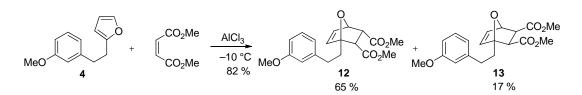
Formal Total Synthesis of (±)-Estrone via the Furano Diene Approach

Ya-Ping Xue[†] and Wei-Dong Z. Li^{*,†,‡}

[†]State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China [‡]State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, China

wdli@nankai.edu.cn

Table of contents

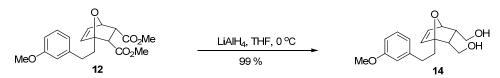

1. The Diels–Alder cycloaddition of furan 4 with dimethyl maleate	
2. Preparation of compound 14 and 11	
3. Cyclization of compound 14	
4. Preparation of compound 18	
5. Preparation of compound 19	
6. Preparation of compound 20	S7~S8
7. Preparation of compound 21	
8. Preparation of compound 22	S10
9. Preparation of compound 23	
10 Preparation of Torgov diene 24	S12
11. Preparation of compound 26	S12
12. The Diels–Alder cycloaddition of furan 26 with dimethyl maleate	S13
13. Preparation of compound 25	S13
14. Cyclization of compound 25	S14
15. Hydrogenation of compound 28 and derivatization	S15
16. Hydrogenation of compound 29 and derivatization	S17~S18
17. Dihydroxylation of compound s-12	S18
18. Cyclization of compound 14a	S19
19. Spectroscopic data of intermediates 18a~f	S20~S21

Experimental

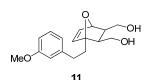
<u>General</u>

For product purification by flash column chromatography, silica gel (200~300 mesh) and petroleum ether (PET, bp. 60~90 °C) were used unless otherwise noted. All solvents were purified and dried by standard techniques, and distilled prior to use. Other commercially available reagents were used as received without further purification unless otherwise indicated. All organic extracts were dried over anhydrous sodium sulfate or magnesium sulfate. All moisture-sensitive reactions were carried out under an atmosphere of nitrogen in glassware that had been flame-dried under vacuum. ¹H and ¹³C NMR spectra were recorded on a *Bruker* Avance III 400 or *Varian* Mercury-300 spectrometer with TMS as an internal reference and CDCl₃ as solvent, unless otherwise indicated. IR spectra were recorded on a *Nicolet* NEXUS 670 FT-IR spectrometer as liquid film or KBr pellet. EI-MS were obtained on a HP-5988A GC/MS instrument. HRMS were acquired on a *Bruker* Daltonics APEXII 47e FT-ICR spectrometer. Melting points were measured on a *Kofler* hot stage and were uncorrected.

1. The Diels–Alder cycloaddition of furan 4 with dimethyl maleate

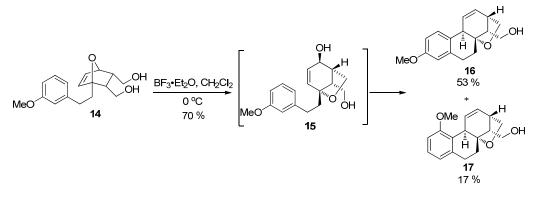


Dimethyl maleate (7.20 g, 52.50 mmol) was introduced into a flask containing powdered AlCl₃ (667 mg, 5.00 mmol) at -10 °C under N₂. After the resulting mixture was stirred for 10 min, furano compound **4** (10.10 g, 50.00 mmol) was added via a syringe. The reaction mixture was stirred at -10 °C for 2 days, then extracted with ether, the organic layer was washed successively with water, brine, dried (Na₂SO₄), and concentrated in vacuo. The residue was purified by flash column chromatography (PET : EtOAc = 4 : 1) to give the *endo*-adduct **12** (11.0 g, 65%) as a colorless oil and the *exo*-isomer **13** (3.20 g, 17%) as white plates.


12: $R_f = 0.45$ (PET : EtOAc = 2 : 1); IR (film): v_{max} 3002, 2952, 1741, 1604, 1490, 1436, 1259, 1163, 1044, 909, 789, 494 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.20 (1H, t, *J* = 7.6 Hz, ArH), 6.76 (3H, m, ArH), 6.52 (1H, d, *J* = 6.0 Hz, CH=), 6.45 (1H, d, *J* = 6.0 Hz, CH=), 5.11 (1H, d, *J* = 4.4 Hz, OCH), 3.80 (3H, s, OMe), 3.63 (3H, s, OMe), 3.60 (3H, s, OMe), 3.58 (1H, d, *J* = 4.8 Hz, CH), 3.13 (1H, d, *J* = 10.0 Hz, CH), 2.76 (2H, m, CH₂), 2.45 (1H, m, CH₂), 2.15 (1H, m, CH₂) *ppm*; ¹³C NMR (100 MHz, CDCl₃): δ 171.1, 170.6, 159.6, 143.1, 136.9, 135.2, 129.3, 120.5, 113.9, 111.2, 91.2, 79.4, 55.0, 51.7, 51.7, 51.4, 50.5, 33.5, 30.90 *ppm*; HRMS (ESI) *m/z*: calcd for C₁₉H₂₆O₆N 364.1755, found for [M+NH₄]⁺ 364.1754

13: $R_f = 0.20$ (PET : EtOAc = 2 : 1); mp. 109–110 °C; IR (film): v_{max} 2949, 2844, 1743, 1601, 1436, 1261, 1215, 1159, 1039, 922, 786, 698 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.20 (1H, t, J = 7.6 Hz, ArH), 6.76 (3H, m, ArH), 6.47 (1H, d, J = 5.6 Hz, CH=), 6.30 (1H, d, J = 5.6 Hz, CH=), 5.44 (1H, s, OCH), 3.80 (3H, s, OMe), 3.69 (3H, s, OMe), 3.67 (3H, s, OMe), 2.97 (1H, d, J = 9.2 Hz, CH), 2.84 (1H, d, J = 9.2 Hz, CH), 2.83–2.80 (1H, m, CH₂), 2.74–2.70 (1H, m, CH₂), 2.21–2.13 (2H, m, CH₂) *ppm*; ¹³C NMR (100 MHz, CDCl₃): δ 171.6, 171.4, 159.5, 143.0, 137.9, 137.4, 129.3,

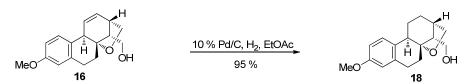
120.6, 113.9, 111.2, 91.2, 79.1, 54.9, 52.1, 51.9, 50.0, 49.8, 31.5, 31.4 *ppm*. HRMS (ESI) *m/z*: calcd for C₁₉H₂₆O₆N 364.1755, found for [M+NH₄]⁺ 364.1748 2. *Preparation of compound* **14**



To a suspension of powdered LiAlH₄ (1.70 g, 45.00 mmol) in 40 mL of dry THF at 0 °C was added a solution of compound **12** (14.20 g, 41.00 mmol) in dry THF (20 mL) under N₂. After being stirred for 10 min at 0 °C, the reaction mixture was quenched with 5 mL of water, extracted with ether, the organic layer was washed successively with water and brine, dried (Na₂SO₄), and concentrated in vacuo. The residue was purified by flash column chromatography (PET : EtOAc = 1 : 2) to give compound **14** (11.90 g, 99%) as a colorless oil. **14**: R_f = 0.15 (PET : EtOAc = 1 : 2); IR (film): v_{max} 3359, 2934, 1603, 1490, 1456, 1316, 1258, 1155, 1039, 912, 782, 727, 698, 574 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.20 (1H, t, *J* = 7.6 Hz, ArH), 6.76 (3H, m, ArH), 6.30 (1H, d, *J* = 5.6 Hz, CH=), 6.11 (1H, d, *J* = 5.6 Hz, CH=), 4.80 (1H, d, *J* = 3.6 Hz, OCH), 4.30 (2H, br s, OH), 3.79 (3H, s, OMe), 3.55 (2H, d, *J* = 10.8 Hz, OCH₂), 3.35 (2H, m, OCH₂), 2.78 (2H, m, CH₂), 2.64 (1H, m, CH₂), 2.42–2.25 (2H, m, CH), 2.11 (1H, m, CH₂) *ppm*; ¹³C NMR (100 MHz, CDCl₃): δ 159.5, 143.4, 136.5, 135.1, 129.3, 120.5, 113.9, 111.1, 90.5, 79.2, 60.8, 60.5, 55.0, 48.4, 46.7, 33.8, 30.9 *ppm*; HRMS (ESI) *m/z*: calcd for C₁₇H₂₆O₄N 308.1856, found for [M+NH₄]⁺ 308.1864

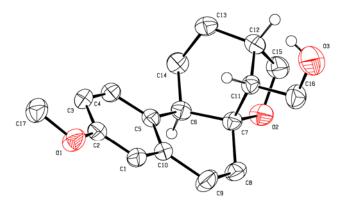
Compound **11** was prepared by LiAlH₄ reduction of compound **13** similarly as above in 98% yield as a colorless oil. **11**: $R_f = 0.15$ (PET : EtOAc = 1 : 2); IR (film): v_{max} 3358, 2930, 1602, 1490, 1457, 1259, 1156, 1038, 784, 701 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.20 (1H, t, J = 8.0 Hz, ArH), 6.80–6.72 (3H, m, ArH), 6.35 (1H, d, J = 5.2 Hz, CH=)), 6.22 (1H, t, J = 5.6 Hz, CH=), 4.69 (2H, br s, OH), 4.58 (1H, s, OCH), 3.78 (3H, s, OMe), 3.87–3.68 (4H, m, OCH₂), 2.73–2.66 (2H, m, CH₂), 2.15–1.93 (4H, m) *ppm*; ¹³C NMR (100 MHz, CDCl₃): δ 159.4, 143.4, 137.7, 135.9, 129.3, 120.5, 113.9, 111.0, 90.4, 80.8, 62.8, 60.0, 54.9, 44.5, 44.1, 31.6, 31.5 *ppm*

3. Cyclization of compound 14


To a solution of compound **14** (2.90 g, 10.00 mmol) in dry CH_2Cl_2 (20 mL) was added BF₃•Et₂O (10.00 mmol, 1.26 mL) at 0 °C under N₂. TLC indicated that compound **15** was the sole intermediary product at 0.5 h, which was transformed gradually into the cyclization products **16** and **17** entirely after 1 h. The reaction mixture was quenched with 2 mL of H₂O, extracted with ether, the organic layer was washed successively with water and brine, dried (Na₂SO₄), and concentrated in vacuo. The residue was purified by flash column chromatography (PET : EtOAc = 5 : 1) to give **16** (1.430 g, 53%) as a colorless oil and **17** (0.476 g, 17%) as a colorless oil.

