37$; Found: C, 65.95; H,By similar procedure, 4-methyl-benzenesulfonamides 12b-12k were converted into 13b-13k.

13b
3-(N-Allyl- N-butylamino)propanal oxime (13b): It is a colorless oil (93\%, $\mathrm{dr}=$ 72:28); IR: v 3207, 3077, $2957 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR: $\delta 10.40$ (s, br, 1H), 7.42-7.38 (m, 0.28 H , minor), 6.78-6.74 (m, 0.72H, major), 5.94-5.80 (m, 1H), 5.21-5.12 (m, 2H), 3.15-3.13 (m, 2H), 2.70-2.63 (m, 2H), 2.56-2.32 (m, 4H), 1.46-1.41 (m, 2H), 1.35-1.23 (m, 2H), 0.90 (t, $J=7.2,3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR: $\delta 150.2,149.7,135.2,117.7,56.9,56.8,53.1$, 53.0, 50.2, 49.4, 28.6, 28.5, 26.9, 22.5, 20.6, 14.0; MS m/z (\%): 184 ($\mathrm{M}^{+}, 0.22$), 84 (100). Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}$: C, 65.18; H, 10.94; N, 15.20; Found: C, 65.35; H, 11.07; N, 15.04.

13c
3-(N,N-Diallylamino)propanal oxime (13c): It is colorless oil (99\%, dr = 66:34); IR: v 3200, 3076, 2977, $997 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR: $\delta 9.00$ (br, 0.66H), 8.25 (br, 0.34H), 7.44-7.40 (m, 0.34H, minor), 6.81-6.78 (m, 0.66H, major), 5.92-5.78 (m, 2H), 5.22-5.14 (m, 4H), $3.13(\mathrm{~d}, J=5.9,4 \mathrm{H}) ; 2.68-2.62(\mathrm{~m}, 2 \mathrm{H}), 2.56-2.50(\mathrm{~m}, 1 \mathrm{H})$, 2.40-2.33 (m, 1H); ${ }^{13} \mathrm{C}$ NMR: $\delta 149.9 ; 149.4 ; 134.7,134.6,118.1,118.0,56.4,56.2$,
49.7, 48.9, 26.8, 22.3. MS m/z (\%): 168 ($\mathrm{M}^{+}, 0.15$), 110 (100). Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 64.25 ; \mathrm{H}, 9.59 ; \mathrm{N}, 16.65$. Found: C, 64.07 ; H, 9.75; N, 16.46.

13d
3-(N-Allyl- N-but-3-enyl)aminopropanal oxime (13d): It is a yellowish oil (97\%, $\mathrm{dr}=60: 40$); IR: $v 3212,3075,2923,2818 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 10.18(\mathrm{~s}, \mathrm{br}, 0.6 \mathrm{H}), 9.74(\mathrm{~s}$, br, 0.4H), 7.43-7.39 (m, 0.4H, minor), 6.79-6.76 (m, 0.6H, major), 5.94-5.69 (m, 2H), 5.22-4.95 (m, 4H), 3.17-3.14 (m, 2H), 2.72-2.65 (m, 2H), 2.59-2.51 (m, 3H), 2.40-2.34 (m, 1H), 2.27-2.22 (m, 2H); ${ }^{13} \mathrm{C}$ NMR: δ 150.3, 149.9, 136.4, 135.0, 134.9, 117.8, 115.7, 56.8, 56.7, 52.7, 52.6, 50.2, 49.4, 31.1, 31.0, 27.0, 22.6; MS m/z (\%): $182\left(\mathrm{M}^{+}\right.$, 0.05), 123 (100). Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}$: C, 65.90; H, 9.95; N, 15.37. Found: C, 66.03; H, 9.91; N, 15.54.

