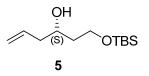
Supporting Information

Kinase Inhibition by Deoxy Analogs of the Resorcylic Lactone L-783277

Marc Liniger,⁺ Christian Neuhaus,⁺ Tatjana Hofmann,⁺ Luca Fransioli-Ignazio,⁺ Michel Jordi,⁺ Peter Drueckes,^{\$} Jörg Trappe,^{\$} Doriano Fabbro,^{\$} Karl-Heinz Altmann⁺*

*Swiss Federal Institute of Technology (ETH) Zurich, Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Zurich, Switzerland, and ^{\$}Novartis Institute for Biomedical Research, Center for Proteomic Chemistry, Expertise Platform Kinases, Basel, Switzerland

karl-heinz.altmann@pharma.ethz.ch


Contents

1.	General Methods	S2
2.	Synthesis of 5'-deoxy L-783277 (1)	S2
3.	Synthesis of E-5'-deoxy L-783277 (2)	S15
4.	Synthesis of dideoxy L-783277 (3)	S17
5.	Individual IC ₅₀ values for kinase inhibition by L-783277 and 1	S24

1. General Methods

All manipulations were conducted under an argon atmosphere using flame-dried glassware and standard syringe/septa techniques. Absolute solvents were purchased from Fluka (absolute over molecular sieves). Commercial chemicals were used without further purification. Aldehyde 4 was prepared according to literature procedures in two steps from commercially available 1,3-propanediol. Solvents for extractions, flash column chromatography (FC) and thin layer chromatography (TLC) were purchased as commercial grade and distilled prior to use. TLC was performed on Merck TLC aluminum sheets (silica gel 60 F₂₅₄). Spots were visualized with UV light (λ = 254 nm) or through staining with $Ce_2(SO_4)_3$ /phosphomolybdic acid/H₂SO₄ (CPS), vanillin/H₂SO₄ or KMnO₄/K₂CO₃. Chromatographic purification of products (FC) was performed using Fluka silica gel 60 for preparative column chromatography (particle size 40-63 μm). NMR spectra were recorded on a Bruker Avance 400 MHz NMR spectrometer at 300 K. Chemical shifts (δ) are reported in ppm and are either referenced to the solvent signal as an internal standard (chloroform δ 7.26 ppm for ¹H and δ 77.00 ppm for ¹³C spectra; DMSO-d₆ δ 2.50 ppm for ¹H and δ 39.43 ppm for ¹³C spectra) or to TMS for benzene- d_6 . Data are reported as follows: s = singlet, d = doublet, t = triplet, q = quartet, quint = quintet, sext = sextet, m = multiplet, $m_c = centered multiplet$, br = centered multiplet, br = cbroad signal, J = coupling constant in Hz. All ¹³C-NMR spectra were measured with complete proton decoupling. ¹H- and ¹³C-signals were assigned using DEPT135 experiments and two-dimensional correlation experiments (COSY, HMQC, HMBC, NOESY). IR spectra were recorded on a Jasco FT/IR-6200 instrument as thin film. Optical rotations were measured on a Jasco P-1020 polarimeter operating at the sodium D line (λ = 589 nm) and are reported as follows: $[\alpha]_D^T$, concentration (*c* in g/100 mL) and solvent. Melting points were obtained in open capillary tubes using a Büchi melting point apparatus B-540 and are uncorrected. Mass spectra were recorded by the ETH Zürich MS service; HRMS (ESI) spectra were measured on a Bruker Daltonics maxis (UHR-TOF) and HRMS (EI) on a Waters Micromass AutoSpec Ultima instrument.

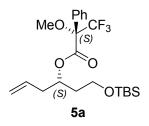
2. Synthesis of 5-deoxy L-783277 (1)

Homoallylic alcohol 5: A mixture of (*S*)-BINOL (73.7 mg, 0.26 mmol, 5 mol%) and oven-dried powdered molecular sieves (160 mg) in anhydrous toluene (9.7 mL) was treated with $Ti(O_iPr)_4$ (38.5 µl, 0.13 mmol, 2.5 mol%) and stirred for 2.5 h at rt.

Aldehyde **4**¹ (0.97 g, 5.15 mmol, 1.0 equiv) was then added at rt and the reaction mixture was stirred for 5 min. After cooling to -78 °C allylbutyltin (2.40 ml, 7.73 mmol, 1.5 equiv) was added and the mixture was stirred for -78 °C for 10 min followed by 139 h at -20 °C. Sat. aq NaHCO₃ was then added and the resulting mixture was extracted with hexane. The combined organic extracts were washed with brine, dried over MgSO₄ and concentrated *in vacuo*. The residue was purified by FC (hexane/Et₂O, 5:1) to give **5** as a yellowish oil (1.07 g, 90%, 98% *ee*).

 $R_{f} = 0.24$ (hexane/Et₂O 5:1).

 $[\alpha]_{D}^{24} = -7.8^{\circ} (c = 0.843, CHCl_3).$


¹**H-NMR** (400.1 MHz, CDCl₃): δ 5.85 (tdd, J = 7.1, 10.2, 17.3 Hz, 1H, CH₂C*H*=CH₂), 5.14-5.06 (m, 2H, CH₂CH=CH₂), 3.93-3.86 (m, 2H, C*H*OH and C*H*HOSi), 3.81 (m_c, 1H, CH*H*OSi), 3.30 (d, J = 1.5 Hz, 1H, OH), 2.25 (m_c, 2H, C*H*₂CH=CH₂), 1.67 (m_c, 2H, C*H*₂CH₂OSi), 0.90 (s, 9H, SiC(CH₃)₃), 0.08 (s, 6H, Si(CH₃)₂).

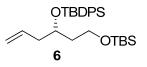
¹³**C-NMR** (100.6 MHz, CDCl₃): δ 135.0 (CH₂CH=CH₂), 117.3 (CH₂CH=CH₂), 71.2 (CHOH), 62.6 (CH₂OSi), 42.0 (CH₂CH=CH₂), 37.8 (CH₂CH₂OSi), 25.9 (SiC(CH₃)₃), 18.1 (SiC(CH₃)₃), -5.5 (Si(CH₃)(CH₃)),

-5.6 (Si(CH₃)(CH₃)).

IR (neat, v/cm⁻¹): 3435w, 3078w, 2955m, 2929m, 2958m, 1642w, 1471m, 1389w, 1362w, 1255m, 1085s, 1005m, 913m, 835s, 776s, 729w, 663w.

HRMS (ESI): m/z calcd for C₁₂H₂₇O₂Si [M + H]⁺: 231.1775, found: 231.1764.

Mosher ester 5a: To a solution of **5** (16.0 mg, 69.4 µmol, 1.0 equiv) in 0.1 mL DCM was added pyridine (0.1 ml, 1.24 mmol, 18 equiv), DMAP (30.0 mg, 246 µmol, 3.5 equiv) and (*R*)-(–)-MTPA-CI (37.0 µL, 198 µmol, 2.9 equiv). The reaction mixture was stirred for 16 h at rt and the reaction was then quenched with 1 mL of water. The aqueous phase was extracted with Et₂O (3 x 4 mL) and the combined organic extracts were dried over MgSO₄, filtered and the solvent was removed under reduced pressure. The crude product was purified by FC (hexane/Et₂O 1:0 \rightarrow 30:1 \rightarrow 10:1) to afford *Mosher* ester **5a** as a colorless oil (30.0 mg, 97%, 98% *de*). The diastereoisomeric excess was determined by ¹H-NMR and chiral HPLC.


R $_{f} = 0.43$ (hexane/ Et₂O 10:1). [α]_D²⁴ = +1.0° (*c* = 0.855, CHCl₃).

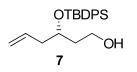
¹ Mortensen, M. S.; Osbourn, J. M.; O'Doherty, G. A. Org. Lett. 2007, 9, 3105-3108.

¹**H-NMR** (400.1 MHz, CDCl₃: δ 7.54 (m_c, 2H, Ph-*o*-CH), 7.42-7.37 (m, 3H, Ph-*m*-CH and Ph-*p*-CH), 5.66 (m_c, 1H, CH₂C*H*=CH₂), 5.31 (m_c, 1H, C*H*OH), 5.07-5.00 (m, 2H, CH₂CH=CH₂), 3.65 (m_c, 2H, CH₂OSi), 3.54 (d, *J* = 1.18 Hz, 3H, OCH₃), 2.41 (m_c, 2H, CH₂CH=CH₂), 1.86 (m_c, 2H, CH₂CH₂OSi), 0.89 (s, 9H, SiC(CH₃)₃), 0.04 (s, 6H, Si(CH₃)₂).

¹³**C-NMR** (100.6 MHz, CDCl₃): δ 166.0 (C=O), 132.7 (CH₂CH=CH₂), 132.3 (Ph-*i*-C), 129.5 (Ph-*p*-C), 128.3 (Ph-*m*-C), 127.5 (Ph-*o*-C), 123.4 (q, *J* = 288 Hz, CF₃), 118.4 (CH₂CH=*C*H₂), 84.6 (q, *J* = 27.6 Hz, COCH₃), 73.8 (CHOH), 59.0 (CH₂OSi), 55.3 (OCH₃), 38.3 (*C*H₂CH=CH₂), 36.2 (C*H*₂CH₂OSi), 25.8 (SiC(*C*H₃)₃), 18.2 (Si*C*(CH₃)₃), -5.4 (Si(CH₃)₂).

IR (neat, v/cm⁻¹): 3078w, 2954m, 2930m, 2858m, 1746s, 1644w, 1472w, 1389w, 1254s, 1168s, 1099s, 1018s, 993m, 964w, 919w, 836s, 776s, 717m, 664w. **HRMS (ESI):** *m*/*z* calcd for $C_{22}H_{34}F_3O_4Si [M + H]^+$: 447.2173, found: 447.2167. **HPLC** (Daicel Chiracel OD, hexane, 100%, 25 °C, 0.5 mL/min, UV): t_R/min = 12.0 (*RS*), 20.1 (*SS*).