16: IR (film): v_{max} 3415, 2931, 2872, 1608, 1500, 1462, 1236, 1042, 958, 851 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.15 (1H, d, J = 8.4 Hz, ArH), 6.72 (1H, dd, $J_1 = 9.6$ Hz, $J_2 = 2.4$ Hz, ArH), 6.63 (1H, d, J = 2.4 Hz, ArH), 6.20 (1H, m, CH=), 6.07 (1H, dd, $J_1 = 9.6$ Hz, $J_2 = 3.2$ Hz, CH=), 4.04 (1H, m, OCH₂), 3.93, (2H, m, OCH₂), 3.78 (3H, s, OMe), 3.55 (1H, t, J = 10.0 Hz, OCH₂), 3.39 (1H, br s, CH), 2.98–2.81(3H, m), 2.08–1.98(3H, m) *ppm*; ¹³C NMR (100 MHz, CDCl₃): δ 157.5, 136.4, 132.8, 130.8, 127.7, 127.6, 113.1, 112.3, 83.3, 74.6, 60.4, 55.2, 49.7, 45.7, 38.1, 29.7, 28.9 *ppm*; HRMS (ESI) *m/z*: calcd for C₁₇H₂₁O₃ 273.1485, found for [M+H]⁺273.1488

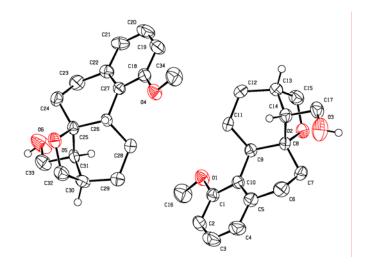
17: IR (film): v_{max} 3420, 2931, 2874, 1579, 1464, 1438, 1249, 1094, 1039, 962, 907, 856 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.08 (1H, t, *J* = 8.0 Hz, ArH), 6.70 (2H, m, ArH), 6.50 (1H, dd, *J*₁ = 9.6 Hz, *J*₂ = 3.2 Hz, CH=), 6.20 (1H, m, CH=), 4.08 (1H, m, OCH₂), 3.95 (2H, m, OCH₂), 3.82 (3H, s, OMe), 3.53 (2H, m, OCH₂), 3.00 (1H, m, CH), 2.76 (2H, m, CH₂), 2.05 (1H, m, CH), 1.96 (2H, m, CH₂) *ppm*; ¹³C NMR (100 MHz, CDCl₃): δ 157.8, 137.3, 133.2, 128.1, 126.8, 126.5, 121.2 108.3, 83.7, 75.0, 60.5, 55.0, 49.7, 46.9, 36.8, 29.5, 29.4 *ppm*; HRMS (ESI) *m/z*: calcd for C₁₇H₂₁O₃ 273.1485, found for [M+H]⁺ 273.1481


15: IR (film): v_{max} 3367, 2943, 2880, 1603, 1490, 1458, 1260, 1154, 1038, 908, 783, 733, 696 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.22 (1H, t, *J* = 7.6 Hz, ArH), 6.80 (1H, d, *J* = 7.6 Hz, ArH), 6.75 (2H, m, ArH), 6.03 (1H, d, *J* = 9.6 Hz, CH=), 5.87 (1H, dd, *J*₁ = 9.2 Hz, *J*₂ = 2.4 Hz, CH=), 4.20 (1H, s, OCH), 4.04 (1H, m, OCH₂), 3.82 (4H, m, OMe & OCH₂), 3.56 (1H, m, OCH₂), 3.38 (1H, d, *J* = 9.2 Hz, OCH₂), 2.66 (3H, m), 2.32 (2H, m), 2.00 (2H, m, CH₂) *ppm*; ¹³C NMR (100 MHz, CDCl₃): δ 159.6, 143.2, 136.2, 129.4, 120.5, 114.0, 111.1, 81.3, 70.5, 66.1, 60.6, 60.4, 55.1, 44.0, 43.6, 34.9, 30.7 *ppm*; HRMS (ESI) *m/z*: calcd for C₁₇H₂₆O₄N 308.1856, found for [M+NH₄]⁺ 308.1860

4. Preparation of compound 18

To a solution of **16** (1.36 g, 5.00 mmol) in EtOAc (20 mL) was added 10% Pd/C (136 mg) at room temperature. The reaction flask was evacuated and recharged with H₂ for three times by a H₂ balloon. After 5 h under H₂ atmosphere, the suspension was filtered through Celite and washed with EtOAc. The filtrate was concentrated in vacuo. The residue was purified by flash column chromatography (PET : EtOAc = 2 : 1) to give hydrogenation product **18** (1.30 g, 95%) as colorless solids. $R_f = 0.31$ (PET : EtOAc = 1 : 2); mp. 152–153 °C; IR (film): v_{max} 3400, 2928, 2858, 1607, 1492, 1420, 1267, 1247, 1070, 1048, 1026 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.16 (1H, d, J = 8.4

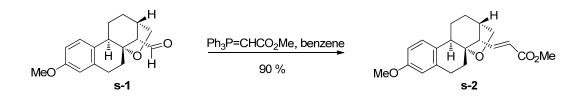
Hz, ArH), 6.70 (1H, d, J = 8.4 Hz, ArH), 6.65 (1H, s, ArH), 4.00 (1H, m, OCH₂), 3.91 (1H, d, J = 8.0 Hz, OCH₂), 3.78 (4H, m, OCH₂ & OMe), 3.43 (1H, m, OCH₂), 3.00 (2H, m, CH₂), 2.85 (1H, d, J = 6.4 Hz, CH₂), 2.48 (1H, s, CH), 2.24 (1H, m, CH₂), 2.15 (1H, m, CH₂), 2.06 (1H, m, CH₂), 1.96 (2H, m, CH₂), 1.80 (1H, m, CH), 1.60 (1H, m, CH₂), 1.48 (1H, m, CH₂) *ppm*; ¹³C NMR (100 MHz, CDCl₃): δ 157.5, 137.4, 130.7, 125.5, 113.8, 111.4, 84.5, 70.0, 61.0, 55.1, 47.6, 46.0, 37.8, 29.2, 28.7, 27.5, 20.3 *ppm*; HRMS (ESI) *m/z*: calcd for C₁₇H₂₆O₃N 292.1907, found for [M+NH₄]⁺ 292.1902


	uc aala of Compound 18
Empirical formula	$C_{17} H_{22} O_3$
Formula weight	274.35
Temperature (K)	294(2)
Wavelength (Å)	0.71073
Crystal system	Triclinic
space group	P1
	$a = 5.4774(11) \text{ Å}$ $\alpha = 101.285(3)^{\circ}$
Unit cell dimensions	$b = 9.2965(18) \text{ Å}$ $\beta = 96.906(3)^{\circ}$
	$c = 13.809(3) \text{ Å}$ $\gamma = 92.077(3)^{\circ}$
Volume (Å ³)	683.3(2)
Z	2
Calculated density (Mg/m ³)	1.333
Absorption coefficient (mm ⁻¹)	0.090
Crystal size (mm ³)	0.18 x 0.22 x 0.26
θ range	1.52 to 26.41°
Reflections collected / unique	3880 / 2753
R _{int}	0.0129
Data / restraints / parameters	2753 / 0 / 183
Goodness-of-fit on F ²	1.038
$R_1(I>2\sigma(I))$	0.0499
WR ₂ (all data)	0.1413

X-ray crystallographic data of Compound 18

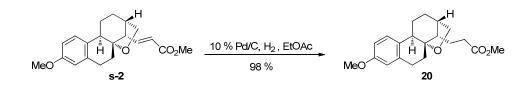
5. Preparation of compound 19


To a solution of **17** (1.36 g, 5.00 mmol) in EtOAc (20 mL) was added 10% Pd/C (136 mg) at room temperature. The reaction flask was evacuated and recharged with H₂ for three times by a H₂ balloon. After 5 h under H₂ atmosphere, the suspension was filtered through Celite and washed with EtOAc. The filtrate was concentrated in vacuo. The residue was purified by flash column chromatography (PET : EtOAc = 2 : 1) to give compound **19** (1.25 g, 95%) as colorless solids. R_f = 0.32 (PET : EtOAc = 1 : 2); mp. 151–152 °C; IR (film): v_{max} 3423, 2922, 2855, 1581, 1481, 1438, 1246, 1065, 1019, 970, 895, 780, 738 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.06 (1H, t, *J* = 8.0 Hz, ArH), 6.70 (2H, d, *J* = 8.4 Hz, ArH), 4.09 (1H, m, OCH₂), 3.78 (4H, m, OMe & OCH₂), 3.61 (2H, m, OCH₂), 3.10 (1H, m, CH), 2.70 (2H, m, CH₂), 2.50 (1H, t, *J* = 6.4 Hz, CH), 2.23 (2H, m), 2.12 (2H, m), 1.80 (2H, m), 1.60 (1H, m), 1.18 (1H, m) *ppm*; ¹³C NMR (100 MHz, CDCl₃): δ 157.4, 138.7, 129.5, 126.0, 120.6, 108.3, 85.2, 73.8, 61.5, 55.1, 45.3, 43.3, 35.1, 30.6, 29.4, 28.8, 22.2 *ppm*; HRMS (ESI) *m/z*: calcd for C₁₇H₂₃O₃ 275.1642, found for [M+H]⁺ 275.1646

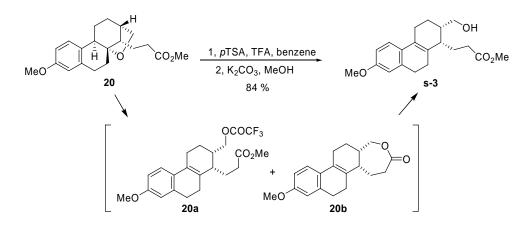

X-ray crystallographic data of 19		
Empirical formula	$C_{17} H_{22} O_3$	
Formula weight	274.35	
Temperature (K)	294(2)	
Wavelength (Å)	0.71073	
Crystal system	Orthorhombic	
space group	Pca21	
Unit cell dimensions	a = 14.159(2) Å	$\alpha = 90^{\circ}$