3-(but-3-enyl(butyl)amino)propanal oxime (13e): It is a yellowish oil (93\%, dr $=67: 33$); IR: v 3216, $3076,2956,1080 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 10.06(\mathrm{br}, 1 \mathrm{H}), 7.44-7.40(\mathrm{~m}$, 0.33H, minor), 6.80-6.76 (m, 0.67H, major), 5.85-5.70 (m, 1H), 5.08-4.96 (m, 2H), 2.68-2.64 (m, 2H), 2.57-2.33 (m, 6H), 2.27-2.21 (m, 2H), 1.50-1.41 (m, 2H), 1.36-1.24 (m, 2H). $0.90(\mathrm{t}, J=7.2,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta 150.4,150.0,136.5,115.6,55.33,55.27$, 53.1, 53.0, 50.6, 49.9, 31.1, 31.0, 28.7, 28.6, 27.1, 22.8, 20.6, 14.0; MS m/z (\%): 198
$\left(\mathrm{M}^{+}, 0.28\right), 139$ (100). Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 66.62 ; \mathrm{H}, 11.18 ; \mathrm{N}, 14.13$. Found: C, 66.79; H, 11.03; N, 14.02.

13f
3-(N-Benzyl- N-but-3-enyl)aminopropanal oxime (13f): It is a yellowish oil (98\%, dr $=70: 30$); IR: v 3221, 3068, 2940, 1453, $1368 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR: $\delta 10.31$ (br, 1H), 7.40-7.18 (m, 5.30H), 6.75-6.72 (m, 0.70H, major), 5.80-5.67 (m, 1H), 5.04-4.94 $(\mathrm{m}, 2 \mathrm{H}), 3.58(\mathrm{~s}, 2 \mathrm{H}), 2.62-2.20(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta 150.6,150.2,138.7,138.6$, $136.5,128.8$ (2C), 128.0 (2C), 126.8, 115.5, 58.0, 57.9, 52.6, 52.5, 50.2, 49.3, 31.1, 31.0, 27.0, 22.6; MS m/z (\%): 232 ($\mathrm{M}^{+}, 0.72$), 91 (100). Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}$, 72.38; H, 8.68; N, 12.06. Found: C, 72.23; H, 8.77; N, 12.20.

13g
3-(3,4-Dihydroisoquinolin-2(1H)-yl)propanal oxime (13g): It is a white crystal (95\%, dr = 64:36), mp 59-61 ${ }^{\circ} \mathrm{C}(\mathrm{PE} / \mathrm{EtOAc})$; IR: v 3452, 3281, 2825, $935 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 9.91$ (s, br, 1H), 7.45-7.40 (m, 0.36H, minor), 7.12-7.09 (m, 3H), 7.01-6.99 (m, $1 \mathrm{H}), ~ 6.82-6.80(\mathrm{~m}, 0.64 \mathrm{H}$, major), $3.67(\mathrm{~s}, 2 \mathrm{H}), 2.90-2.83(\mathrm{~m}, 2 \mathrm{H}), 2.79-2.74(\mathrm{~m}, 2 \mathrm{H})$, 2.69-2.66 (m, 3H), 2.60-2.54 (m, 1H); ${ }^{13} \mathrm{C}$ NMR: $\delta 150.1,149.6,134.1,134.0,128.5$, 126.5, 126.1, 125.6, 55.4, 54.6, 54.0, 50.5, 50.4, 28.52, 28.47, 27.3, 23.0; MS m/z (\%): $204\left(\mathrm{M}^{+}, 0.36\right), 146$ (100). Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}$: C, 70.56; H, 7.90; N, 13.71.

Found: C, 70.75; H, 7.94; N, 13.87.