Protected diol 6: A stirred solution of **5** (2.10 g, 9.11 mmol, 1.0 equiv) in dry DMF (4.6 mL) was treated at rt with imidazole (1.86 g, 27.3 mmol, 3.0 equiv) followed by TBDPSCI (3.31 mL, 12.8 mmol, 1.4 equiv). After stirring for 21 h the reaction mixture was diluted with EtOAc (30 mL). The resulting mixture was washed with brine (6 x 20 mL), dried over MgSO₄ and concentrated *in vacuo*. The residiue was purified by FC (hexane/Et₂O, 1:0 \rightarrow 100:1) to give **6** (3.86 g, 90%) as a colorless oil.


 $R_f = 0.30$ (hexane/ Et₂O 100:1).

 $[\alpha]_D^{24} = +14.5^\circ$ (*c* = 0.763, CHCl₃).

¹**H-NMR** (400.1 MHz, CDCl₃): δ 7.70 (m_c, 4H, Ph-*o*-CH), 7.46-7.35 (m, 6H, Ph-*m*-CH and Ph-*p*-CH), 5.74 (tdd, *J* = 7.1, 10.2, 17.3 Hz, 1H, CH₂C*H*=CH₂), 4.95 (m_c, 2H, CH₂CH=CH₂), 3.97 (m_c, 1H, CHOSi), 3.64 (m_c, 2H, CH₂OSi), 2.20 (m_c, 2H, CH₂CH=CH₂), 1.73 (m_c, 2H, CH₂CH₂OSi), 1.08 (s, 9H, Ph₂SiC(CH₃)₃), 0.86 (s, 9H, SiC(CH₃)₃), 0.00 (s, 6H, Si(CH₃)₂).

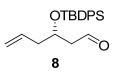
¹³**C-NMR** (100.6 MHz, CDCl₃): δ 135.9 (Ph-*o*-C), 134.7 (CH₂*C*H=CH₂), 134.5 (Ph-*i*-C), 134.3 (Ph-*i*-C'), 129.5 (Ph-*p*-C), 127.5 (Ph-*m*-C), 127.4 (Ph-*m*-C'), 116.9 (CH₂CH=CH₂), 70.4 (CHOSi), 60.0 (CH₂OSi), 41.4 (CH₂CH=CH₂), 39.2 (CH₂CH₂OSi), 27.0 (Ph₂SiC(CH₃)₃), 25.9 (SiC(CH₃)₃), 19.4 (Ph₂SiC(CH₃)₃), 18.2 (SiC(CH₃)₃), -5.3 (Si(CH₃)₂).

IR (neat, v/cm⁻¹): 3072w, 3051w, 2954m, 2930m, 2857m, 1471m, 1428m, 1389w, 1361w, 1255m, 1105s, 1006m, 912m, 835s, 775m, 739m, 701s, 611m, 507m. **HRMS (ESI):** m/z calcd for C₂₈H₄₅O₂Si₂ [M + H]⁺: 469.2953, found: 469.2945.

Monoprotected diol 7: To a solution of **6** (3.68 g, 7.86 mmol, 1.0 equiv) in 20:1 THF/water (39.5 mL) was added *p*-TsOH monohydrate (150 mg, 0.79 mmol, 0.1 equiv) and the resulting solution was stirred at rt for 10 h. Sat. NaHCO₃ was then added and the mixture was extracted with EtOAc (3 x 40 mL). The combined organic extracts were washed with brine, dried over MgSO₄ and concentrated *in vacuo*. The residue was purified by FC (hexane/Et₂O 10:1 \rightarrow 5:1 \rightarrow 2:1) to give **7** as a colorless oil (2.55 g, 92%).

 $R_f = 0.23$ (hexane/Et₂O 2:1).

 $[\alpha]_D^{24} = +26.5^\circ (c = 0.755, CHCl_3).$


¹**H-NMR** (400.1 MHz, CDCl₃): δ 7.71 (m_c, 4H, Ph-*o*-CH), 7.48-7.37 (m, 6H, Ph-*m*-CH and Ph-*p*-CH), 5.61 (ddt, *J* = 7.2, 10.2, 17.3 Hz, 1H, CH₂C*H*=CH₂), 4.91 (m_c, 2H, CH₂CH=CH₂), 3.99 (m_c, 1H,

CHOSi), 3.77 (ddd, J = 4.9, 8.3, 11.0 Hz, 1H, C*H*HOH), 3.67 (dt, J = 5.5, 11.0 Hz, 1H, CH*H*OH), 2.30 (dt, J = 7.7, 14.1 Hz, 1H, C*H*HCH=CH₂), 2.19 (m_c, 1H, CH*H*CH=CH₂), 1.88-1.78 (m, 2H, CH₂OH and C*H*HCH₂OH), 1.67 (ddd, J = 5.5, 11.2, 14.3 Hz, 1H, CH*H*CH₂OH), 1.08 (s, 9H, Ph₂SiC(CH₃)₃).

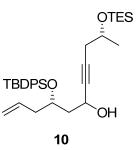
¹³**C-NMR** (100.6 MHz, CDCl₃): δ 135.9 (Ph-*o*-C), 134.2 (CH₂CH=CH₂), 133.9 (Ph-*i*-C), 133.6 (Ph-*i*-C'), 129.8 (Ph-*p*-C), 129.7 (Ph-*p*-C'), 127.7 (Ph-*m*-C), 127.6 (Ph-*m*-C'), 117.3 (CH₂CH=CH₂), 71.7 (CHOSi), 59.7 (CH₂OH), 41.1 (CH₂CH=CH₂), 37.5 (CH₂CH₂OH), 27.0 (Ph₂SiC(CH₃)₃), 19.3 (Ph₂SiC(CH₃)₃).

IR (neat, v/cm⁻¹): 3370w, 3072w, 2931m, 2889w, 2858m, 1640w, 1590w, 1472m, 1428m, 1390w, 1362w, 1105s, 1169m, 1106m, 915m, 822m, 739m, 701s, 611m, 506s.

HRMS (ESI): m/z calcd for C₂₂H₃₁O₂Si [M + H]⁺: 355.2088, found: 355.2085.

Aldehyde 8: To a solution of oxalylchloride (0.89 ml, 10.6 mmol, 1.5 equiv) in DCM (62 mL) at -78 °C was added dropwise DMSO (1.50 ml, 21.2 mmol, 3.0 equiv) in 39 mL DCM. After stirring at -78 °C for 10 min a solution of **7** (2.50 g, 7.05 mmol, 1.0 equiv) in DCM (23 mL) was added dropwise. The resultant cloudy mixture was stirred at -78 °C for 60 min, TEA (3.93 mL, 28.2 mmol, 4.0 equiv) was added slowly and the reaction mixture was allowed to warm to room temperature (60 min). The reaction was quenched with water (125 mL) and the layers were separated. The aqueous phase was extracted with DCM (3 x 100 mL) and the combined organic

phases were washed with brine, dried over MgSO₄, filtered and concentrated *in vacuo*. The crude product was purified by FC (hexane/Et₂O 5:1) to give **8** (2.34 g, 94%) as a yellowish oil.

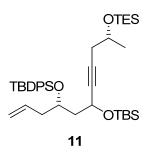

 $R_f = 0.41$ (hexane/ Et₂O 5:1).

 $[\alpha]_D^{24} = +17.7^\circ (c = 1.08, CHCl_3).$

¹**H-NMR** (400.1 MHz, CDCl₃): δ 9.70 (t, J = 2.4 Hz, 1H, CHO), 7.69 (m_c, 4H, Ph-*o*-CH), 7.48-7.37 (m, 6H, Ph-*m*-CH and Ph-*p*-CH), 5.68 (tdd, J = 7.2, 10.2, 17.3 Hz, 1H, CH₂C*H*=CH₂), 5.03 (m_c, 1H, CH₂CH=C*H*H), 4.96 (ddd, J = 1.4, 3.3, 17.1 Hz, 1H, CH₂CH=CH*H*), 4.28 (m_c, 1H, CHOSi), 2.52 (ddd, J = 1.4, 2.3, 5.9 Hz, 2H, CH₂CHO), 2.29 (m_c, 2H, CH₂CH=CH₂), 1.07 (s, 9H, Ph₂SiC(CH₃)₃).

¹³C-NMR (100.6 MHz, CDCl₃): δ 201.7 (CHO), 135.8 (Ph-*o*-C), 133.7 (Ph-*i*-C), 133.5 (CH₂CH=CH₂), 133.4 (Ph-*i*-C'), 129.9 (Ph-*p*-C), 129.8 (Ph-*p*-C'), 127.7 (Ph-*m*-C), 127.6 (Ph-*m*-C'), 118.3 (CH₂CH=CH₂), 68.8 (CHOSi), 49.8 (CH₂CHO), 41.8 (CH₂CH=CH₂), 26.9 (Ph₂SiC(CH₃)₃), 19.2 (Ph₂SiC(CH₃)₃).

IR (neat, v/cm⁻¹): 3072w, 2958w, 2931m, 2893w, 2858m, 1725s, 1472m, 1428m, 1391w, 1362w, 1105s, 998m, 919m, 822m, 741m, 701s, 612m, 507s, 489s. **HRMS (ESI):** m/z calcd for C₁₂H₃₂NO₂Si [M + NH₄]⁺: 370.2197, found: 370.2203.

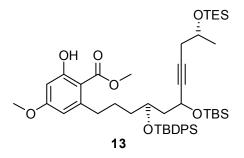


Acetylene 10: To a solution of 9 (1.53 g, 7.73 mmol, 1.2 equiv) in 41 mL abs. THF was added dropwise *n*-BuLi (4.83 mL, 7.73 mmol, 1.2 equiv) at –78 °C over a period of 10 min and the mixture was then stirred for 30 min at –10 °C. After re-cooling to – 78 °C and a pre-cooled solution (–78 °C) of 8 (2.27 g, 6.44 mmol 1.0 equiv) in 31 mL abs. THF was added dropwise over a period of 20 min. After stirring for 45 min at – 78 °C, the solution was allowed to warm to rt (1.5 h) and the reaction was quenched by adding sat. NH₄Cl to give a yellow solution. The layers were separated and the aqueous phase was extracted with Et₂O (3 x 90 mL). The combined organic extracts were dried over MgSO₄, filtered and evaporated *in vacuo*. The crude product was purified by FC (hexane/Et₂O 6:1 \rightarrow 4:1) to give a diastereoisomeric mixture of 10 as a yellow oil (3.29 g, 93%, dr 1:1).