	$b = 6.4481(12) \text{ Å} \qquad \beta = 90^{\circ}$
	$c = 30.788(9) \text{ Å} \qquad \gamma = 90^{\circ}$
Volume (Å ³)	2810.8(11)
Z	8
Calculated density (Mg/m ³)	1.297
Absorption coefficient (mm ⁻¹)	0.087
Crystal size (mm ³)	0.16 x 0.32 x 0.38
θ range	2.65 to 27.18°
Reflections collected / unique	15370 / 3124
R _{int}	0.0591
Data / restraints / parameters	3124 / 1 / 372
Goodness-of-fit on F ²	1.006
Extinction coefficient	0.0067(8)
$R_1(I>2\sigma(I))$	0.0438
WR ₂ (all data)	0.1077

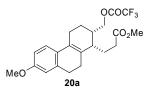
6. Preparation of compound 20



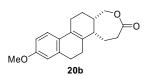
A solution of **18** (1.37 g, 4.15 mmol) in DMSO (10 mL) was treated with IBX (1.1 eq, 1.28 g, 4.60 mmol) at 30 °C and stirred for 30 min, extracted with ether, the organic layer was washed successively with water and brine, dried (Na₂SO₄), and concentrated in vacuo. The residue was purified by flash column chromatography (PET : EtOAc = 10 : 1) to give compound **s-1** (1.15 g, 85%) as white plates. $R_f = 0.70$ (PET : EtOAc = 3 : 1); mp. 113–115 °C; IR (film): $v_{max} 2926$, 2856, 1717, 1606, 1493, 1457, 1251, 1504, 1036, 970, 911, 881 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 9.82 (1H, d, *J* = 3.6 Hz, CHO), 7.17 (1H, d, *J* = 8.8 Hz, ArH), 6.72 (1H, dd, *J_I* = 8.4 Hz, *J₂* = 2.8 Hz, ArH), 6.68 (1H, s, ArH), 4.22–4.20 (1H, m, OCH₂), 4.08 (1H, d, *J* = 8.4 Hz, OCH₂), 3.78 (3H, s, OMe), 3.0 (2H, m, CH₂), 2.93 (1H, d, *J* = 6.4 Hz, CH₂), 2.68 (1H, s, CH), 2.43 (1H, d, *J* = 3.6 Hz, CH), 2.44–2.22 (3H, m, CH₂), 2.12 (1H, d, *J* = 8.4 Hz, CH), 1.69–1.63 (1H, m, CH₂), 1.53–1.45 (2H, m, CH₂) *ppm*; ¹³C NMR (100 MHz, CDCl₃): δ 202.7, 157.9, 136.9, 129.9, 125.7, 113.9, 112.0, 85.5, 71.1, 57.5, 55.1, 45.8, 37.9, 30.2, 28.6, 26.6, 20.2 *ppm*; HRMS (ESI) *m/z*: calcd for C₁₇H₂₄O₃N 290.1751, found for [M+NH₄]⁺ 290.1757

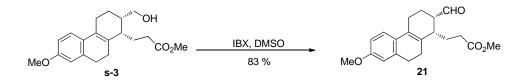

A solution of s-1 (680 mg, 2.50 mmol) in 15 mL of benzene was added powdered ylide $Ph_3P=CHCO_2Me$ (1.67 g, 5.00 mmol). The reaction mixture was heated to 50 °C, stirred for 2 h, cooled to room temperature and extracted with ether. The organic layer was washed successively

with water and brine, dried (Na₂SO₄), and concentrated in vacuo. The residue was purified by flash column chromatography (PET : EtOAc = 3 : 1) to give compound **s-2** (738 mg, 90%) as white plates. $R_f = 0.45$ (PET : EtOAc = 3 : 1); mp. 127–129 °C; IR (film): v_{max} 2940, 1722, 1652, 1612, 1574, 1498, 1459, 1436, 1321, 1272, 1240, 1171, 1067, 1045, 985, 915, 874, 791, 731, 587 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.18 (1H, d, J = 8.4 Hz, ArH), 7.00 (1H, dd, $J_1 = 15.6$ Hz, $J_2 = 10.4$ Hz, CH=), 6.70 (1H, d, J = 8.4 Hz, ArH), 6.65 (1H, s, ArH), 5.82 (1H, d, J = 15.6 Hz, CH=), 4.15 (1H, m, OCH₂), 4.00 (1H, d, J = 8.4 Hz, OCH₂), 3.76 (3H, s, OMe), 3.72 (3H, s, OMe), 2.93–2.81 (3H, m, CH & OCH₂), 2.39 (1H, d, J = 10.4 Hz, CH), 2.45–2.15 (3H, m, CH & OCH₂), 1.97–1.90 (2H, m, CH₂), 1.63–1.53 (2H, m, CH₂) *ppm*; ¹³C NMR (100 MHz, CDCl₃): δ 166.4, 157.5, 147.0, 137.3, 130.2, 125.5, 122.4, 113.6, 111.5, 84.9, 70.2, 54.9, 51.3, 49.4, 45.0, 42.3, 30.2, 27.9, 26.9, 20.0 *ppm*; HRMS (ESI) *m/z*: calcd for C₂₀H₂₅O₄ 329.1747, found for [M+H]⁺ 329.1750

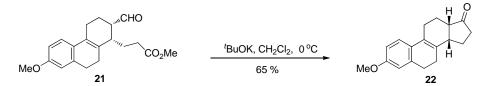


To a solution of **s-2** (1.38 g, 4.20 mmol) in EtOAc (20 mL) was added 10% Pd/C (130 mg) at room temperature. The reaction flask was evacuated and recharged with H₂ for three times by a H₂ balloon. After being stirred for 20 h under H₂ atmosphere, the suspension was filtered through Celite and washed with EtOAc. The filtrate was concentrated in vacuo. The residue was purified by flash column chromatography (PET : EtOAc = 5 : 1) to give compound **20** (1.35 g, 98%) as white plates. $R_f = 0.43$ (PET : EtOAc = 3 : 1); mp. 105–106 °C; IR (film): v_{max} 2937, 2877, 1734, 1611, 1497, 1461, 1437, 1367, 1269, 1163, 1070, 1050, 975, 790, 582 cm⁻¹; ¹H NMR (100 MHz, CDCl₃): δ 7.15 (1H, d, *J* = 8.4 Hz, ArH), 6.66 (2H, m, ArH), 4.00 (1H, m, OCH₂), 3.90 (1H, d, *J* = 8.4 Hz, OCH₂), 3.78 (3H, s, OMe), 3.60 (3H, s, OMe), 2.96 (2H, m, CH₂), 2.90 (1H, d, *J* = 6.0 Hz, CH), 2.34–2.30 (1H, m, CH), 2.24–2.12 (5H, m), 1.97–1.84 (2H, m, CH₂), 1.61–1.42 (4H, m, CH₂) *ppm*; ¹³C NMR (100 MHz, CDCl₃): δ 173.7, 157.4, 137.5, 130.8, 125.4, 113.7, 113.3, 85.0, 69.7, 54.9, 51.3, 45.9, 44.6, 38.5, 31.7, 29.2, 28.5, 27.8, 22.2, 20.3 *ppm*; HRMS (ESI) *m/z*: calcd for C₂₀H₂₇O₄ 331.1904, found for [M+H]⁺ 331.1903

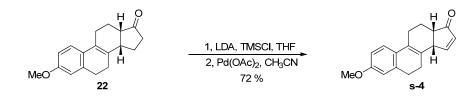

7. Preparation of compound 21


A solution of 20 (330 mg, 1.00 mmol) in 10 mL of benzene was treated with 0.5 mL TFA and p-toluenesulfoic acid (60 mg, 0.20 mmol). The reaction mixture was heated to 50 °C, stirred for 1 h, cooled to room temperature and the reaction mixture was guenched by 2 mL of saturated aqueous NaHCO₃, extracted with ether, the organic layer was washed successively with water and brine, dried (Na₂SO₄), concentrated in vacuo to give the crude acidolysis product mixture which was used directly in the following step without further purification. The crude product mixture was dissolved in absolute MeOH (5 mL), to which K₂CO₃ (207 mg, 1.50 mmol) was added at room temperature and stirred for 10 min. The reaction mixture was extracted with ether, the organic layer was washed successively with water and brine, dried (Na_2SO_4) , and concentrated in vacuo. The residue was purified by flash column chromatography (PET : EtOAc = 5 : 1) to give compound s-3 (280 mg, 84%) as a colorless oil. $R_f = 0.15$ (PET : EtOAc = 3 : 1); IR (film): v_{max} 3438, 2927, 2875, 1734, 1608, 1499, 1252, 1161, 1038, 808 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.10 (1H, d, J = 8.0Hz, ArH), 6.68 (2H, m, ArH), 3.78 (3H, s, OMe), 3.67 (3H, s, OMe), 3.65-3.59 (2H, m, OCH₂), 2.71 (2H, t, J = 7.6 Hz, CH₂), 2.26–2.25 (7H, m), 2.19–2.13 (1H, m), 1.99–1.85 (2H, m), 1.72–1.65 (2H, m), 1.54–1.48 (1H, m) *ppm*; ¹³C NMR (100 MHz, CDCl₃) δ 174.5, 157.8, 137.3, 134.8, 129.0, 126.5, 122.9, 113.2, 110.7, 64.5, 55.1, 51.5, 40.3, 39.3, 33.4, 29.0, 28.9, 25.1, 24.6, 21.0 ppm; HRMS (ESI) m/z: calcd for C₂₀H₂₇O₄ 331.1904, found for $[M+H]^+$ 331.1906

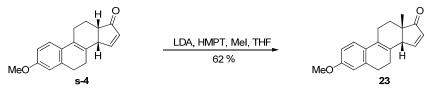
Intermediate **20a**: $R_f = 0.80$ (PET : AcOEt = 3 : 1); IR (film): v_{max} 2935, 2837, 1785, 1738, 1608, 1500, 1436, 1353, 1253, 1223, 1163, 1041, 853, 808, 776, 732, 611, 522 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.12 (1H, d, J = 8.4 Hz), 6.70 (2H, m), 4.37 (2H, m), 3.79 (3H, s), 3.68 (3H, s), 2.71 (2H, t, J = 7.6 Hz), 2.16–2.53 (8H, m), 1.83 (3H, m), 1.65 (1H, m) *ppm*; ¹³C NMR (100 MHz, CDCl₃): δ 173.6, 158.1, 157.7, 157.2 137.4, 133.4, 128.7, 126.9, 123.1, 113.3, 110.9, 69.7, 55.2, 51.6, 39.5, 36.5, 29.0, 28.5, 24.7, 24.6, 21.1 *ppm*; EIMS *m/z* (%): 426 (M⁺, 33), 225 (100), 165 (38), 105 (42), 69 (76).