13h
3-(Piperidin-1-yl)propanal oxime (13h): It is a white crystal (94\%, $\mathrm{dr}=30: 70$), mp 85-87 ${ }^{\circ} \mathrm{C}$ (PE/EtOAc); IR: v 3411, 3248, 2945, $1123 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR: $\delta 7.46-7.43$ (m, 0.30H, minor), 6.86-6.85 (m, 0.70H, major), 2.58-2.39 (m, 8H), 1.65-1.57 (m, 4H), 1.49-1.34 (m, 2H); ${ }^{13} \mathrm{C}$ NMR: $\delta 149.7,149.1,55.6,55.1,54.1,54.0,26.8,25.3,25.2$, 24.0, 22.7; MS m/z (\%): $156\left(\mathrm{M}^{+}, 0.10\right), 98(100)$. Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 61.50$; H, 10.32; N, 17.93. Found: C, 61.33; H, 10.39; N, 17.80.

13i

3-(Pyrrolidin-1-yl)propanal oxime (13i): It is a yellow oil (70\%, dr = 62:38); IR: v 3181, 2962, 2808, 1455, $910 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR: $\delta 9.98$ (s, br, 1 H), 7.44-7.40 (m, 0.38H, minor), 6.80-6.76 (m, 0.62H, major), 2.69-2.40 (m, 8H), 1.85-1.76 (m, 4H); ${ }^{13} \mathrm{C}$ NMR: $\delta 149.4,148.9,53.8,53.7,53.0,52.4,29.0,24.6,23.2 ; \mathrm{MS} m / z(\%): 142\left(\mathrm{M}^{+}, 0.41\right), 84$ (100). Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}$: C, 59.12; H, 9.92; N, 19.70. Found: C, 59.33; H, 9.83; N, 19.89.

13j
3-Morpholinopropanal oxime (13j): It is a yellowish oil (89\%, $\mathrm{dr}=57: 43$); IR: v 3185, 3077, 2957, 2862, 1454, $1306 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR: $\delta 9.64$ (s, br, 0.43 H), 9.23 (s, br, 0.57H), 7.46-7.42 (m, 0.43H, minor), 6.80-6.77 (m, 0.57H, major), 3.75-3.72 (m, 4H), 2.63-2.37 (m, 8 H); ${ }^{13} \mathrm{C}$ NMR: $\delta 150.1,149.7,66.7,66.6,55.5,54.9,53.32,53.25,26.8$, 22.4; MS m/z (\%): 158 ($\mathrm{M}^{+}, 0.26$), 100 (100). Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 53.15; H, 8.92; N, 17.71. Found: C, 53.02; H, 8.90; N, 17.53.

13k

3-(4-Methylpiperazin-1-yl)propanal oxime (13k): It is a colorless oil (65\%, dr = 53:47); IR: v 3213, 2936, 1458, $1152 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR: $\delta 8.55$ ($\mathrm{s}, \mathrm{br}, 1 \mathrm{H}$), 7.42-7.39 (m, 0.47H, minor), 6.76-6.72 (m, 0.53H, major), 2.69-2.55 (m, 10H), 2.47-2.35 (m, 5H); ${ }^{13} \mathrm{C}$ NMR: $\delta 149.4,148.8,54.7,54.2,54.1,51.52,51.45,45.0,27.0,22.6 ; \mathrm{MS} \mathrm{m} / \mathrm{z}$ (\%): 171 ($\mathrm{M}^{+}, 5.57$), 113 (100). Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}$: C, 56.11; H, 10.01; N, 24.54. Found: C, 56.32; H, 10.06; N, 24.63.