R_f = 0.38 (dia1), 0.33 (dia2) (hexane/Et₂O 4:1).

¹**H-NMR** (400.1 MHz, CDCl₃): δ 7.75-7.68 (m, 8H, Ph-*o*-CH), 7.48-7.35 (m, 12H, Ph*m*-CH and Ph-*p*-CH), 5.58 (tdt, *J* = 7.2, 10.2, 17.4 Hz, 2H, CH₂C*H*=CH₂), 4.93 (ddd, *J* = 1.0, 1.9, 10.2 Hz, 2H, CH₂CH=C*H*H), 4.84 (dddd, *J* = 1.3, 3.3, 4.6, 17.1 Hz, 2H, CH₂CH=CH*H*), 4.58 (m_c, 2H, C*H*OH), 4.05 (m_c, 2H, C*H*CH₂CHOH), 3.90 (m_c, 2H, CHCH₃), 2.60 (d, J = 0.5 Hz, 1H, OH), 2.42-2.31 (m, 2H, CCC*H*H), 2.30-2.08 (m, 7H, CCCH*H*, OH' and CH₂CH=CH₂), 1.98-1.79 (m, 4H, CH₂CHOH), 1.21 (dd, J = 6.1, 7.7 Hz, 6H, CHCH₃), 1.06 (d, J = 5.6 Hz, 18H, SiC(CH₃)₃), 0.96 (dt, J = 1.1, 7.9 Hz, 18H, Si(CH₂CH₃)₃), 0.60 (dq, J = 2.5, 8.0 Hz, 12H, Si(CH₂CH₃)₃). ¹³C-NMR (100.6 MHz, CDCl₃): δ 135.9 (Ph-o-C), 134.1 (Ph-*i*-C), 134.0 (CH₂CH=CH₂), 133.9 (Ph-*i*-C'), 133.8 (CH₂CH=CH₂'), 133.6 (Ph-*i*-C''), 133.3 (Ph-*i*-C''), 129.8 (Ph-*p*-C), 129.7 (Ph-*p*-C'), 129.6 (Ph-*p*-C''), 127.7 (Ph-*m*-C), 127.6 (Ph-*m*-C'), 127.5 (Ph-*m*-C''), 117.6 (CH₂CH=CH₂), 117.5 (CH₂CH=CH₂'), 82.7 (CC), 82.6 (CC'), 82.5 (CC''), 82.2 (CC'''), 71.6 (CHCH₂CHOH), 70.9 (CHCH₂CHOH'), 67.5 (CHCH₃), 67.4 (CHCH₃'), 61.0 (CHOH), 59.5 (CHOH'), 44.2 (CH₂CHOH), 43.0 (CH₂CHOH'), 41.7 (CH₂CH=CH₂), 41.1 (CH₂CH=CH₂'), 29.7 (CCCH₂), 27.0 (SiC(CH₃)₃), 23.4 (CHCH₃), 23.3 (CHCH₃'), 19.3 (SiC(CH₃)₃), 6.8 (Si(CH₂CH₃)₃), 4.8 (Si(CH₂CH₃)₃).

IR (neat, v/cm⁻¹): 3431w, 3072w, 2955m, 2932w, 2877w, 1472w, 1428m, 1377w, 1238w, 1105s, 1078m, 998s, 912m, 853w, 822m, 736s, 701s, 611m, 505s. **HRMS (ESI):** m/z calcd for C₃₃H₅₁O₃Si₂ [M + H]⁺: 551.3371, found: 551.3360.

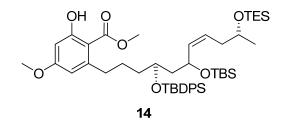


Protected triol 11: To a stirred solution of **10** (3.23 g, 5.86 mmol, 1.0 equiv) in dry DMF (3 mL) was added imidazole (1.20 g, 17.6 mmol, 3.0 equiv) at rt followed by TBSCI (1.24 g, 8.21 mmol, 1.4 equiv). After stirring for 15 h at rt the reaction mixture was diluted with EtOAc (60 mL). The resulting mixture was washed with brine (3 x 40 mL) and the combined aqueous extracts were re-extracted once with EtOAc (90 mL). The combined organic extracts were dried over MgSO₄ and concentrated *in vacuo*. The residue was purified by FC (hexane/Et₂O 50:1) to give **11** (3.74 g, 96%) as a yellowish oil.

 $R_f = 0.19$ (hexane/ Et₂O 50:1).

¹**H-NMR** (400.1 MHz, CDCl₃): δ 7.72-7.66 (m, 8H, Ph-*o*-CH), 7.45-7.33 (m, 12H, Ph*m*-CH and Ph-*p*-CH), 5.68 (tdt, *J* = 7.1, 10.2, 17.4 Hz, 2H, CH₂C*H*=CH₂), 4.99-4.82 (m, 4H, CH₂CH=CH₂), 4.56 (m_c, 1H, CCC*H*OSi), 4.44 (m_c, 1H, CCC*H*OSi'), 4.01 (m_c, 2H, C*H*CH₂CH=CH₂), 3.86 (m_c, 2H, C*H*CH₃), 2.38-2.29 (m, 2H, CCC*H*H), 2.24-2.07 (m, 6H, CCCH*H*, and C*H*₂CH=CH₂), 1.97-1.79 (m, 4H, C*H*₂CHCC), 1.19 (dd, *J* = 1.9, 6.0 Hz, 6H, CHC*H*₃), 1.06 (d, *J* = 1.3 Hz, 18H, Ph₂SiC(CH₃)₃), 0.96 (dt, *J* = 0.5, 7.8 Hz, 18H, Si(CH₂C*H*₃)₃), 0.85 (d, *J* = 13.1 Hz, 18H, (CH₃)₂SiC(C*H*₃)₃), 0.60 (dq, *J* = 1.4, 7.9 Hz, 12H, Si(C*H*₂CH₃)₃), 0.10-0.01 (m, 12 H, (C*H*₃)₂SiC(CH₃)₃). ¹³**C-NMR** (100.6 MHz, CDCl₃): δ 135.9 (Ph-o-C), 134.6 (Ph-*i*-C), 134.5 (Ph-*i*-C'), 134.4 (CH₂CH=CH₂), 134.3 (CH₂CH=CH₂'), 134.2 (Ph-*i*-C''), 134.0 (Ph-*i*-C'''), 129.5 (Ph-*p*-C), 129.4 (Ph-*p*-C'), 127.5 (Ph-*m*-C), 127.4 (Ph-*m*-C'), 117.2 (CH₂CH=CH₂), 117.1 (CH₂CH=CH₂'), 83.3 (CHCC), 83.1 (CHCC'), 82.0 (CHCC), 70.3 (CHCH₂CH=CH₂), 70.2 (CHCH₂CH=CH₂'), 67.5 (CHCH₃), 67.4 (CHCH₃'), 61.0 (CCCHOSi), 60.0 (CCCHOSi'), 45.8 (CH₂CHCC), 45.4 (CH₂CHCC'), 41.4 (CH₂CH=CH₂), 29.8 (CCCH₂), 27.0 (Ph₂SiC(CH₃)₃), 25.8 ((CH₃)₂SiC(CH₃)₃), 23.3 (CHCH₃), 23.2 (CHCH₃'), 19.4 (Ph₂SiC(CH₃)₃), 18.2 ((CH₃)₂SiC(CH₃)₃), 6.8 (Si(CH₂CH₃)₃), 4.8 (Si(CH₂CH₃)₃), -4.2 ((CH₃)₂SiC(CH₃)₃), -4.5 ((CH₃)₂SiC(CH₃)₃'), -4.8 ((CH₃)₂SiC(CH₃)₃''), -5.0 ((CH₃)₂SiC(CH₃)₃)''').

IR (neat, v/cm⁻¹): 3073w, 2955m, 2930m, 2878m, 2858m, 1472w, 1428m, 1376w, 1361w, 1251m, 1080s, 999s, 914w, 836s, 776s, 737s, 701s, 611m, 506s, 487m. **HRMS (ESI):** m/z calcd for C₃₉H₆₈NO₃Si₃ [M + NH₄]⁺: 682.4502, found: 682.4498.

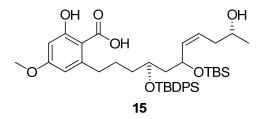

Ester 13: To a solution of **11** (1.12 g, 1.69 mmol, 1.10 equiv) in 4.5 mL THF was added a 0.5 M solution of 9-BBN (5.10 mL, 2.55 mmol, 1.67 equiv) in THF and the mixture was stirred at rt for 5 h. Then a 2 M solution of K₃PO₄ (1.53 mL, 3.06 mmol, 2.00 equiv) was added to the mixture (solution A). In a separate flask aryl bromide **12** (400 mg, 1.53 mmol, 1.00 equiv), trifurylphosphine (285 mg, 1.23 mmol, 0.80 equiv) and [Pd(OAc)₂] (68.8 mg, 0.31 mmol, 0.20 equiv) were dissolved in 1.5 mL degassed abs. DME (solution B) and stirred for 5 min to give an orange suspension. Solution A was added to solution B at rt (1.5 mL THF washing) and the reaction mixture was refluxed for 19 h. Sat. NH₄Cl was then added, the phases were separated, and the aqueous solution was extracted with EtOAc (3 x 75 mL). The combined organic extracts were dried over MgSO₄, filtered and the solvent was removed under reduced pressure. The residue was purified by FC (hexane/EtOAc 100:1 \rightarrow 90:1 \rightarrow 80:1 \rightarrow 70:1, then 10:1) to give **13** as a colorless oil (2.03 g, 68%).

 $R_{f} = 0.46$ (hexane/EtOAc 10:1).