Intermediate **20b**: $R_f = 0.20$ (PET : AcOEt = 3 : 1); mp. 164–166 °C; IR (film): v_{max} 2931, 2835, 2250, 1731, 1608, 1571, 1499, 1435, 1395, 1330, 1303, 1279, 1252, 1167, 1070, 1039, 912, 809, 732 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.12 (1H, d, J = 8.4 Hz), 6.70 (2H, m), 4.39 (1H, d, J = 12.8 Hz), 4.21 (1H, dd, $J_I = 8.8$ Hz, $J_2 = 5.2$ Hz), 3.78 (3H, s), 2.68 (4H, m), 2.50 (2H, m), 2.30 (2H, m), 1.80 (3H, m), 1.65 (3H, m) *ppm*; ¹³C NMR (100 MHz, CDCl₃): δ 175.5, 158.1, 137.2, 133.3, 128.5, 126.8, 123.1, 113.3, 110.8, 71.2, 55.1, 43.9, 37.2, 32.6, 28.9, 27.5, 25.5, 2.38, 20.4 *ppm*; EIMS m/z (%): 298 (M⁺, 100), 225 (74), 211 (43), 115 (32).


A solution of s-3 (700 mg, 2.12 mmol) in DMSO (10 mL) was treated with IBX (650 mg, 2.33 mmol) at 30 °C and stirred for 30 min, extracted with ether, the organic layer was washed successively with water and brine, dried (Na₂SO₄), and concentrated in vacuo. The residue was purified by flash column chromatography (PET : EtOAc = 10 : 1) to give compound **21** (580 mg, 83%) as white plates. R_f = 0.60 (PET : EtOAc = 2 : 1); mp. 104–105 °C; IR (film): v_{max} 2926, 2831, 1733, 1713, 1606, 1497, 1433, 1245, 1198, 1154, 1039, 980, 803 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 9.86 (1H, s, CHO), 7.11 (1H, d, *J* = 8.4 Hz, ArH), 6.69 (2H, m, ArH), 3.78 (3H, s, OMe), 3.66 (3H, s, OMe), 2.73 (2H, t, *J* = 8.0 Hz), 2.67–2.62 (2H, m), 2.56–2.52 (1H, m), 2.44–2.30 (4H, m), 2.30–2.09 (2H, m), 1.90–1.83 (3H, m) *ppm*; ¹³C NMR (100 MHz, CDCl₃): δ 204.1, 173.2, 158.0, 137.1, 132.9, 128.4, 127.0, 122.9, 113.1, 110.7, 54.9, 51.4, 51.0, 38.6, 32.9, 28.7, 28.2, 26.1, 24.2, 18.1 *ppm*; HRMS (ESI) *m/z*: calcd for C₂₀H₂₄O₄Na 351.1567, found for [M+Na]⁺ 351.1571

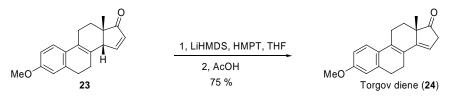
8. Preparation of compound 22


To a suspension of solid ^{*t*}BuOK (103 mg, 0.92 mmol) in 5 mL of dry CH₂Cl₂ at 0 °C was added a solution of compound **21** (75 mg, 0.23 mmol) in dry CH₂Cl₂ (1 mL) under N₂. After being stirred for only 1 min at 0 °C, the reaction was quenched by 0.5 mL of saturated aqueous NH₄Cl, extracted with ether. The organic layer was washed successively with water and brine, dried (Na₂SO₄), and concentrated in vacuo. The residue was purified by flash column chromatography (PET : EtOAc = 15 : 1) to give tetracyclic ketone **22** (36 mg, 65%)¹ as a colorless solid. R_f = 0.44 (PET : EtOAc = 5 : 1); mp. 129–130 °C; IR (film): v_{max} 2927, 2881, 1736, 1607, 1498, 1430, 1251, 1143, 1041, 812 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.08 (1H, d, *J* = 8.0 Hz, ArH), 6.69 (2H, m, ArH), 3.79 (3H, s, OMe), 2.97 (1H, s, CH), 2.81–2.69 (2H, m, CH₂), 2.47–2.10 (8H, m, CH & CH₂), 2.02–1.92 (2H, m, CH₂), 1.86–1.80 (1H, m, CH₂) *ppm*; ¹³C NMR (100 MHz, CDCl₃): δ 221.4, 158.1, 137.0, 131.3, 129.1, 128.3, 123.1, 113.3, 110.8, 55.2, 47.4, 41.0, 36.9, 28.7, 26.9, 26.0, 23.1, 20.7 *ppm*; HRMS (ESI) *m/z*: calcd for C₁₈H₂₁O₂ 269.1536, found for [M+H]⁺ 269.1543

9. Preparation of compound 23

¹ The *cis* stereochemistry of tetracyclic ketone product **22** was deduced according to: (a) House, H. O.; Rasmusson, G. H. J. Org. Chem. **1963**, 28, 31; (b) Snider, B. B.; Marin, C. P. C. J. Org. Chem. **1984**, 49, 1688.

To a stirred solution of diisopropylamine (0.07 mL) in dry THF (1 mL) was added *n*-BuLi (1.6 M in hexane, 0.25 mL) dropwise at 0 °C under N2, and the mixture was stirred for 30 min. The resulting LDA solution was cooled to -78 °C, and then a solution of 22 (35 mg, 0.13 mmol) in dry THF (1 mL) was added dropwise via a syringe, stirred for 10 min. A solution of TMSCl (0.07 mL) in THF (1 mL) was added, stirred for 10 min and monitored by TLC. The solvent was evaporated and the resulting suspension was filtered through alumina (1.00 g, PET : EtOAc = 4 : 1). After removing the solvent, the remaining crude silvl ether was taken in dry acetonitrile (1 mL), Pd(OAc)₂ (30 mg) was added.² The resulting mixture was stirred for 2 h at room temperature and filtered through Celite. The filtrate was concentrated in vacuo. The crude residue was purified by flash column chromatography (PET : EtOAc = 10 : 1) to give dehydrogenated product s-4 (25 mg, 72%). $R_f = 0.30$ (PET : EtOAc = 5 : 1); mp. 111–112 °C; IR (film): v_{max} 2929, 2833, 1705, 1606, 1498, 1251, 1160, 1040, 855, 808 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.71 (1H, dd, $J_1 = 5.6$ Hz, $J_2 = 2.8$ Hz, CH=), 7.06 (1H, d, J = 8.0 Hz, ArH), 6.70 (2H, m, ArH), 6.16 (1H, dd, J₁ = 5.6 Hz, J₂ = 2.0 Hz, CH=), 3.79 (3H, s, OMe), 3.62 (1H, br s, CH), 2.89–2.67 (3H, m, CH & CH₂), 2.46–2.35 (2H, m, CH₂), 2.36–2.24 (1H, m, CH₂), 2.18–2.06 (2H, m, CH₂), 1.93–1.86 (1H, m, CH₂) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 212.1, 164.3, 158.2, 136.6, 132.2, 129.9, 128.8, 128.3, 123.4, 113.5, 110.9, 55.3, 47.3, 44.9, 28.6, 27.5, 23.9, 22.4 ppm; HRMS (ESI) m/z: calcd for C₁₈H₁₉O₂ 267.1380, found for [M+H]⁺ 267.1385


To a stirred solution of diisopropylamine (0.26 mL) in dry THF (1 mL) was added n-BuLi (1.6 M in hexane, 0.90 mL) dropwise at 0 °C under N₂, and the mixture was stirred for 10 min. The resulting LDA solution was cooled to -78 °C, and then a solution of s-4 (20 mg, 0.075 mmol) and HMPT (0.2 mL) in dry THF (1mL) was added dropwise via syringe, stirred for 30 min. MeI (0.2 mL, excess) was added. The reaction was allowed to warm to room temperature slowly, stirred for 2 h and monitored by TLC.³ The reaction was quenched by 0.5 mL of saturated aqueous NH₄Cl, extracted with ether, the organic layer was washed successively with water and brine, dried (Na_2SO_4) , and concentrated in vacuo. The residue was purified by flash column chromatography to give compound 23 (13 mg, 62%).⁴ $R_f = 0.32$ (PET : EtOAc = 5 : 1); mp. 113–114 °C; IR (film): v_{max} 2923, 2851, 1707, 1607, 1499, 1250, 1158, 1039, 812 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.63 (1H, d, J = 8.0 Hz, CH=), 7.08 (1H, d, J = 8.0 Hz, ArH), 6.71 (2H, m, ArH), 6.11 (1H, dd, J₁ = 5.6, J₂ = 2.8 Hz, CH=), 3.80 (3H, s, OMe), 3.15 (1H, s, CH), 2.85–2.75 (2H, m, CH₂), 2.45–2.39 (2H, m, CH₂), 2.32-2.12 (2H, m, CH₂), 1.94-1.89 (1H, m, CH₂), 1.62-1.58 (1H, m, CH₂), 1.20 (3H, s, Me) *ppm*; ¹³C NMR (100 MHz, CDCl₃): δ 214.5, 162.6, 158.3, 136.7, 130.6, 129.6, 128.6, 128.4, 123.4, 113.6, 111.0, 55.5, 46.9, 31.5, 29.7, 28.7, 27.5, 22.5, 22.3 ppm; HRMS (ESI) m/z: calcd for C₁₉H₂₁O₂ 281.1536, found for [M+H]⁺ 281.1536

² For similar experimental procedures of ketone dehydrogenation via the corresponding enolsilane, see: (a) Singh, V.; Vedantham, P.; Sahu, P. K. *Tetrahedron Lett.* **2002**, *43*, 519; (b) Singh, V.; Vedantham, P.; Sahu, P. K. *Tetrahedron* **2004**, *60*, 8161. (c) Asano, M.; Inoue, M.; Katoh, T. *Synlett* **2005**, 2599.

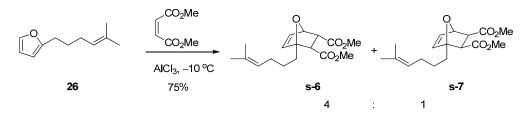
³ For similar experimental procedures, see: (a) Paquette, L. A.; Geng, F. J. Am. Chem. Soc. **2002**, 124, 9199; (b) Geng, F.; Liu, J.; Paquette, L. A. Org. Lett. **2002**, 4, 71.