Preaparation of (10aR,9bR)-octahydro-1H-isoxazolo[4,3-a]quinolizine (14a), A typical procedure of INOC: To a stirred solution of compound 13a ($91 \mathrm{mg}, 0.5 \mathrm{mmol}$)
in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added an aqueous solution of $\mathrm{NaOCl}(10 \%, 0.9 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ within 30 min . Then the reaction was stirred at room temperature for 2 h (monitored by TLC). After the reaction was quenched by $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$, the resultant mixture was extracted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 20 \mathrm{~mL})$. The combined organic layers were washed with brine (20 mL) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of the solvent gave a residue, which was purified by chromatography (silica gel, 50% EtOAc in PE) to give 79 mg (88\%) of product 14a as a yellowish oil, $[\alpha]_{D}{ }^{20}=-30.4\left(\mathrm{c} 0.9, \mathrm{CHCl}_{3}\right)$. IR: $v 2929,2856,2800$, $2763 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 4.50-4.43(\mathrm{~m}, 1 \mathrm{H}), 3.83-3.77(\mathrm{~m}, 1 \mathrm{H}), 3.08-2.93(\mathrm{~m}, 3 \mathrm{H})$, 2.76-2.70 (m, 1H), 2.55-2.45 (m, 1H), 2.20-2.03 (m, 2H), 1.80-1.54 (m, 5H), 1.38-1.16 (m, 2H); ${ }^{13} \mathrm{C}$ NMR: $\delta 157.7,70.5,67.3,55.2,55.1,54.0,32.3,25.2,24.7,23.4 . \mathrm{MS} \mathrm{m} / \mathrm{z}$ (\%): $180\left(\mathrm{M}^{+}, 42.12\right), 179$ (100). Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 66.63$; H, 8.95; N , 15.54. Found: C, 66.81; H, 8.89; N, 15.42.

By similar procedure, 3-aminopropanal oximes 13b-13d were converted into 14b-14d.

14b
5-Butyl-3,3a,4,5,6,7-hexahydroisoxazolo[4,3-c]pyridine (14b): It is a yellow oil (90\%); IR: v 2956, 2928, $1134 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR: $\delta 4.49-4.43(\mathrm{~m}, 1 \mathrm{H}), 3.80-3.74(\mathrm{~m}, 1 \mathrm{H})$, 3.46-3.40 (m, 1H), 3.30-3.23 (m, 1H), 3.17-3.12 (m, 1H), 2.73-2.68 (m, 1H), 2.50-2.38 (m, 3H), 2.13-1.95 (m, 2H), 1.53-1.43 (m, 2H), 1.40-1.25 (m, 2H), 0.93 (t, $J=7.2,3 H)$; ${ }^{13} \mathrm{C}$ NMR: $\delta 158.3,70.7,58.4,57.0,52.8,47.7,29.1,24.9,20.4,13.8 ;$ MS m / z (\%):
$182\left(\mathrm{M}^{+}, 25\right), 139(100)$. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 65.90 ; \mathrm{H}, 9.95$; $\mathrm{N}, 15.37$. Found: C, 66.04; H, 10.02; N, 15.43.

14c
5-Allyl-3,3a,4,5,6,7-hexahydroisoxazolo[4,3-c]pyridine (14c): It is a yellowish oil (86\%); IR: v 3076, 2955, 2911, 1464, $1348 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR: $\delta 5.92-5.78(\mathrm{~m}, 1 \mathrm{H})$, 5.24-5.18 (m, 2H), 4.51-4.44 (m, 1H), 3.82-3.75 (m, 1H), 3.50-3.03 (m, 5H), 2.74-2.71 (m, 1H), 2.51-2.39 (m, 1H), 2.13-1.98 (m, 2H); ${ }^{13} \mathrm{C}$ NMR: $\delta 157.9,134.3,118.1,70.6$, 60.2, 57.8, 52.4, 47.5, 24.7; MS m/z (\%): 166 (${ }^{+}$, 43), 41 (100). Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 65.03 ; \mathrm{H}, 8.49 ; \mathrm{N}, 16.85$. Found: C, 65.20 ; H, 8.58; N, 16.81.