¹**H-NMR** (400.1 MHz, CDCl₃): δ 11.75 (d, J = 3.8 Hz, 2H, -OH), 7.69-7.62 (m, 8H, Pho-CH), 7.44-7.30 (m, 12H, Ph-*m*-CH and Ph-*p*-CH), 6.31 (dd, J = 0.6, 2.6 Hz, 1H, CH_{Ar}COH), 6.12 (t, J = 2.5 Hz, 2H, CH_{Ar}COCH₃), 4.56 (m_c, 1H, CHOTBS), 4.45 (m_c, 1H, CHOTBS'), 4.02-3.93 (m, 2H, CHOTBDPS), 3.93-3.80 (m, 2H, CHOTES), 3.77 (s, 6H, C_{Ar}OCH₃), 3.77 (d, J = 0.9 Hz, 6H, COOCH₃), 2.70-2.46 (m, 4H, C_{Ar}CH₂), 2.39-2.29 (m, 2H, CHHCHCH₃), 2.20 (m_c, 2H, CHHCHCH₃), 1.96-1.68 (m, 4H, CH₂CHOTBS), 1.42-1.35 (m, 8H, CH₂CH₂CHOTBDPS and CH₂CH₂CHOTBDPS), 1.20 (dd, J = 4.8, 5.9 Hz, 6H, CHCH₃), 1.03 (d, J = 2.7 Hz, 18H, Ph₂SiC(CH₃)₃), 0.95 $(dt, J = 6.2, 7.9 Hz, 18H, Si(CH_2CH_3)_3), 0.85 (d, J = 16.8 Hz, 18H, (CH_3)_2SiC(CH_3)_3),$ 0.59 (quint, J = 7.7 Hz, 12H, Si(CH₂CH₃)₃), 0.10-0.00 (m, 12H, (CH₃)₂SiC(CH₃)₃). ¹³C-NMR (100.6 MHz, CDCl₃): δ 171.8 (C=O), 165.6 (C_{Ar}OH), 163.9 (C_{Ar}OCH₃), 147.4 (CArCH₂), 135.9 (Ph-o-C), 135.8 (Ph-o-C'), 134.7 (Ph-i-C), 134.6 (Ph-i-C'), 134.3 (Ph-i-C"), 134.0 (Ph-i-C""), 129.5 (Ph-p-C), 129.4 (Ph-p-C'), 127.5 (Ph-m-C), 127.4 (Ph-*m*-C'), 110.6 (*C*H_{Ar}C_{Ar}CH₂), 104.5 (*C*_{Ar}COOCH₃), 98.9 (*C*H_{Ar}COH), 98.8 (CH_{Ar}COH'), 83.5 (CHCC), 83.2 (CHCC'), 82.1 (CHCC), 81.9 (CHCC'), 70.6 (CHOTBDPS), 70.5 (CHOTBDPS'), 67.4 (CHOTES), 61.2 (CHOTBS), 60.2 (CHOTBS'), 55.2 (CArOCH₃), 51.8 (COOCH₃), 46.3 (CH₂CHOTBS), 45.6 (CH₂CHOTBS'), 37.1 (CH₂CHOTBDPS), 36.9 (CH₂CHOTBDPS'), 36.6 (C_{Ar}CH₂), 29.8 (CH₂CHCH₃), 27.0 (Ph₂SiC(CH₃)₃), 26.8 (CH₂CH₂CHOTBDPS), 26.7 (CH₂CH₂CHOTBDPS'), 25.8 ((CH₃)₂SiC(CH₃)₃), 23.3(CHCH₃), 23.2 (CHCH₃'), 19.4 (Ph₂SiC(CH₃)₃), 18.2 ((CH₃)₂SiC(CH₃)₃), 18.1 ((CH₃)₂SiC(CH₃)₃), 6.8 (Si(CH₂CH₃)₃), 4.8 (Si(CH₂CH₃)₃), -4.1 ((CH₃)₂SiC(CH₃)₃), -4.5 ((CH₃)₂SiC(CH₃)₃'), -4.9 ((CH₃)₂SiC(CH₃)₃"), -5.1 ((CH₃)₂SiC(CH₃)₃").

IR (neat, v/cm⁻¹): 3071w, 2954m, 2931m, 2878w, 2857w, 1653m, 1616m, 1577w, 1462w, 1435m, 1377w, 1326m, 1255s, 1215m, 1158m, 1104m, 1000m, 957w, 836m, 756s, 738s, 701s, 611m, 506m.

HRMS (ESI): m/z calcd for C₄₈H₇₈NO₇Si₃ [M + NH₄]⁺: 864.5081, found: 864.5080.

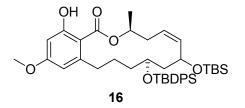

Ester 14: To a solution of **13** (831 mg, 981 µmol, 1.00 equiv) in EtOAc (7.6 mL) was added *Lindlar* catalyst (105 mg, 49.3 µmol, 5 mol%). The mixture was stirred under a hydrogen atmosphere (7.5 bar) and the progress of the reaction was monitored by MS. After 50 min the suspension was filtered through celite, the solvent was removed under reduced pressure and the residue was purified by FC (hexane/Et₂O 100:0 \rightarrow 50:1 \rightarrow 10:1) to give **14** as a colorless oil (812 mg, 97%).

 $R_f = 0.41$ (hexane/Et₂O, 10:1).

¹**H-NMR** (400.1 MHz, CDCl₃): δ 11.76 (d, J = 4.9 Hz, 2H, -OH), 7.69-7.60 (m, 8H, Pho-CH), 7.44-7.29 (m, 12H, Ph-*m*-CH and Ph-*p*-CH), 6.32 (dd, J = 2.6, 6.6 Hz, 2H, CH_{Ar}COH), 6.19 (d, J = 2.6 Hz, 1H, CH_{Ar}COCH₃), 6.12 (d, J = 2.6 Hz, 1H, CH_{Ar}COCH₃'), 5.35-5.21 (m, 4H, CH=CH), 4.52 (dt, J = 4.6, 8.1 Hz 1H, CHOTBS), 4.38 (m_c, 1H, CHOTBS'), 3.97 (m_c, 1H, CHOTBDPS), 3.89 (m_c, 1H, CHOTBDPS'), 3.86-3.76 (m, 2H, CHOTES), 3.79 (d, J = 13.8 Hz, 6H, COOCH₃), 3.78 (d, J = 4.9 Hz, 6H, C_{Ar}OCH₃), 2.81-2.52 (m, 4H, C_{Ar}CH₂), 2.22-1.99 (m, 4H, CH₂CHCH₃), 1.84-1.37 (m, 12H, C H_2 CHOTBS, C H_2 CH $_2$ CHOTBDPS and C H_2 C H_2 CHOTBDPS), 1.09 (dd, J = 2.1, 6.1 Hz, 6H, CHC H_3), 1.03 (d, J = 0.7 Hz, 18H, Ph $_2$ SiC(CH $_3$) $_3$), 0.96 (t, J = 7.9 Hz, 18H, Si(CH $_2$ C H_3) $_3$), 0.78 (d, J = 20.3 Hz, 18H, (CH $_3$) $_2$ SiC(C H_3) $_3$), 0.59 (m_c, 12H, Si(C H_2 CH $_3$) $_3$), -0.07 (dd, J = 11.5, 14.0 Hz, 12H, (C H_3) $_2$ SiC(CH $_3$) $_3$).

¹³**C-NMR** (100.6 MHz, CDCl₃): δ 171.9 (C=O), 171.8 (C=O'), 165.6 (C_ArOH), 165.5 (C_ArOH'), 163.9 (C_ArOCH₃), 147.6 (C_ArCH₂), 147.5 (C_ArCH₂'), 135.8 (Ph-*o*-C), 135.4 (CHCH₂CHCH₃), 135.2 (CHCH₂CHCH₃'), 134.9 (Ph-*i*-C), 134.7 (Ph-*i*-C'), 134.6 (Ph-*i*-C''), 134.4 (Ph-*i*-C'''), 129.4 (Ph-*p*-C), 129.3 (Ph-*p*-C'), 127.5 (Ph-*m*-C), 127.4 (Ph-*m*-C'), 125.5 (CHCHOTBS), 125.0 (CHCHOTBS'), 110.7 (CH_ArC_ArCH₂), 110.6 (CH_ArC_ArCH₂'), 104.5 (C_ArCOOCH₃), 98.9 (CH_ArCOH), 98.8 (CH_ArCOH'), 70.8 (CHOTBDPS), 70.5 (CHOTBDPS'), 68.1 (CHOTES), 66.4 (CHOTBS), 66.3 (CHOTBS'), 55.2 (C_ArOCH₃), 51.8 (COOCH₃), 45.9 (CH₂CHOTBS), 44.9 (CH₂CHOTBS'), 37.9 (CH₂CHCH₃), 37.6 (CH₂CHOTBDPS), 36.8 (C_ArCH₂), 36.7 (C_ArCH₂'), 35.7 (CH₂CHOTBDPS'), 27.1 (Ph₂SiC(CH₃)₃), 26.9 (CH₂CH₂CHOTBDPS), 26.8 (CH₂C₂CHOTBDPS'), 25.9 ((CH₃)₂SiC(CH₃)₃), 18.0 ((CH₃)₂SiC(CH₃)₃), 17.9 ((CH₃)₂SiC(CH₃)₃), 19.3 (Ph₂SiC(CH₃)₃), 4.9 (Si(CH₂CH₃)₃), -3.8 ((CH₃)₂SiC(CH₃)₃), -4.1 ((CH₃)₂SiC(CH₃)₃'), -4.7 ((CH₃)₂SiC(CH₃)₃''), -5.0 ((CH₃)₂SiC(CH₃)₃''').

IR (neat, v/cm⁻¹): 3071w, 3049w, 3014w, 2954m, 2933m, 2878w, 2857w, 1653m, 1615m, 1577m, 1462w, 1429m, 1376w, 1326m, 1305w, 1255s, 1204m, 1158m, 1108m, 1081s, 1004m, 958w, 834m, 755s, 734s, 701s, 610m, 509m, 487m. **HRMS (ESI):** m/z calcd for C₄₈H₇₆NaO₇Si₃ [M + Na]⁺: 874.4791, found: 871.4797.