⁴ All spectroscopic data (IR, ¹H NMR and ¹³C NMR) of synthetic compound **23** are consistent with those of reported in a recent literature: Weimar, M.; Dürner, G.; Bats, J. W.; Göbel, M. W. J. Org. Chem. **2010**, 75, 2718.

10. Preparation of Torgov diene 24^{5}

To a stirred solution of HMDS (10 eq, 0.05 mL) and HMPT (0.5 mL) in dry THF (1mL) was added n-BuLi (1.6M in hexane, 0.17 mL) dropwise at -78 °C under N₂, and the mixture was stirred for 15 min. A solution of compound 23 (8 mg, 0.03 mmol) in dry THF (1 mL) was added dropwise via a syringe. After stirring for 20 min. at -78 °C, the reaction mixture was treated with glacial acetic acid (0.5 mL) and warmed to room temperature gradually. The mixture was poured into a solution of aqueous HCl (1 M, 5 mL), extracted with ether, the organic layer was washed successively with water and brine, dried (Na₂SO₄), and concentrated in vacuo. The residue was purified by flash column chromatography (PET : EtOAc = 15 : 1) to give compound 24 (6 mg, $(75\%)^6$ as colorless solids. $R_f = 0.48$ (PET : EtOAc = 5 : 1); mp. 106–107 °C; [Lit.^{5b} mp. 115–116] °C (MeOH); Lit.^{5c} mp. 108–109 °C (MeOH)]; IR (film): v_{max} 2922, 2852, 1744, 1601, 1461, 1248, 1160, 1041, 800 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.25 (1H, s, ArH), 6.73 (2H, m, ArH), 5.87 (1H, s, CH=), 3.82 (3H, s, OMe), 3.33 (1H, dd, $J_1 = 23.2$ Hz, $J_2 = 2.8$ Hz, CH₂), 2.93 (1H, dd, $J_1 = 23.2$ Hz, $J_2 = 2.8$ Hz, CH₂), 2.93 (1H, dd, $J_1 = 23.2$ Hz, $J_2 = 2.8$ Hz, CH₂), 2.93 (1H, dd, $J_1 = 23.2$ Hz, $J_2 = 2.8$ Hz, CH₂), 2.93 (1H, dd, $J_1 = 23.2$ Hz, $J_2 = 2.8$ Hz, CH₂), 2.93 (1H, dd, $J_1 = 23.2$ Hz, $J_2 = 2.8$ Hz, CH₂), 2.93 (1H, dd, $J_1 = 23.2$ Hz, $J_2 = 2.8$ Hz, CH₂), 2.93 (1H, dd, $J_1 = 23.2$ Hz, $J_2 = 2.8$ Hz, CH₂), 2.93 (1H, dd, $J_1 = 23.2$ Hz, $J_2 = 2.8$ Hz, CH₂), 2.93 (1H, dd, $J_1 = 23.2$ Hz, $J_2 = 2.8$ Hz, CH₂), 2.93 (1H, dd, $J_1 = 23.2$ Hz, $J_2 = 2.8$ Hz, CH₂), 2.93 (1H, dd, $J_1 = 23.2$ Hz, $J_2 = 2.8$ Hz, CH₂), 2.93 (1H, dd, $J_1 = 23.2$ Hz, $J_2 = 2.8$ Hz, CH₂), 2.93 (1H, dd, $J_1 = 23.2$ Hz, $J_2 = 2.8$ Hz, CH₂), 2.93 (1H, dd, $J_1 = 23.2$ Hz, $J_2 = 2.8$ Hz, CH₂), 2.93 (1H, dd, $J_1 = 23.2$ Hz, $J_2 = 2.8$ Hz, CH₂), 2.93 (1H, dd, J_1 = 23.2 Hz, $J_2 = 2.8$ Hz, CH₂), 2.93 (1H, dd, J_1 = 23.2 Hz, $J_2 = 2.8$ Hz, CH₂), 2.93 (1H, dd, J_1 = 23.2 Hz, $J_2 = 2.8$ Hz, J23.2 Hz, J₂ = 2.8 Hz, CH₂), 2.81 (2H, m, CH₂), 2.66–2.59 (3H, m, CH₂), 2.33–2.29 (1H, m, CH₂), 2.07-2.02 (1H, m, CH₂), 1.63-1.59 (1H, m, CH₂), 1.14 (3H, s, Me) ppm; ¹³C NMR (100 MHz, CDCl₃): § 220.1, 158.7, 146.9, 138.2, 129.9, 128.6, 125.3, 124.1, 114.7, 113.6, 111.1, 55.3, 49.1, 42.0, 29.7, 28.4, 27.3, 23.0, 20.6 ppm; HRMS (ESI) m/z: calcd for C₁₉H₂₁O₂ 281.1536, found for $[M+H]^{+} 281.1543$

11. Preparation of compound 26

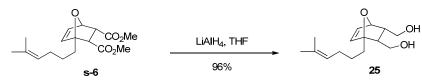

A mixture of furano bromide s-5 (2.03 g, 10.00 mmol)⁷ and triphenylphosphine (2.62 g, 10.00 mmol) in 20 mL of benzene was refluxed for 1 day. After cooling to room temperature and filtration, the solids were collected and air-dried to give 2.6 g of white solids, which was suspended in 10 mL of THF and treated with ^{*t*}BuOK (1.68 g, 15.00 mmol) at 0 °C. The resulting mixture was stirred for 30 min, to which dry acetone (560 mg, 10.00 mmol) was added at 0 °C. After stirring for 4 h at room temperature, the reaction mixture was quenched with 5 mL water, extracted with ether, the organic layer was washed successively with water and brine, dried (Na₂SO₄), and concentrated in vacuo. The residue was purified by flash column chromatography (PET) to give compound **26** (492 mg, 80 %) as a colorless oil. R_f = 0.80 (PET); ¹H NMR (400 MHz, CDCl₃): δ 7.28 (1H, m, Furan-H), 6.26 (1H, m, Furan-H), 5.13 (1H, t, *J* = 7.2 Hz, CH=), 2.61 (2H, t, *J* = 7.6 Hz, CH₂), 2.03 (2H, q, *J* = 7.2 Hz, CH₂), 1.69 (5H, m, Me & CH₂), 1.59 (3H, s, Me) *ppm*; ¹³C NMR (100 MHz, CDCl₃): δ 156.4, 140.6, 132.0, 124.0, 110.0, 104.6, 28.1, 27.5, 27.4, 25.7, 17.7 *ppm*

⁵ (a) Hu, Q.-Y.; Rege, P. D.; Corey, E. J. J. Am. Chem. Soc. 2004, 126, 5984; (b) Quinkert, G; Grosso, M. D.; Döring, A. Döring, W.; Schenkel, R.; Bauch, M.; Dambacher, G. T.; Bats, J. W.; Zimmermann, G; Dürner, G. Helv. Chim. Acta. 1995, 78, 1345; (c) Ananchenko, S. N.; Torgov, I. V. Tetrahedron Lett. 1963, 3, 1553.

⁶ All spectroscopic data (IR, ¹H NMR and ¹³C NMR) of synthetic compound **24** are consistent with those of reported in the literatures.⁵

⁷ Prepared according to: Christnreo, G.; Briana, K. Can. J. Chem. **1992**, 70, 2929.

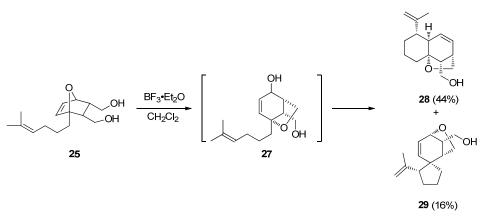
12. The Diels–Alder cycloaddition of furan 26 with dimethyl maleate



Dimethyl maleate (792 mg, 5.50 mmol) was introduced into a flask containing powdered AlCl₃ (133.5 mg, 1.00 mmol) at -10 °C under N₂. The resulting mixture was stirred for 10 min., and compound **26** (802 mg, 5 mmol) was added via a syringe. The reaction mixture was stirred at -10 °C for 2 days, extracted with ether, the organic layer was washed successively with water and brine, dried (Na₂SO₄), and concentrated in vacuo. The residue was purified by flash column chromatography (PET : EtOAc = 5 : 1) to give the endo-adduct **s-6** (951 mg, 60%) as a colorless oil and the exo-isomer **s-7** (230 mg, 15%) as white plates.

s-6: $R_f = 0.50$ (PET : EtOAc = 2 : 1); IR (film): v_{max} 3467, 2950, 2859, 1744, 1438, 1202, 1164, 1060, 1011, 930, 714, 496 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 6.47 (1H, d, J = 5.6 Hz, CH=), 6.40 (1H, d, J = 5.6 Hz, CH=), 5.11 (1H, t, J = 7.2 Hz, CH=), 5.05 (1H, dd, $J_1 = 4.8$, $J_2 = 1.6$ Hz, OCH), 3.64 (3H, s, OMe), 3.61 (3H, s, OMe), 3.55 (1H, dd, $J_1 = 10.0$, $J_2 = 4.4$ Hz, CH), 3.09 (1H, d, J = 10.4 Hz, CH), 2.09 (3H, m, CH₂), 1.85 (1H, m, CH₂), 1.68 (3H, s, Me), 1.60 (3H, s, Me), 1.45 (2H, m, CH₂) *ppm*; ¹³C NMR (100 MHz, CDCl₃): δ 171.0, 170.5, 137.1, 134.7, 131.6, 123.9, 91.6, 79.2, 51.5, 51.2, 50.5, 31.1, 28.0, 25.5, 24.8, 17.5 *ppm*; HRMS (ESI) *m/z*: calcd for C₁₇H₃₂NO₅N 326.1962, found for [M+NH₄]⁺ 326.1957

s-7: $R_f = 0.25$ (PET : EtOAc = 2 : 1); mp. 83–84 °C ; IR (film): v_{max} 3446, 2951, 2868, 1748, 1437, 1357, 1215, 1162, 1047, 930, 843, 731, 517, 424 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 6.45 (1H, m, CH=), 6.28 (1H, d, J = 6.0 Hz, CH=), 5.40 (1H, d, J = 1.6 Hz, OCH), 5.09 (1H, t, J = 7.2 Hz, CH=), 3.70 (3H, s, OMe), 3.68 (3H, s, OMe), 2.93 (1H, d, J = 8.8 Hz, CH), 2.81 (1H, d, J = 8.8 Hz, CH), 2.00 (2H, m, CH₂), 1.83 (3H, m, CH₂),), 1.67 (3H, s, Me), 1.58 (3H, s, Me), 1.45 (1H, m, CH₂) *ppm*; ¹³C NMR (100 MHz, CDCl₃): δ 171.8, 171.6, 138.2, 137.2, 132.0, 123.8, 91.6, 79.0, 52.1, 51.8, 50.1, 49.9, 29.2, 28.1, 25.6, 25.3, 17.6 *ppm*; HRMS (ESI) *m/z*: calcd for C₁₇H₃₂NO₅N 326.1962, found for [M+NH₄]⁺ 326.1959