14d
5-(But-3-enyl)-3,3a,4,5,6,7-hexahydroisoxazolo[4,3-c]pyridine (14d): It is a yellow oil (85\%). IR: v 2926, 2804, 1361, 913, $845 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR: $\delta 5.88-5.73$ (m, $1 \mathrm{H}), 5.13-5.00(\mathrm{~m}, 2 \mathrm{H}), 4.52-4.44(\mathrm{~m}, 1 \mathrm{H}), 3.82-3.75(\mathrm{~m}, 1 \mathrm{H}), 3.46-3.37(\mathrm{~m}, 1 \mathrm{H})$, 3.31-3.25 (m, 1H), 3.19-3.13 (m, 1H), 2.75-2.69 (m, 1H), 2.58-2.39 (m, 3H), 2.31-2.24 (m, 2H), 2.18-2.03 (m, 2H); ${ }^{13} \mathrm{C}$ NMR: $\delta 158.2,136.0,115.8,70.7,58.2,56.6,52.6$, 47.7, 31.4, 24.9; MS m/z (\%): 180 ($\mathrm{M}^{+}, 0.93$), 139 (100). Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}$: C, 66.63; H, 8.95; N, 15.54. Found: C, 66.68; H, 8.81; N, 15.66.

15
(1S,9aR)-Octahydro-1-hydroxymethyl-2H-quinolizin-2-one (15): At room temperature, a suspension of compound 14a ($400 \mathrm{mg}, 2.22 \mathrm{mmol}$), Raney nickel (13 $\mathrm{mg}, 0.22 \mathrm{mmol}$) and $\mathrm{HOAc}(1.33 \mathrm{~g}, 22.2 \mathrm{mmol}$) in aqueous $\mathrm{MeOH}(75 \%, 20 \mathrm{~mL})$ under H_{2} (balloon) was vigorously stirred for 1.5 h . Then the reaction was quenched by saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}(20 \mathrm{~mL})$ and the catalyst was filtrated off. The filtration was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$) and combined organic layers were washed with brine (20 mL) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of the solvent gave a residue, which was purified by chromatography (silica gel, EtOAc) to give 342 mg (84%) of product 15 as a white solid. It had $\mathrm{mp} 69-71{ }^{\circ} \mathrm{C}(\mathrm{EtOAc}),[\alpha]_{\mathrm{D}}{ }^{20}=+8.8\left(\mathrm{c} 0.04, \mathrm{CHCl}_{3}\right)$. IR: v 3440, 1714, 1092, $647 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 3.97-3.93(\mathrm{~m}, 1 \mathrm{H}), 3.74-3.68(\mathrm{~m}, 1 \mathrm{H})$, 3.14-3.05 (m, 1H), 3.00-2.96 (m, 1H), 2.83-2.70 (m, 2H), 2.46-2.33 (m, 3H), 2.17-2.07 $(\mathrm{m}, 2 \mathrm{H}), 1.98-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.56(\mathrm{~m}, 3 \mathrm{H}), 1.40-1.20(\mathrm{~m}, 2 \mathrm{H})$) ${ }^{13} \mathrm{C}$ NMR: $\delta 211.9$, 63.0, 58.3, 56.6, 55.69, 55.67, 41.7, 31.1, 25.3, 23.3; MS m/z (\%): 183 (${ }^{+}, 28.76$), 28 (100). Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{NO}_{2}$: C, 65.54; H, 9.35; N, 7.64. Found: C, 65.81; H, 9.42; N, 7.56.