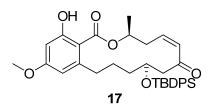


Seco acid 15: To a solution of **14** (80.1 mg, 94.3 µmol, 1.0 equiv) in MeOH (4.2 mL) was added 1 M NaOH (1.4 mL, 1400 µmol, 15 equiv) and the reaction mixture was refluxed at 87 °C for 21 h. It was then diluted with 0.2 M NaH₂PO₄ solution and EtOAc (5 mL), the pH was adjusted to 5 through addition of solid NaH₂PO₄, and the phases were separated. The aqueous solution was extracted with EtOAc (3 x 15 mL), the combined organic extracts were washed with brine, dried over MgSO₄, and the solvent was removed under reduced pressure. The residue was purified by FC (hexane/EtOAc 5:1 \rightarrow 3:1 \rightarrow 2:1, then DCM/MeOH, 100:1 \rightarrow 50:1 \rightarrow 30:1 \rightarrow 10:1 \rightarrow 5:1) to give **15** (40.5 mg, 60%) as a yellowish solid.

R_f = 0.42 (DCM/MeOH 10:1). **m.p.** 108-110 °C. ¹**H-NMR** (400.1 MHz, DMSO-d₆): δ 7.64-7.54 (m, 8H, Ph-*o*-CH), 7.47-7.33 (m, 12H, Ph-*m*-CH and Ph-*p*-CH), 6.17 (t, *J* = 2.4 Hz, 2H, *CH*_{Ar}COH), 6.00 (d, *J* = 2.5 Hz, 1H, *CH*_{Ar}COCH₃), 5.93 (d, *J* = 2.5 Hz, 1H, *CH*_{Ar}COCH₃'), 5.31 (m_c, 2H, CH=CHCH₂), 5.17 (m_c, 2H, CH=CHCH₂), 4.51 (dt, *J* = 4.6, 8.5 Hz, 1H, CHOTBS), 4.34 (dt, *J* = 3.8, 8.8 Hz, 1H, CHOTBS'), 3.95 (m_c, 1H, CHOTBDPS), 3.83 (m_c, 1H, CHOTBDPS'), 3.67 (d, *J* = 4.0 Hz, 6H, C_{Ar}OCH₃), 3.59 (tdd, *J* = 6.2, 12.3 Hz, 2H, CHCH₃), 2.94-2.82 (m, 1H, CHCH₂CHOTBDPS), 2.12-1.94 (m, 4H, CH₂CHOH), 1.71-1.31 (m, 12H, C_{Ar}CH₂, *CH*₂CHOTBDPS and *CH*₂CHOTBDPS and *CH*₂CHOTBDPS and *CH*₂CHOTBDPS and *CH*₂CHOTBDPS (d, *J* = 20.9 Hz, 18H, (CH₃)₂SiC(CH₃)₃), -0.12 (dd, *J* = 12.6, 13.3 Hz, 12H, (CH₃)₂SiC(CH₃)₃).

¹³C-NMR (100.6 MHz, DMSO-d₆): δ 173.1 (C=O), 172.9 (C=O'), 164.9 (C_{Ar}OH), 164.8 (C_{Ar}OH'), 161.5 (C_{Ar}OCH₃), 161.4 (C_{Ar}OCH₃'), 146.6 (C_{Ar}CH₂), 146.5 (C_{Ar}CH₂'), 135.2 (Ph-o-C), 134.4 (CH=CHCH₂), 134.3 (CH=CHCH₂'), 134.0 (Ph-i-C), 133.9 (Ph-i-C'), 133.8 (Ph-i-C"), 133.7 (Ph-i-C""), 129.6 (Ph-p-C), 129.5 (Ph-p-C'), 127.5 (Ph-m-C), 125.9 (CH=CHCH₂), 125.7 (CH=CHCH₂'), 108.7 (C_{Ar}COOH), 108.4 (C_{Ar}COOH'), 107.4 (*C*H_{Ar}C_{Ar}CH₂), 98.5 (*C*H_{Ar}COH), 70.5 (CHOTBDPS), 69.9 (CHOTBDPS'), 65.8 (CHOTBS and CHCH₃), 65.7 (CHOTBS and CHCH₃), 65.6 (CHOTBS and CHCH₃), 54.7 (C_{Ar}OCH₃), 45.6 (CH₂CHOTBS), 44.1 (CH₂CHOTBS'), 37.1 (CH₂CHOTBDPS and CH₂CHOH), 37.0 (CH₂CHOTBDPS and CH₂CHOH), 35.1 (C_{Ar}CH₂ and CH₂CH₂CHOTBDPS), 34.8 (C_{Ar}CH₂ and CH₂CH₂CHOTBDPS), 34.6 (C_{Ar}CH₂ and CH₂CH₂CHOTBDPS), 26.8 (Ph₂SiC(CH₃)₃), 26.7 (Ph₂SiC(CH₃)₃'), 25.6 ((CH₃)₂SiC(CH₃)₃), 25.5 ((CH₃)₂SiC(CH₃)₃'), 23.2 (CH₃), 23.0 (CH₃'), 18.8 (Ph₂SiC(CH₃)₃), 17.5 ((CH₃)₂SiC(CH₃)₃), -4.0 ((CH₃)₂SiC(CH₃)₃), -4.2 ((CH₃)₂SiC(CH₃)₃'), -5.0 ((CH₃)₂SiC(CH₃)₃''), -5.3 ((CH₃)₂SiC(CH₃)₃'''). **IR** (neat, v/cm⁻¹) : 3415w, 3071w, 3049w, 3012w, 2929m, 2856m, 1584m, 1462w, 1428m, 1372m, 1253m, 1202m, 1159m, 1106s, 1079s, 1005m, 939w, 834s, 775s, 739m, 701s, 612m, 509m, 485m.

HRMS (ESI): m/z calcd for C₄₁H₆₀NaO₇Si₂ [M + Na]⁺: 743.3770, found: 743.3767.


Protected macrolactone 16: To a solution of Ph₃P (1.67 g, 6.37 mmol, 12.0 equiv) in 128 mL toluene was added DEAD (1.00 mL, 6.37 mmol, 12.0 equiv) dropwise at rt. The solution was stirred at rt for 40 min. To this solution was added a solution of **15** (383 mg, 531 μ mol, 1.0 equiv) in toluene (168 mL + 10 mL washing) at 0 °C over a period of 1.5 h. The resulting mixture was stirred for 1 h at 0 °C and then allowed to warm to rt over 1.5 h. After quenching with water (170 mL) the aqueous layer was extracted with EtOAc (3 x 150 mL). The combined organic extracts were washed with

brine, dried over MgSO₄, filtered and the solvent was removed under reduced pressure. The residue was purified by FC (hexane/Et₂O 100:1 \rightarrow 20:1, then hexane/EtOAc 10:1) to give **16** as a colorless oil (181.2 mg, 49%).

 $R_f = 0.23$ (hexane/ Et₂O 10:1).

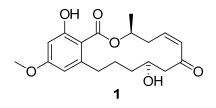
¹H-NMR (400.1 MHz, CDCl₃): δ 12.09 (s, 1H, -OH), 11.76 (s, 1H, -OH'), 7.69-7.60 (m, 8H, Ph-o-CH), 7.42-7.25 (m, 12H, Ph-m-CH and Ph-p-CH), 6.32 (d, J = 2.6, 1H, $CH_{Ar}COH$), 6.16 (d, J = 2.6 Hz, 1H, $CH_{Ar}COCH_3$), 6.10 (d, J = 2.6 Hz, 1H, CH_{Ar}COCH₃'), 5.47-5.38 (m, 1H, CH=CHCH), 5.35-5.14 (m, 4H, CHCH₃, CH=CHCH', CH=CHCH), 5.10-5.02 (m, 1H, CH=CHCH'), 4.47-4.38 (m, 1H, CHOTBS), 4.33-4.25 (m, 1H, CHOTBS'), 3.78 (d, J = 3.5 Hz, 6H, C_{Ar}OCH₃), 3.70-3.63 (m, 1H, CHOTBDPS), 3.58-3.50 (m, 1H, CHOTBDPS'), 2.79-2.60 (m, 4H, C_{Ar}CHH, C_{Ar}CHH', CHHCH=CH and CHHCH=CH'), 2.42-2.16 (m, 4H, C_{Ar}CHH, C_{Ar}CHH, CHHCH=CH and CHHCH=CH'), 2.03-1.82 (m, 3H, CH₂CHOTBS and CHHCHOTBS'), 1.78-1.54 (m, 5H, CHHCHOTBS', CHHCH2CHOTBDPS, CH2CHOTBDPS and CHHCHOTBDPS'), 1.45-1.28 (m, 4H, CHHCHOTBDPS', CHHCH₂CHOTBDPS and CH₂CHOTBDPS'), 1.38 (s, J = 6.2 Hz, 6H, CHCH₃), 1.05 (d, J = 3.0 Hz, 18H, $Ph_2SiC(CH_3)_3)$, 0.84 (d, J = 5.9 Hz, 18H, $(CH_3)_2SiC(CH_3)_3$), 0.03 (d, J = 11.6 Hz, 6H, $(CH_3)_2SiC(CH_3)_3)$, -0.04 (d, J = 7.4 Hz, 6H, $(CH_3)_2SiC(CH_3)_3')$. ¹³C-NMR (100.6 MHz, CDCl₃): δ 171.6 (C=O), 165.9 (C_{Ar}OH), 165.0 (C_{Ar}OH'), 164.0 (C_{Ar}OCH₃), 163.8 (C_{Ar}OCH₃'), 147.8 (C_{Ar}CH₂), 135.9 (Ph-o-C), 135.2 (CH=CHCHOTBS), 134.6 (CH=CHCHOTBS'), 134.3 (Ph-i-C), 134.2 (Ph-i-C'), 134.1 (Ph-i-C"), 129.6 (Ph-p-C), 129.5 (Ph-p-C'), 129.4 (Ph-p-C"), 127.5 (Ph-m-C), 127.4 (Ph-*m*-C'), 126.7 (*C*H=CHCHOTBS), 126.2 (*C*H=CHCHOTBS'), 109.1 (*C*H_{Ar}C_{Ar}CH₂), 108.8 (CH_{Ar}C_{Ar}CH₂'), 105.7 (C_{Ar}COOCH), 104.8 (C_{Ar}COOCH'), 98.7 (CH_{Ar}COH), 98.6 (CH_{Ar}COH'), 72.7 (CHCH₃), 72.6 (CHCH₃'), 71.0 (CHOTBDPS), 69.9 (CHOTBDPS'), 67.0 (CHOTBS), 65.1 (CHOTBS'), 55.2 (C_{Ar}OCH₃), 45.7 (CH₂CHOTBS), 45.3 (CH₂CHOTBS'), 36.8 (CH₂CHOTBDPS), 36.2 (C_{Ar}CH₂), 35.0 (CH₂CH=CH), 34.5 (CH₂CH=CH'), 34.2 (C_{Ar}CH₂'), 27.7 (CH₂CH₂CHOTBDPS'), 27.1 (Ph₂SiC(CH₃)₃), 25.8 ((CH₃)₂SiC(CH₃)₃), 21.1 (CHCH₃), 19.3 (CHCH₃' and Ph₂SiC(CH₃)₃), 18.1 ((CH₃)₂SiC(CH₃)₃), 18.0 ((CH₃)₂SiC(CH₃)₃'), -4.1 ((CH₃)₂SiC(CH₃)₃), -4.4 ((CH₃)₂SiC(CH₃)₃'), -4.6 ((CH₃)₂SiC(CH₃)₃''), -4.9 ((CH₃)₂SiC(CH₃)₃'''). **IR** (neat, v/cm⁻¹) : 2957m, 2927s, 2858m, 1726s, 1644w, 1614w, 1579w, 1462m, 1380w, 1269s, 1159w, 1120s, 1071s, 1040m, 962m, 834w, 774m, 741s, 703s, 651w, 611w, 510w.