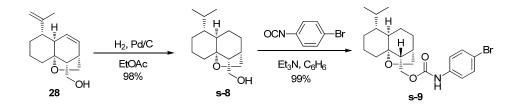

13. Preparation of compound 25

To a suspension of powdered LiAlH₄ (76 mg, 2.00 mmol) in 10 mL of dry THF at 0 °C was added a solution of compound **s-6** (616 mg, 2.00 mmol) in dry THF (5 mL) under N₂. After being stirred for 10 min at 0 °C, the reaction mixture was quenched with 5 mL of water, extracted with ether, the organic layer was washed successively with water and brine, dried (Na₂SO₄), and concentrated in vacuo. The residue was purified by flash column chromatography (PET : EtOAc =

1 : 2) to give compound **25** (490 mg, 96%) as a colorless oil. $R_f = 0.20$ (PET : EtOAc = 1 : 2); IR (film): v_{max} 3374, 2923, 2856, 1442, 1380, 1037, 935, 725, 468 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 6.26 (1H, d, J = 5.2 Hz, CH=), 6.11 (1H, d, J = 6.0 Hz, CH=), 5.11 (1H, t, J = 7.2 Hz, CH=), 4.77 (1H, dd, $J_1 = 4.4$, $J_2 = 1.6$ Hz, OCH), 4.02 (2H, s, br., OH), 3.60 (2H, dd, $J_1 = 10.8$, $J_2 = 3.2$ Hz, OCH₂), 3.25 (2H, m, OCH₂), 2.77 (1H, m, CH), 2.36 (1H, m, CH), 2.04 (2H, m, CH₂), 1.97 (1H, m, CH₂), 1.81 (1H, m, CH₂), 1.69 (3H, s, Me), 1.60 (3H, s, Me), 1.56–1.42 (2H, m, CH₂) *ppm*; ¹³C NMR (100 MHz, CDCl₃): δ 137.0, 134.9, 131.8, 124.1, 90.9, 79.1, 61.0, 60.7, 48.5, 46.9, 31.4, 28.2, 25.7, 24.9, 17.7 *ppm*; HRMS (ESI) *m*/*z*: calcd for C₁₅H₂₈NO₃ 270.2064, found for [M+NH₄] + 270.2059

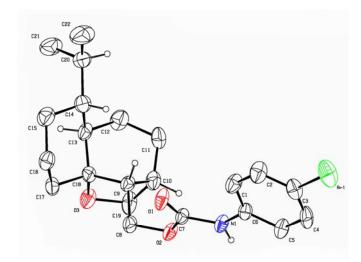
14. Cyclization of compound 25

To a solution of compound **25** (180 mg, 0.71 mmol) in dry CH_2Cl_2 (4 mL) was added $BF_3 \cdot Et_2O$ (0.09 mL, 0.70 mmol) at 0 °C under N₂. TLC indicated that the intermediary product **27** was formed after 10 min., which was transformed into the eventual cyclization products **28** and **29** after 30 min. The reaction mixture was quenched with 1 mL of H_2O , extracted with ether, the organic layer was washed successively with water and brine, dried (Na₂SO₄), and concentrated in vacuo. The residue was purified by flash column chromatography (PET : EtOAc = 5 : 1) to give **28** (72 mg, 44%) as a colorless oil and **29** (26 mg, 16%) as a colorless oil.


27: $R_f = 0.15$ (PET : EtOAc = 1 : 2); IR (film): v_{max} 3351, 2927, 2874, 1741, 1531, 1032, 914, 841, 763, 713, 666, 615, 526 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 5.88 (1H, d, J = 9.2 Hz, CH=), 5.78 (1H, s, br., CH=), 5.08 (1H, s, br., CH=), 4.13 (1H, s, br., OH), 4.00 (1H, m, br., OCH), 3.78 (3H, s, br., OCH₂ & OH), 3.34 (2H, m, OCH₂), 2.72 (1H, s, br., CH), 2.26 (1H, s, br., CH), 2.02 (2H, d, J = 6.8 Hz, CH₂), 1.69 (3H, s, Me), 1.57 (5H, m, Me & CH₂), 1.35 (2H, m, CH₂) *ppm*; ¹³C NMR (100 MHz, CDCl₃): δ 136.8, 132.2, 129.0, 123.8, 81.5, 70.5, 66.1, 60.3, 43.8, 43.3, 32.8, 28.3, 25.6, 24.7, 17.7 *ppm*; HRMS (ESI) *m/z*: calcd for C₁₅H₂₄O₃Na 275.1618, found for [M+Na]⁺ 275.1612

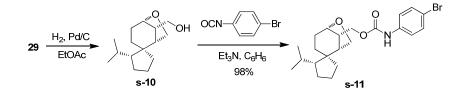
28: $R_f = 0.58$ (PET : EtOAc = 1 : 2); IR (film): v_{max} 3405, 2930, 2863, 1644, 1448, 1380, 1054, 1027, 960, 889, 852, 726, 571 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 6.05 (1H, m, CH=), 5.45 (1H, dd, $J_1 = 9.6, J_2 = 3.2$ Hz, CH=), 4.75 (1H, s, CH₂=), 4.71 (1H, s, CH₂=), 3.95 (1H, m, OCH₂), 3.85 (1H, m, OCH₂), 3.79 (1H, d, J = 3.2 Hz, OCH₂), 3.51 (1H, t, J = 10.0 Hz, OCH₂), 2.74 (1H, m), 2.30 (1H, t, J = 10.0 Hz), 2.04 (1H, m), 1.95 (1H, m), 1.80 (2H, m), 1.69 (3H, s), 1.60 (3H, m), 1.42–1.31 (2H, m) *ppm*; ¹³C NMR (100 MHz, CDCl₃): δ 146.8, 131.7, 128.7, 111.5, 84.5, 73.6,

60.5, 52.2, 50.9, 45.0, 38.8, 32.7, 31.9, 24.0, 19.1 *ppm*; HRMS (ESI) m/z: calcd for C₁₅H₂₆O₂N 252.1958, found for [M+NH₄]⁺ 252.1952

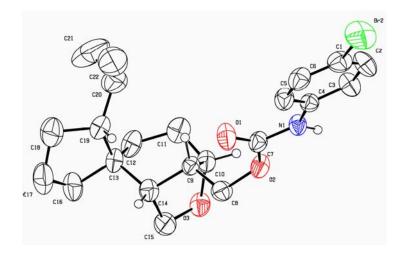

29: $R_f = 0.56$ (PET : AcOEt = 1 : 2); IR (film): v_{max} 3380, 2952, 2878, 1710, 1450, 1374, 1222, 1049, 888, 731, 574, 520 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 5.90 (1H, m, CH=), 5.60 (1H, d, J = 7.6 Hz, CH=), 4.80 (1H, s, CH₂=), 4.77 (1H, s, CH₂=), 4.22 (1H, d, J = 5.6 Hz, OCH), 3.70–3.50 (4H, m, OCH₂), 2.58–2.51 (2H, m), 2.10–1.59 (12H, m) *ppm*; ¹³C NMR (100 MHz, CDCl₃): δ 147.8, 136.2, 128.1, 112.4, 72.3, 67.7, 63.1, 57.1, 55.0, 46.8, 46.7, 36.9, 30.3, 22.4, 21.5 *ppm*; HRMS (ESI) *m/z*: calcd for C₁₅H₂₃O₂ 235.1693, found for [M+H]⁺ 235.1689

15. Hydrogenation of compound 28 and derivatization

To a solution of **28** (234 mg, 1.00 mmol) in EtOAc (20 mL) was added 10% Pd/C (28 mg) at room temperature. The reaction flask was evacuated and recharged with H₂ for three times by a H₂ balloon. After 5 h under H₂ atmosphere, the suspension was filtered through Celite and washed with EtOAc. The filtrate was concentrated in vacuo. The residue was purified by flash column chromatography (PET : EtOAc = 2 : 1) to give compound **s-8** (234 mg, 98%) as a colorless oil. R_f = 0.56 (PET : EtOAc = 1 : 2); IR (film): v_{max} 3417, 2929, 2868, 1741, 1462, 1367, 1179, 1072, 1031, 987, 959, 894, 843, 794, 656, 554 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 3.93 (1H, m, OCH₂), 3.78 (2H, m, OCH₂), 3.43 (1H, t, *J* = 10.0 Hz, OCH₂), 2.52 (1H, br. s, CH), 2.21 (1H, dd, J_1 = 9.2, J_2 = 5.2 Hz, CH), 1.96–1.35 (13H, m, 3CH & 5CH₂), 0.90 (3H, d, *J* = 6.8 Hz, Me), 0.69 (3H, d, *J* = 6.8 Hz, Me) *ppm*; ¹³C NMR (100 MHz, CDCl₃): δ 86.2, 69.2, 60.5, 48.0, 47.4, 42.9, 37.8, 32.9, 28.1, 27.2, 24.0, 23.8, 21.6, 18.8, 14.8 *ppm*; HRMS (ESI) *m*/z: calcd for C₁₅H₂₇O₂ 239.2006, found for [M+H]⁺ 239.2003