16
(1S,9aR)-Octahydro-1-hydroxymethyl-spiro[1,3-dithiolane-2,2'-[2H]quinolizin
e] (16): To a solution of compound $\mathbf{1 5}(293 \mathrm{mg}, 1.60 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added a
mixture of ethane-1,2-dithiol ($1.23 \mathrm{~mL}, 14.7 \mathrm{mmol}$) in $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(0.46 \mathrm{~mL}, 3.68 \mathrm{mmol})$. Two hours later, the reaction was quenched by aqueous $\mathrm{NaOH}(2.0 \mathrm{M}, 3 \mathrm{~mL}$). The resultant mixture was extracted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$ and combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of the solvent gave a residue, which was purified by chromatography (silica gel, EtOAc) to give 344 mg (83\%) of product 16 as a white solid. It had mp 128-130 ${ }^{\circ} \mathrm{C}$ (EtOAc), $[\alpha]_{D}{ }^{20}=-13.0\left(\mathrm{c} 0.1, \mathrm{CHCl}_{3}\right)$. IR: $v 3452,1641,1048,1025 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 4.21-4.17$ $(\mathrm{m}, 1 \mathrm{H}), 3.90-3.86(\mathrm{~m}, 1 \mathrm{H}), 3.39-3.23(\mathrm{~m}, 4 \mathrm{H}), 2.94-2.77(\mathrm{~m}, 3 \mathrm{H}), 2.47-2.24(\mathrm{~m}, 2 \mathrm{H})$, 2.16-1.95 (m, 4H), 1.82-1.73 (m, 2H), 1.65-1.52 (m, 2H), 1.38-1.14 (m, 2H); ${ }^{13} \mathrm{C}$ NMR: $\delta 71.8,63.7,61.3,56.3,55.2,52.7,44.9,39.3,38.7,29.9,25.3,24.2 ; \mathrm{MS} m / z(\%): 259$ $\left(\mathrm{M}^{+}, 28.33\right), 97$ (100). Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{NOS}_{2}$: C, 55.56 ; H, 8.16; N, 5.40. Found: C, 55.51; H, 8.17; N, 5.44.

Preparation of (+)-Epilupinine (2): A suspension of compound 16 (260 mg, 1.00 mmol), Raney nickel (secondary grad, $900 \mathrm{mg}, 15.3 \mathrm{mmol}$) in anhydrous EtOH (20 mL) was refluxed for 1.5 h . After the reaction was cooled to room temperature, the catalyst was filtrated off. Removal of the solvent gave a residue, which was purified by chromatography (silica gel, 25\% MeOH in EtOAc) to give 161 mg (95\%) of product 2 as a white solid. It had mp 77-79 ${ }^{\circ} \mathrm{C}\left(\mathrm{lit} .{ }^{[7 \mathrm{~b}, 7 \mathrm{gl}]} 78-79{ }^{\circ} \mathrm{C}\right),[\alpha]_{\mathrm{D}}{ }^{20}=+31.8(\mathrm{c} 0.60, \mathrm{EtOH})$ $\left[\mathrm{lit} .{ }^{[7 \mathrm{~b}]}[\alpha]_{\mathrm{D}}{ }^{20}=+32.6\right.$ (c 0.72, EtOH), lit. ${ }^{[7 \mathrm{~g}]}[\alpha]_{\mathrm{D}}{ }^{22}=+31.2$ (c 0.86, EtOH)]. IR: $v 3183$,

2929, 2860, $1064 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 3.62-3.56(\mathrm{~m}, 1 \mathrm{H}), 3.50-3.45(\mathrm{~m}, 1 \mathrm{H}), 2.77-2.69$ (m, 2H), $2.33(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}), 2.00-1.50(\mathrm{~m}, 9 \mathrm{H}), 1.38-1.28(\mathrm{~m}, 1 \mathrm{H}), 1.26-1.11(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta 64.4,64.3,56.8,56.6,43.9,29.7,28.2,25.5,24.9,24.5 ; \mathrm{MS} m / z(\%): 169\left(\mathrm{M}^{+}\right.$, 42.96), 83 (100). Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{NO}: \mathrm{C}, 70.96$; H, 11.31; N, 8.28. Found: C, 70.91; H, 11.34; N, 8.23.

（R）$-5 \cdot \mathrm{HCl}$

会
等
年

X : parts per Million: 1H

X : parts per Million: 13C

 $12 f$

12g

1111

12j

$\stackrel{7}{9}$

${ }^{3}$ 關筑

X : parts per Million : 13C

X : parts per Million : 13 C
(13d

13e

$$
\begin{aligned}
& \stackrel{\bullet}{20}
\end{aligned}
$$

羅

13g

13g

 X : parts per Million : 13 C

20
oे
जी

M
!

14a

X:puntersumame

X : parts per Million : 13C

14c

14d

X : parts per Million : 13 C

x_{i} pars per Milloon : IS