HRMS (ESI): m/z calcd for C₄₁H₅₈NaO₆Si₂ [M + Na]⁺: 725.3664, found: 725.3665.

Enone 17: *Jones* reagent (8 N) was prepared by dissolving pure chromium trioxide (266.8 mg) in distilled water, adding conc. H_2SO_4 (0.213 mL) and then diluting the mixture with water to 1 mL.

To a solution of **16** (83 mg, 118 µmol, 1.0 equiv) in 2.2 mL acetone at -15 °C were added KF (15.7 mg, 270 µmol, 2.3 equiv) and freshly prepared 8 N *Jones* reagent (177 µL; CrO₃: 473 µmol, 4.0 equiv; H₂SO₄: 708 mmol, 6.0 equiv). The reaction mixture was stirred at -10 °C for 2 h and diluted with water (15 mL). The aqueous layer was extracted with CH₂Cl₂ (3 x 30 mL) and the combined organic extracts were washed with brine, dried over MgSO₄, filtered and the solvent was removed under reduced pressure. The residue was purified FC (hexane/EtOAc 50:1 \rightarrow 20:1 \rightarrow 15:1 \rightarrow 10:1 \rightarrow 8:1) to give **17** as a white foam (44.0 mg, 64%).

 $\mathbf{R}_{\mathbf{f}} = 0.25$ (hexane/EtOAc 8:1).


 $[\alpha]_{D}^{24} = +46.5^{\circ} (c = 0.882, CHCl_3).$

¹**H-NMR** (400.1 MHz, C_6D_6): $\delta12.75$ (s, 1H, -OH), 7.75-7.69 (m, 4H, Ph-o-CH), 7.23-7.13 (m, 6H, Ph-*m*-CH and Ph-*p*-CH), 6.44 (d, J = 2.6, 1H, $CH_{Ar}COH$), 6.25 (d, J = 2.6 Hz, 1H, $CH_{Ar}COCH_3$), 5.45 (dd, J = 2.3, 11.5 Hz, 1H, $CH=CHCCH_2$), 5.24 (dt, J = 3.2, 11.1 Hz, 1H, $CH=CHCCH_2$), 4.95 (m_c, 1H, $CHCH_3$), 3.98 (m_c, 1H, CHOTBDPS), 3.24-3.12 (m, 1H, CHHCH=CH), 3.18 (s, 3H, $C_{Ar}OCH_3$), 2.79 (m_c, 1H, $C_{Ar}CH$ H), 2.61-2.51 (m, 2H, CH_2CCH), 2.28 (ddd, J = 5.7, 11.0, 14.6 Hz, 1H, $C_{Ar}CHH$), 1.93 (ddd, J = 3.0, 5.2, 16.9 Hz, 1H, CHHCH=CH), 1.85 (m_c, 1H, CHHCHOTBDPS), 1.63-1.52 (m, 1H, CHHCHOTBDPS), 1.52-1.29 (m, 2H, $CH_2CH_2CHOTBDPS$), 1.16 (s, 9H, Ph₂SiC(CH₃)₃), 0.90 (d, J = 6.2 Hz, 3H, $CHCH_3$).

¹³C-NMR (100.6 MHz, C₆D₆): δ 198.8 (CHC=O), 171.9 (C=O), 167.4 (C_{Ar}OH), 164.7 (C_{Ar}OCH₃), 147.5 (C_{Ar}CH₂), 141.2 (CH=CHCCH₂), 136.2 (Ph-*o*-C), 134.4 (Ph-*i*-C), 134.0 (Ph-*i*-C'), 130.6 (CH=CHCCH₂), 130.1 (Ph-*p*-C), 128.0 (Ph-*m*-C), 110.1 (CH_{Ar}C_{Ar}CH₂), 105.0 (C_{Ar}COOCH), 99.2 (CH_{Ar}COH), 73.0 (CHCH₃), 71.2 (CHOTBDPS), 54.7 (C_{Ar}OCH₃), 52.8 (CH₂CCH), 37.3 (CH₂CHOTBDPS), 36.3 (CH₂), 36.2 (CH₂), 27.8 (CH₂CH₂CHOTBDPS), 27.1 (Ph₂SiC(CH₃)₃), 20.2 (CHCH₃), 19.4 (Ph₂SiC(CH₃)₃).

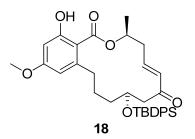
IR (neat, v/cm⁻¹): 3070w, 2932m, 2857w, 1690m, 1640m, 1612s, 1577m, 1463w, 1427m, 1379w, 1351m, 1305m, 1251s, 1215m, 1159s, 1106s, 1047s, 1004m, 957w, 823m, 755s, 701s, 612m, 509s, 488m.

HRMS (ESI): m/z calcd for C₃₅H₄₆NO₆Si [M + NH₄]⁺: 604.3089, found: 604.3088.

5'-Deoxy L-783277 (1): To a solution of **17** (64.4 mg, 0.11 mmol, 1.0 equiv) in 4.9 mL THF was added HF•pyridine (1.23 mL, 47.4 mmol, 431 equiv) at –10 °C. The reaction mixture was stirred at rt for 9 h; it was then added to a mixture of sat. NaHCO₃ (150 mL) and EtOAc (100 mL) under vigorous stirring. The phases were separated and the aqueous layer was extracted with EtOAc (3 x 100 mL). The combined organic extracts were washed with sat. CuSO₄ (2 x 50 mL) and brine (70 mL), dried over MgSO₄, filtered and the solvent was removed under reduced pressure. The residue was purified by FC (hexane/EtOAc 5:1 \rightarrow 3:1 \rightarrow 1:1 \rightarrow 1:2) to give **1** as a white solid (33.7 mg, 88%). HPLC purity >95% (Waters Symmetry C₁₈ column, 3.5 µm, 4.6×100 mm, rt, 1.0 mL/min, 10 µL injected: H₂O/MeCN 80/20 \rightarrow 50/50 in 5 min, \rightarrow 30/70 in 5 min, \rightarrow 10/90 in 5 min, 10:90, 5 min), detection at λ = 254 nm, t_R = 8.6 min).

 $R_{f} = 0.64$ (EtOAc).

m.p. 115-116 °C.


 $[\alpha]_D^{24} = -46.4^\circ (c = 0.822, CHCl_3).$

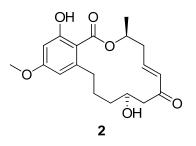
¹**H-NMR** (400.1 MHz, C₆D₆): δ 12.75 (s, 1H, -OH), 6.47 (d, J = 2.7, 1H, CH_{Ar}COH), 6.30 (d, J = 2.6 Hz, 1H, CH_{Ar}COCH₃), 5.55 (dd, J = 3.0, 11.6 Hz, 1H, CH=CHCCH₂), 5.27 (dt, J = 2.8, 11.6 Hz, 1H, CH=CHCCH₂), 5.13 (m_c, 1H, CHCH₃), 3.66 (m_c, 1H, CHOH), 3.33 (d, J = 10.4 Hz, 1H, OH), 3.16 (s, 3H, C_{Ar}OCH₃), 3.14-2.97 (m, 2H, CHCH=CH and C_{Ar}CHH), 2.29-2.09 (m, 3H, CH₂CCH and C_{Ar}CHH), 1.85-1.66 (m, 2H, CHHCH=CH and CHHCOH), 1.56-1.44 (m, 1H, CHHCOH), 1.33-1.20 (m, 1H, CHCH₂CH), 1.15-1.01 (m, 1H, CHHCH₂CH), 0.88 (d, J = 6.2 Hz, 3H, CHCH₃). ¹³C-NMR (100.6 MHz, C₆D₆): δ 204.8 (CHC=O), 171.9 (C=O), 167.4 (C_{Ar}OH), 164.7 (C_{Ar}OCH₃), 147.7 (C_{Ar}CH₂), 139.1 (CH=CHCCH₂), 132.4 (CH=CHCCH₂), 111.2 (CH_{Ar}C_{Ar}CH₂), 104.9 (C_{Ar}COOCH), 99.4 (CH_{Ar}COH), 72.2 (CHCH₃), 70.4 (CHOH), 54.8 (C_{Ar}OCH₃), 45.7 (CH₂CCH), 37.3 (C_{Ar}CH₂), 37.2 (CH₂CHOH), 36.3 (CH₂CH=CH), 29.5 (CH₂CH₂CHOH), 20.6 (CHCH₃).