To a solution of compound s-8 (22 mg, 0.09 mmol) in dry benzene (1 mL) was added 4-bromophenylisocyanate (22 mg, 0.11 mmol) at 0 °C under room temperature, stirred overnight and quenched with 2 mL of H₂O. The reaction mixture was exacted with ether, the organic layer was washed successively with water and brine, dried (Na₂SO₄), and concentrated in vacuo. The residue was purified by flash column chromatography (PET : EtOAc = 10 : 1) to give the corresponding carbamate s-9 (38 mg, 99%) as colorless solids. $R_f = 0.65$ (PET : EtOAc = 3 : 1); mp.138–140 °C; IR (film): v_{max} 3295, 2955, 2872, 1727, 1534, 1396, 1305, 1222, 1048, 1007, 894, 825, 668, 504 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.40 (2H, d, J = 8.8 Hz, ArH), 7.29 (2H, d, J = 8.4 Hz, ArH), 6.78 (1H, s, NH), 4.34 (1H, m, OCH₂), 3.96 (2H, m, OCH₂), 3.84 (1H, d, J = 8.4 Hz, OCH₂), 2.40 (2H, m), 1.96 (1H, m), 1.70 (4H, m), 1.60 (1H, m), 1.50–0.87 (8H, m), 0.90 (3H, d, J = 7.2 Hz, Me), 0.69 (3H, d, J = 6.8 Hz, Me) *ppm*; ¹³C NMR (100 MHz, CDCl₃): δ 153.4, 137.0, 132.0 (2C), 120.2, 116.0, 86.1, 69.1, 63.5, 47.9, 44.5, 42.8, 38.2, 33.0, 27.8, 27.2, 23.9, 23.7, 21.5, 18.7, 14.8 *ppm*

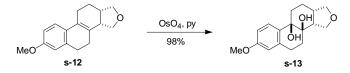
X-ray crystallographic data of Compound s-9


Empirical formula	C ₂₂ H ₃₀ Br N O ₃
Formula weight	436.38
Temperature (K)	296(2)
Wavelength (Å)	0.71073
Crystal system	Orthorhombic
space group	Pbca
	$a = 14.528(2) \text{ Å} \qquad \alpha = 90^{\circ}$
Unit cell dimensions	$b = 13.544(2) \text{ Å} \qquad \beta = 90^{\circ}$
	$c = 21.691(3) \text{ Å} \qquad \gamma = 90^{\circ}$
Volume (Å ³)	4268.2(10)
Z	8
Calculated density (Mg/m ³)	1.358
Absorption coefficient (mm ⁻¹)	1.947
Crystal size (mm ³)	0.22 x 0.27 x 0.29
Diffractometer	Bruker APEX-II CCD
θ range	1.88 to 25.20°
Reflections collected / unique	21606 / 3848
R _{int}	0.0736
Data / restraints / parameters	3848 /0 / 250
Goodness-of-fit on F ²	1.031
$R_1(I \ge 2\sigma(I))$	0.0772
WR ₂ (all data)	0.2495

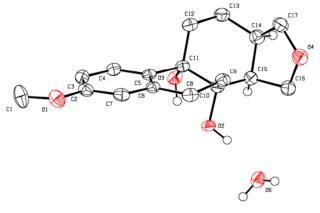
16. Hydrogenation of compound **29** and derivatization

To a solution of **29** (60 mg) in EtOAc (10 mL) was added 10% Pd/C (15 mg) at room temperature. The reaction flask was evacuated and recharged with H₂ for three times by a H₂ balloon. After 3 h under H₂ atmosphere, the suspension was filtered through Celite and washed with EtOAc. The filtrate was concentrated in vacuo. The residue was purified by flash column chromatography (PET : EtOAc = 2 : 1) to give compound **s-10** (60 mg, 98%) as a colorless oil. R_f = 0.54 (PET : EtOAc = 1 : 2); IR (film): v_{max} 3404, 2952, 2873, 1742, 1461, 1368, 1206, 1171, 1055, 1030, 861, 490 cm⁻¹;¹H NMR (400 MHz, CDCl₃): δ 4.20 (1H, d, *J* = 4.4 Hz, OCH), 3.89 (1H, d, *J* = 4.8 Hz, OCH₂), 3.71 (2H, m, OCH₂), 3.56 (1H, m, OCH₂), 3.48 (1H, m, OCH₂), 2.18 (1H, t, *J* = 7.2 Hz), 1.90 (2H, m), 1.74 (3H, m), 1.50 (8H, m), 0.92 (3H, d, *J* = 6.0 Hz, Me), 0.86 (3H, d, *J* = 6.0 Hz, Me) *ppm*; ¹³C NMR (100 MHz, CDCl₃): δ 75.7, 68.6, 63.3, 49.7, 49.6, 48.2, 47.2, 39.0, 32.1, 27.4, 25.2, 24.6, 24.2, 21.9, 18.2 *ppm*; HRMS (ESI) calcd for C₁₅H₂₇O₂ 239.2006, found for [M+H]⁺ 239.2007

Compound **s-11** was prepared similarly as for **s-9** in 98% yield as colorless solids. $R_f = 0.65$ (PET : EtOAc = 3 : 1); mp.122–124 °C; IR (film): v_{max} 3250, 2955, 2874, 1735, 1597, 1540, 1488, 1307, 1228, 1069, 974, 855, 821, 751, 504 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.40 (2H, d, J = 8.4 Hz, ArH), 7.28 (2H, m, ArH), 6.74 (1H, br s, NH), 4.19 (1H, d, J = 4.0 Hz, OCH), 4.05 (2H, m, OCH₂), 3.78 (1H, d, J = 9.2 Hz, OCH₂), 3.76 (1H, m, OCH₂), 2.35 (1H, t, J = 7.6 Hz), 1.93–1.25 (13H, m), 0.91 (3H, d, J = 6.8 Hz, Me), 0.85 (3H, d, J = 6.8 Hz, Me) *ppm*; ¹³C NMR (100 MHz, CDCl₃): δ 153.3, 137.0, 132.0 (2C), 120.0, 116.0, 75.7, 68.5, 65.5, 49.9, 49.6, 47.4, 45.1, 39.1, 32.0, 27.4, 25.1, 24.8, 24.3, 21.9, 18.2 *ppm*

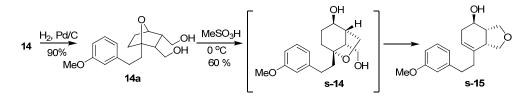


x-ray crystallographic data of Compound s-11	
Empirical formula	C ₂₂ H ₃₀ Br N O ₃
Formula weight	436.38
Temperature (K)	296(2)
Wavelength (Å)	0.71073
Crystal system	Triclinic
space group	P1
	$a = 6.460(9) \text{ Å}$ $\alpha = 83.627(7)^{\circ}$
Unit cell dimensions	$b = 12.2690(17) \text{ Å} \beta = 81.274(7)^{\circ}$
	$c = 13.6975(18) \text{ Å} \qquad \gamma = 79.700(8)^{\circ}$


X-ray crystallographic data of Compound s-11

Volume (Å ³)	1052.5(2)
Ζ	2
Calculated density (Mg/m ³)	1.377
Absorption coefficient (mm ⁻¹)	1.974
Crystal size (mm ³)	0.32 x 0.31 x 0.14
Diffractometer	Bruker APEX-II CCD
θ range	2.36 to 21.16°
Reflections collected / unique	6003 / 4083
R _{int}	0.0239
Data / restraints / parameters	4083 / 0 / 250
Goodness-of-fit on F ²	1.011
$R_1(I>2\sigma(I))$	0.0573
WR ₂ (all data)	0.1747

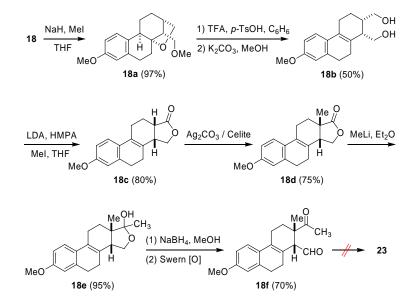
17. Dihydroxylation of compound s-12


To a solution of compound **s-12** (32 mg, 0.125 mmol) in dry pyridine (0.5 mL) was added OsO₄ (10 mg) at 0 °C under N₂. After stirred for 1 h, the reaction mixture was quenched with 2 mL of saturated NaHSO₃, extracted with ether, the organic layer was washed successively with water and brine, dried (Na₂SO₄), and concentrated in vacuo. The residue was purified by flash column chromatography (PET : EtOAc = 2 : 1) to give **s-13** (40 mg, 98%) as white solids. $R_f = 0.10$ (PET : AcOEt = 1 : 2); IR (film): v_{max} 3427, 2932, 2868, 1609, 1499, 1252, 1052, 928, 910, 876, 732, 650 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.49 (1H, d, *J* = 9 Hz, ArH), 6.79 (1H, d, *J* = 9 Hz, ArH), 6.59 (1H, s, ArH), 3.96 (1H, d, *J* = 9 Hz, OCH₂), 3.88 (2H, q, *J* = 8.4 Hz, OCH₂), 3.80 (3H, s, OMe), 3.47 (1H, t, *J* = 8.1 Hz, OCH₂), 3.02 (1H, m), 2.58 (4H, m), 2.26 (1H, s), 2.20 (1H, m), 2.00 (4H, m), 1.46 (1H, m) *ppm*; ¹³C NMR (75 MHz, CDCl₃): δ 158.6, 136.1, 134.1, 128.0, 113.2, 112.4, 73.4, 72.8, 70.5, 69.1, 55.2, 47.0, 37.6, 34.2, 28.3, 25.4, 19.2 *ppm*; HRMS (ESI) *m/z*: calcd for C₁₇H₂₁O₃ 273.1485, found for [M–H₂O+H]⁺ 273.1478

X-ray crystallographic data of Compound s-13

Empirical formula	C ₁₇ H ₂₄ O ₅
Formula weight	308.36
Temperature (K)	113(2)
Wavelength (Å)	0.71070
Crystal system	Monoclinic
space group	P21/c
	$a = 10.137(9) \text{ Å} \qquad \alpha = 90^{\circ}$
Unit cell dimensions	$b = 7.272(7) \text{ Å} \qquad \beta = 99.252(11)^{\circ}$
	$c = 20.597(19) \text{ Å} \gamma = 90^{\circ}$
Volume (Å ³)	1499(2)
Z	4
Calculated density (Mg/m ³)	1.367
Absorption coefficient (mm ⁻¹)	0.100
Crystal size (mm ³)	0.14 x 0.14 x 0.16
θ range	2.00 to 26.49°
Reflections collected / unique	13868 / 3007
R _{int}	0.0963
Data / restraints / parameters	3007 / 4 / 218
Goodness-of-fit on F ²	1.019
Extinction coefficient	0.032(5)
$R_1(I \ge 2\sigma(I))$	0.0646
WR ₂ (all data)	0.2138