IR (neat, v/cm⁻¹): 3505w, 2931w, 2859w, 1684w, 1639s, 1611s, 1576m, 1421w, 1380w, 1350m, 1304m, 1250s, 1203s, 1159s, 1138m, 1101m, 1045s, 1016m, 957w, 828m, 750s, 714m, 622w, 601w, 539w.

HRMS (ESI): m/z calcd for C₁₉H₂₅O₆ [M + H]⁺: 349.1646, found: 349.1638.

3. Synthesis of *E*-5-deoxy L-783277 (2)

E-Enone 18: 17 (12.6 mg, 21.5 µmol, 1.0 equiv) was dissolved in CDCl₃ (0.7 mL). The progress of the isomerization was followed by ¹H-NMR. After 4 days (96% conversion), the solvent was removed under reduced pressure and the residue was purified by FC (hexane/EtOAc 50:1 \rightarrow 20:1 \rightarrow 15:1 \rightarrow 10:1 \rightarrow 8:1) to give 18 as a colorless oil (10.4 mg, 83%).


R_f = 0.13 (hexane/EtOAc, 8:1).

 $[\alpha]_D^{24} = -13.7^\circ$ (*c* = 0.520, CHCl₃).

¹**H-NMR** (400.1 MHz, CDCl₃): δ 11.64 (s, 1H, -OH), 7.71-7.65 (m, 4H, Ph-*o*-CH), 7.45-7.32 (m, 6H, Ph-*m*-CH and Ph-*p*-CH), 6.74 (dd, *J* = 6.2, 8.5, 15.8 Hz, 1H, C*H*=CHCCH₂), 6.32 (d, *J* = 2.6, 1H, C*H*_{Ar}COH), 6.16 (d, *J* = 2.7 Hz, 1H, C*H*_{Ar}COCH₃), 5.98 (d, *J* = 16.0 Hz, 1H, CH=C*H*CCH₂), 5.47 (m_c, 1H, C*H*CH₃), 4.02-3.93 (m, 1H, CHOTBDPS), 3.79 (s, 3H, C_{Ar}OCH₃), 2.83-2.68 (m, 3H, C_{Ar}C*H*H, C*H*HCCH and C*H*HCH=CH), 2.64 (dd, *J* = 3.8, 12.0 Hz, 1H, CH*H*CCH), 2.50-2.32 (m, 2H, C_{Ar}CH*H* and CH*H*CH=CH), 1.65-1.44 (m, 3H, C*H*₂CHOTBDPS and C*H*HCH₂CHOTBDPS), 1.46 (d, *J* = 6.5 Hz, 1H, CHCH₃), 1.37-1.24 (m, 1H, CH*H*CH₂CHOTBDPS), 1.08 (s, 9H, Ph₂SiC(CH₃)₃).

¹³**C-NMR** (100.6 MHz, CDCl₃): δ 198.6 (CH*C*=O), 170.5 (C=O), 165.6 (C_{Ar}OH), 164.1 ($C_{Ar}OCH_3$), 147.3 ($C_{Ar}CH_2$), 141.0 (*C*H=CHCCH₂), 135.9 (Ph-*o*-C), 135.6 (CH=*C*HCCH₂), 134.0 (Ph-*i*-C), 133.9 (Ph-*i*-C'), 129.7 (Ph-*p*-C), 127.6 (Ph-*m*-C), 110.0 (*C*H_{Ar}C_{Ar}CH₂), 104.6 ($C_{Ar}COOCH$), 99.0 (*C*H_{Ar}COH), 70.8 (CHOTBDPS), 70.6 (CHCH₃), 55.3 ($C_{Ar}OCH_3$), 46.7 (*C*H₂CCH), 37.4 (*C*H₂CH=CH), 37.1 (*C*H₂CHOTBDPS), 35.8 ($C_{Ar}CH_2$), 27.1 (*C*H₂CHOTBDPS), 27.0 (Ph₂SiC(*C*H₃)₃), 19.3 (CH*C*H₃), 19.2 (Ph₂SiC(CH₃)₃).

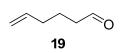
IR (neat, v/cm⁻¹): 3070w, 3045w, 2933m, 2894w, 2857m, 1645s, 1614s, 1577m, 1463m, 1428m, 1387w, 1359m, 1303m, 1255s, 1205m, 1159m, 1110s, 1041m, 1007w, 981w, 823m, 759m, 740m, 704s, 611w, 506m, 460m, 429m, 409m. **HRMS (ESI):** m/z calcd for C₃₅H₄₂NaO₆Si [M + Na]⁺: 609.2643, found: 609.2642.

E-5'-Deoxy L-783277 (2): To a solution of 18 (10.4 mg, 17.7 μmol, 1.0 equiv) in 0.8 mL THF was added HF•pyridine (0.20 mL, 7.70 mmol, 434 equiv) at –10 °C. The reaction mixture was stirred at rt for 10 h; it was then added to a mixture of sat. NaHCO₃ (15 mL) and EtOAc (15 mL) under vigorous stirring, the phases were separated and the aqueous layer was extracted with EtOAc (2 x 15 mL). The combined organic extracts were washed with sat. CuSO₄ (2 x 7 mL) and brine (10 mL), dried over MgSO₄, filtered and the solvent was removed under reduced pressure. The residue was purified by FC (hexane/EtOAc 10:1 → 3:1 → 1:1) to give 2 as a white solid (5.0 mg, 81%, 94% pure NMR and HPLC). After purification by preparative HPLC 2 was isolated as a white solid (4.06 mg, 66%). HPLC purity >99% (Waters Symmetry C₁₈ column, 3.5 μm, 4.6×100 mm, rt, 1.0 mL/min, 10 μL injected): H₂O/MeCN 80/20 → 50/50 in 5 min, → 30/70 in 5 min, → 10:90 in 5 min, 10/90, 5 min, detection at λ = 254 nm, t_R = 7.2 min).

 $\mathbf{R}_{\mathbf{f}} = 0.20$ (hexane/EtOAc 1:1).

m.p. 137-142 °C.

 $[\alpha]_D^{24} = -90.9^\circ (c = 0.249, CHCl_3).$

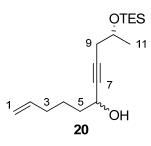

¹**H-NMR** (400.1 MHz, C_6D_6): δ 12.45 (s, 1H, -OH), 6.51 (d, J = 2.7, 1H, $CH_{Ar}COH$), 6.30 (d, J = 2.7 Hz, 1H, $CH_{Ar}COCH_3$), 6.24 (m_c, 1H, $CH=CHCCH_2$), 5.84 (d, J =16.2 Hz, 1H, $CH=CHCCH_2$), 5.06 (m_c, 1H, $CHCH_3$), 3.68 (m_c, 1H, CHOH), 3.19 (s, 3H, $C_{Ar}OCH_3$), 2.94 (dt, J = 3.8, 12.3 Hz, 1H, $C_{Ar}CHH$), 2.63 (dd, J = 2.7, 12.7 Hz, 1H, CHHCCH), 2.32 (m_c, 1H, CHHCH=CH), 2.25-2.11 (m, 2H, $C_{Ar}CHH$ and CHHCCH), 1.65 (m_c, 1H, CHHCOH), 1.55 (m_c, 1H, CHHCH=CH), 1.27-1.00 (m, 3H, CH_2CH_2CH and CHHCOH), 0.75 (d, J = 6.6 Hz, 3H, $CHCH_3$).

¹³**C-NMR** (100.6 MHz, C_6D_6): δ 200.8 (CH*C*=O), 171.2 (C=O), 167.1 (C_{Ar}OH), 164.9 (*C*_{Ar}OCH₃), 147.9 (*C*_{Ar}CH₂), 142.4 (*C*H=CHCCH₂), 137.0 (CH=*C*HCCH₂), 111.6 (*C*H_{Ar}C_{Ar}CH₂), 104.8 (*C*_{Ar}COOCH), 99.5 (*C*H_{Ar}COH), 70.6 (*C*HCH₃), 70.0 (CHOH), 54.8 (*C*_{Ar}OCH₃), 41.7 (*C*H₂CCH), 37.2 (*C*H₂CHOH), 36.9 (*C*_{Ar}CH₂), 36.2 (*C*H₂CH=CH), 29.9 (*C*H₂CH₂CHOH), 18.5 (CH*C*H₃).

IR (neat, v/cm⁻¹): 3431w, 2979m, 2937m, 2858w, 1717w, 1646s, 1614s, 1577m, 1441m, 1385m, 1353m, 1318m, 1302m, 1255s, 1204s, 1160s, 1109m, 1036m, 982m, 957w, 848w, 810w, 759m, 715w, 476w, 419w.

HRMS (ESI): m/z calcd for C₁₉H₂₅O₆ [M + H]⁺: 349.1646, found: 349.1653.

4. Synthesis of dideoxy L-783277 (3)


Aldehyde 19: To a solution of oxalylchloride (2.90 ml, 30.31 mmol, 1.5 equiv) in DCM (50 ml) was added DMSO (4.70 ml, 66.61 mmol, 3 equiv) dropwise within 5 minutes at -78 °C. The mixture was stirred at -78 °C for 10 min and a solution of 5-hexen-1-ol (2.50 ml, 20.82 mmol, 1 equiv) in DCM (7.5 ml) was added dropwise within 10 min. After stirring for 1 h at -78 °C TEA (9.20 ml, 66.19 mmol, 3 equiv) was added within 10 minutes and the reaction mixture was allowed to warmed to 0 °C. Water (60 ml) and DCM (60 ml) were then added and the phases were separated. The aqueous solution was extracted with DCM (2 x 60 ml) and the combined organic extracts were dried over MgSO₄, filtered and the solvent was evaporated *in vacuo* (up to 700 mbar). The crude product was purified by FC (pentane/Et₂O 10:1) to give **19** (2.0 g, quant.) as a colorless oil.