18. Cyclization of compound 14a


Compound **14a** was prepared by routine catalytic hydrogenation similarly as for compound **18** in 90% yield as a colorless oil. $R_f = 0.20$ (PET : AcOEt = 1 : 2); IR (film): v_{max} 3357, 2938, 1603, 1490, 1457, 1316, 1259, 1155, 1044, 966, 902, 785, 699, 572, 460 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.20 (1H, t, *J* = 7.6 Hz, ArH), 6.72 (3H, m, ArH), 4.42 (1H, t, *J* = 5.2 Hz, OCH), 4.07 (1H, br. s, OH), 3.82 (2H, m, OCH₂), 3.78 (3H, s, OMe), 3.59 (2H, m, OCH₂), 2.76 (2H, m, CH₂), 2.60 (1H, m, CH₂), 2.30 (1H, m, CH₂), 2.05 (2H, m, CH), 1.68 (1H, m, CH₂), 1.53 (1H, m, CH₂), 1.44 (2H, m, CH₂) *ppm*; ¹³C NMR (100 MHz, CDCl₃): δ 159.6, 143.7, 129.3, 120.6, 113.9, 111.1, 87.9, 78.0, 59.8, 59.7, 55.1, 48.4, 46.4, 36.0, 30.5, 28.8, 26.1 *ppm*; HRMS (ESI) *m/z*: calcd for C₁₇H₂₈O₄N 310.2013, found for [M+NH₄]⁺ 310.2017

To a solution of compound **14a** (70 mg, 0.24 mmol) in dry CH_2Cl_2 (2 mL) was added MeSO₃H (50 mg, 0.5 mmol) at 0 °C under N₂. After stirring for 1 h, the reaction mixture was quenched with 1 mL of H₂O, extracted with EtOAc, the organic layer was washed successively with water and brine, dried (Na₂SO₄), and concentrated in vacuo. The residue was purified by flash column chromatography (PET : EtOAc = 1 : 2) to give **s-14** (48 mg, 60%) as a colorless oil.

 $R_f = 0.15$ (PET : AcOEt = 1 : 2); IR (film): v_{max} 3369, 2931, 1707, 1603, 1490, 1456, 1259, 1153, 1042, 1021, 970, 872, 783, 695, 572 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.18 (1H, t, *J* = 7.6 Hz, ArH), 6.73 (3H, m, ArH), 4.03 (1H, br. s, OCH), 3.93-3.82 (2H, m, OCH₂), 3.78 (3H, s), 3.66 (1H, d, *J* = 8.4 Hz, OCH₂), 3.40 (1H, t, *J* = 10.0 Hz, OCH₂), 2.62 (3H, m), 2.52 (1H, m), 1.97 (1H, m), 1.80 (2H, m), 1.60 (2H, m) *ppm*; ¹³C NMR (100 MHz, CDCl₃): δ 159.6, 143.8, 129.3, 120.6, 114.1, 111.0, 84.3, 69.2, 68.5, 60.0, 55.1, 45.0, 44.8, 37.2, 32.7, 31.2, 27.0 *ppm*; HRMS (ESI) *m/z*: calcd for C₁₇H₂₈O₄N 310.2013, found for [M+NH₄]⁺ 310.2009

Compound **s-14** was converted to compound **s-15** if the above cyclization reaction mixture was stirred at room temperature for 4 h, which can be isolated by routine purification procedures as a colorless gum. **s-15**: $R_f = 0.35$ (PET : EtOAc = 1: 2); IR (film): v_{max} 3408, 2926, 2869, 1601, 1587, 1489, 1455, 1436, 1259, 1153, 1053 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.20 (1H, t, *J* = 8.0 Hz, ArH), 6.75 (3H, m, ArH), 5.41(1H, q, *J* = 1.2 Hz, CH=), 4.08 (1H, m, OCH₂), 4.02 (1H, m, OCH₂), 3.93 (1H, m, OCH₂), 3.79 (3H, s, OMe), 3.68 (1H, m, OCH), 3.41(1H, t, *J* = 8.4 Hz, OCH₂), 2.87 (1H, m), 2.68 (2H, m), 2.32 (1H, m), 2.09 (3H, m), 2.04 (2H, m) *ppm*; ¹³C NMR (100 MHz, CDCl₃): δ 159.6, 143.4, 136.8, 129.3, 120.6, 119.1, 114.4, 111.1, 72.3, 71.0, 67.2, 55.1, 45.3, 43.5, 37.7, 34.0, 33.5 *ppm*

19. Spectroscopic data of intermediates 18a~f

Compound **18a**: $R_f = 0.70$ (PET : EtOAc = 2 : 1); IR (film): $v_{max} 2926$, 1740, 1608, 1498, 1460, 1240, 1038, 975, 917, 790 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.16 (1H, d, J = 8.7 Hz), 6.66 (2H, m), 4.01 (1H, m), 3.95 (1H, m), 3.77 (3H, s), 3.48 (1H, m), 3.29 (3H, m), 3.07 (1H, d, J = 8.7 Hz), 3.01 (1H, m), 2.88 (1H, d, J = 6.6 Hz), 2.43 (1H, br s), 2.18 (2H, m), 1.96 (3H, m), 1.50 (1H, m) *ppm*; ¹³C NMR (75 MHz, CDCl₃): δ 157.5, 137.5, 130.7, 125.5, 113.7, 111.4, 84.4, 71.3, 70.1, 58.8, 55.1, 45.9, 45.1, 38.3, 29.4, 28.7, 27.4, 20.2 *ppm*

Compound **18b**: $R_f = 0.25$ (PET : AcOEt = 1 : 2); mp. 132~135 °C; IR (film): v_{max} 3337, 2924, 2876, 1608, 1498, 1428, 1250, 1155, 1034, 809 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.10 (1H, d, J = 8.4 Hz), 6.68 (2H, m), 3.78 (3H, s), 3.75 (4H, m), 3.56 (2H, s, br.), 2.68 (2H, m), 2.50 (1H, m),

2.40 (2H, m), 2.30 (2H, m), 2.05 (2H, m), 1.63 (2H, m) *ppm*; ¹³C NMR (75 MHz, CDCl₃): δ 158.1, 137.4, 130.4, 128.8, 128.6, 123.0, 113.3, 110.8, 65.3, 61.3, 55.2, 44.6, 38.8, 29.1, 28.3, 25.4, 21.2 *ppm*; HRMS (ESI) calcd for C₁₇H₂₂O₃Na 297.1461, found for [M+Na]⁺ 297.1460

Compound **18c**: $R_f = 0.45$ (PET : AcOEt = 2 : 1); mp. 93~95 °C; IR (film): v_{max} 2928, 1770, 1608, 1499, 1252, 1153, 1043, 1021, 986, 813, 730, 610 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.10 (1H, d, J = 8.4 Hz), 6.72 (2H, m), 4.43 (1H, t, J = 7.2 Hz), 4.16 (1H, m), 3.81 (3H, s), 3.21 (1H, s, br.), 2.83 (1H, m), 2.70 (2H, m), 2.05–2.40 (6H, m), 1.85 (1H, m) *ppm*; ¹³C NMR (75 MHz, CDCl₃): δ 178.8, 158.4, 136.8, 130.2, 128.5, 127.0, 123.4, 113.4, 110.9, 70.6, 55.2, 40.1, 38.3, 28.4, 26.8, 22.0, 20.4 *ppm*; HRMS (ESI) calcd for C₁₇H₂₂O₃N 288.1594, found for [M+NH₄]⁺ 288.1591

Compound **18d**: $R_f = 0.48$ (PET : AcOEt = 2 : 1); IR (film): v_{max} 2924, 1768, 1608, 1499, 1457, 1431, 1304, 1252, 1156, 1091, 1021, 866, 813 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.13 (1H, d, J = 8.4 Hz), 6.72 (2H, m), 4.51 (1H, t, J = 7.8 Hz), 4.10 (1H, t, J = 7.2 Hz), 3.80 (3H, s), 2.72 (3H, m), 2.40 (2H, br s), 1.98-2.23 (3H, m), 1.70 (1H, m), 1.25 (3H, s) *ppm*; ¹³C NMR (75 MHz, CDCl₃): δ 181.4, 158.4, 136.7, 128.6, 128.2, 127.1, 123.3, 113.4, 110.9, 69.7, 55.1, 47.1, 40.9, 28.4, 27.6, 27.1, 21.7, 21.3 *ppm*; HRMS (ESI) calcd for C₁₈H₂₄O₃N 302.1751, found for [M+NH₄]⁺ 302.1747

Compound **18e**: $R_f = 0.30$ (PET : EtOAc = 2 : 1); mp. 122~127 °C; IR (film): v_{max} 3386, 2932, 2882, 1608, 1571, 1499, 1464, 1381, 1252, 1153, 1105, 1038, 1010, 929, 871, 813, 732, 644 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.15 (1H, d, J = 8.4 Hz), 6.69 (2H, m), 4.33 (1H, t, J = 8.0 Hz), 3.80 (3H, s), 3.62 (1H, t, J = 8.0 Hz), 2.73 (3H, m), 2.41 (3H, br s), 2.20 (1H, m), 2.09 (1H, m), 1.58 (2H, m), 1.39 (3H, s), 1.03 (3H, s) *ppm*; ¹³C NMR (100 MHz, CDCl₃): δ 158.0, 136.9, 130.7, 128.8, 124.8, 123.0, 113.5, 110.9, 108.3, 71.7, 55.2, 47.6, 44.9, 28.7, 27.3, 22.4, 21.4, 16.8 *ppm*

Compound **18f**: $R_f = 0.30$ (PET : EtOAc = 3 : 1); IR (film): v_{max} 2934, 2835, 1707, 1608, 1571, 1450, 1431, 1252, 1154, 1103, 1140, 992, 929, 877, 812, 613 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 9.50 (1H, d, J = 4.8 Hz), 7.18 (1H, d, J = 11.6 Hz), 6.73 (2H, m), 3.80 (3H, s), 2.99 (1H, s, br.), 2.73 (2H, m), 2.59 (2H, m), 2.40 (1H, m), 2.23 (3H, s), 2.18 (1H, m), 2.05 (1H, m), 1.16 (3H, s) *ppm*; ¹³C NMR (100 MHz, CDCl₃): δ 212.7, 197.1, 158.7, 137.5, 129.9, 127.9, 123.4, 123.0, 113.5, 111.1, 60.3, 55.2, 48.9, 28.5, 27.5, 26.6, 25.1, 22.5, 20.9 *ppm*; HRMS (ESI) calcd for C₁₉H₂₃O₃ 299.1642, found for [M+H]⁺ 299.1641