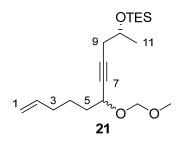
R_f = 0.53 (hexane/EtOAc 5:1); 0.44 (pentane/Et₂O 10:1).

¹**H-NMR** (400.1 MHz, CDCl₃): δ 9.77 (t, *J* = 1.6 Hz , 1H, H-6); 5.81-5.71 (m, 2H, H-2); 5.05-4.93 (m, 2H, H-1); 2.46-2.42 (m, 2H, H-5); 2.14-2.04 (q, *J* = 7.4 Hz, 2H, H-3); 1.77-1.63 (m, 2H, H-4).

¹³**C-NMR** (100.6 MHz, CDCl₃): δ 202.5 (C-6); 137.7 (C-2); 115.7 (C-1); 43.3 (C-5); 33.1 (C-3); 21.3 (C-4).

IR (neat, v/cm⁻¹): 3075, 2939, 2863, 1727, 1640, 1443, 1356, 1137, 993, 910. **HRMS (EI)**: m/z calcd for C₆H₁₀O [M-H]⁺: 98.0726, found: 98.0724.

Acetylene 20: To a solution of 19 (100 mg, 0.50 mmol, 1 equiv) in abs. THF (5 ml) was added *n*-BuLi (1.6 M in hexane; 380 µl, 0.61 mmol, 1.2 equiv) at -10 °C and the mixture was stirred for 20 min. After cooling to -78 °C a precooled solution of 19 (60 mg, 0.61 mmol, 1.2 equiv) in abs. THF (3.5 ml) was added dropwise. The reaction mixture was stirred at -78 °C for 1.5 h and then allowed to warm to -18 °C. The reaction was quenched at this temperature by addition of sat aqu NH₄Cl (10 ml). The mixture was extracted with Et₂O (1 x 10 ml) and the extract was dried over MgSO₄, filtered and the solvent was evaporated *in vacuo*. The crude product was purified by FC (hexane/Et₂O 4:1 \rightarrow 2:1) to give 20 (76 mg, 51%) as a pale yellow oil.


 $R_{f} = 0.51$ (hexane/Et₂O 4:1).

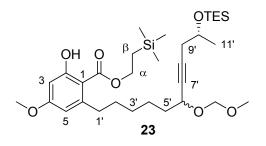
¹**H-NMR** (400.1 MHz, CDCl₃): δ 0.58-0.63 (q, *J* = 7.9 Hz, 6H, SiC*H*₂CH₃); 0.94-0.99 (t, *J* = 7.9 Hz, 9H, SiCH₂C*H*₃); 1.22-1.24 (d, *J* = 6.0 Hz, 3H, H-11); 1.52-1.58 (m, 2H, H-4'); 1.65-1.72 (m, 2H, H-5); 2.06-2.11 (q, *J* = 7.6 Hz, 2H, H-3); 2.24-2.42 (m, 2H, H-9); 3.90-3.95 (m, 1H, H-10); 4.35-4.36 (m, 1H, H-6); 4.94-5.04 (m, 2H, H-1); 5.77-5.84 (m, 1H, H-2).

¹³**C-NMR** (100.6 MHz, CDCl₃): δ 5.0 (Si*C*H₂CH₃); 7.0 (SiCH₂*C*H₃); 23.5 (C-11); 24.6 (C-4); 29.8 (C-9); 33.5 (C-3); 37.6 (C-5); 62.7 (C-6); 67.6 (C-10); 82.9 (C-7/C-8); 114.9 (C-1); 138.6 (C-2).

IR (neat, v/cm⁻¹): 3379, 3077, 2955, 2912, 2876, 1813, 1641, 1459, 1377, 1239, 1125, 1096, 1000, 909, 724.

HRMS (EI): m/z calcd for C₁₅H₂₇O₂Si [M-C₂H₅]⁺: 267.1775, found: 267.1777.

MOM-Ether 21: To a solution of **20** (587 mg, 1.98 mmol, 1 equiv) in DMF (60 ml) were added sequentially TBAI (3.7 mg, 0.01 mmol, 0.005 equiv), DIEA (2.76 ml, 15.85 mmol, 8 equiv) und MOM-CI (1.20 ml, 15.85 mmol, 8 equiv) and the mixture was stirred for 17 h. EtOAc (50 ml) and diluted NaHCO₃ solution (50 ml) were then added to the mixture, the pH was adjusted 7 by addition of sat aqu NH₄Cl and the phases were separated. The aqueous solution was extracted with EtOAc (3 x 50 ml) and the combined organic extracts were dried over MgSO₄, filtered and the solvent was evaporated *in vacuo*. The crude product was purified by FC (hexane/EtOAc 20:1) to give **21** (614 mg, 91%) as a colorless oil.

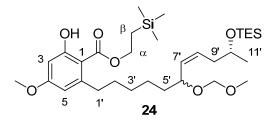

R_f = 0.50 (hexane/EtOAc 10:1).

¹**H-NMR** (400.1 MHz, CDCl₃): δ 5.84-5.76 (m, 1H, H-2); 5.04-4.97 (m, 2H, H-1); 0.60 (q, *J* = 8.2 Hz, 6H, Si*CH*₂CH₃); 4.75 (dd, 2H, MOM-CH₂); 4.33-4.30 (m, 1H, H-6); 3.95-3.90 (m, 1H, H-10); 3.36 (s, 3H, MOM-CH₃); 2.43-2.24 (m, 2H, H-9); 2.12-2.06 (q, *J* = 7.3 Hz, 2H, H-3); 1.75-1.68 (m, 2H, H-5); 1.61-1.54 (m, 2H, H-4); 1.23 (d, *J* = 6.3 Hz, 3H, H-11); 0.95 (t, *J* = 8.2 Hz, 9H, SiCH₂CH₃).

¹³**C-NMR** (100.6 MHz, CDCl₃): δ 138.7 (C-2); 5.0 (Si*CH*₂CH₃); 114.8 (C-1); 94.0 (MOM-CH₂); 83.5 (C-8); 80.3 (C-7); 67.6 (C-10); 65.8 (C-6'), 55.7 (MOM-CH₃); 35.5 (C-5); 33.5 (C-3); 29.9 (C-9); 24.8 (C-4); 23.5 (C-11); 7.0 (SiCH₂CH₃).

IR (neat, v/cm⁻¹): 3077, 2954, 2877, 1641, 1461, 1239, 1097, 1034, 1000,741, 735, 725.

HRMS (EI): m/z calcd for C₁₅H₂₇O₂Si [M-C₂H₅]⁺: 311.2050, found: 311.2050.


Ester 23: To a solution of **21** (100 mg, 0.30 mmol, 1.1 equiv) in 0.65 ml abs. THF was added dropwise a 0.5 M solution of 9-BBN in THF (0.75 ml, 0.37 mmol, 1.2 equiv), and the mixture was stirred at rt for 1 h. A 2 M solution of K_3PO_4 (267 µl, 0.53 mmol, 2 equiv) was added to the mixture (solution A). In a separate flask, 2- (trimethylsilyl)ethyl 2-bromo-6-hydroxy-4-methoxybenzoate (**22**) (92 mg, 0.26 mmol, 1 equiv) was added to a mixture of trifurylphosphine (37 mg, 0.16 mmol, 0.6 equiv) and Pd(OAc)₂ (9 mg, 0.04 mmol, 0.15 equiv) in 1 ml of degassed abs. DME (solution B). Solution B was stirred for 5 min (with the color changing from red to yellow) and solution A was added dropwise at rt. The reaction mixture was refluxed for 1.5 h and then adsorbed on Celite and purified by FC (hexane/Et₂O 20:1 \rightarrow 10:1) to give **23** (133 mg, 83%) as a colorless oil.

 $R_f = 0.28$ (hexane/Et₂O 10:1).

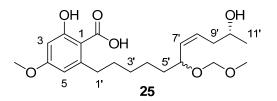
¹**H-NMR** (400.1 MHz, CDCl₃): δ 11.83 (s, 1H, 2-OH); 6.32-6.33 (d, J = 2.9 Hz, 1H, H-3); 6.27 (d, J = 2.9 Hz, 1H, H-5); 4.71 (dd, 2H, MOM-CH₂); 4.39-4.44 (m, 2H, H-α); 4.32-4.30 (m, 1H, H-6'); 3.94-3.91 (m, 1H, H-10'); 3.79 (s, 3H, 4-CH₃); 3.36 (s, 3H, MOM-CH₃); 2.88 (t, J = 7.7 Hz, 2H, H-1'); 2.42-2.27 (m, 2H, H-9'); 1.72-1.68 (m, 2H, H-5'); 1.59-1.51 (m, 2H, H-2'); 1.50-1.48 (m, 2H, H-4'); 1.42-1.36 (m, 2H, H-3'); 1.23 (d, J = 7.1 Hz, 3H, H-11'); 1.13-1.17 (m, 2H, H-β); 0.95 (t, J = 8.2 Hz, 9H, SiCH₂CH₃); 0.59 (q, J = 8.2 Hz, 6H, SiCH₂CH₃); 0.09 (s, 9H, SiCH₃).

¹³**C-NMR** (100.6 MHz, CDCl₃): δ 171.8 (C=O); 165.7 (C-2); 163.9 (C-4); 147.9 (C-6); 110.8 (C-5); 105.1 (C-1); 99.0 (C-3); 94.0 (MOM-*C*H₂); 83.4 (C-8'); 80.4 (C-7'); 67.6 (C-10'); 65.9 (C-6'); 63.8 (C-α); 55.7 (MOM-*C*H₃); 55.4 (4-O-*C*H₃); 36.9 (C-1'); 36.1 (C-5'); 32.0 (C-2'); 29.9 (C-9'); 29.6 (C-3'); 25.5 (C-4'); 23.5 (C-11'); 17.7 (C-β); 6.9 (SiCH₂CH₃); 5.0 (SiCH₂CH₃); -1.4 (Si-*C*H₃).

IR (neat, v/cm⁻¹) 950, 2875, 1646, 1613, 1576, 1251, 1157, 1038, 837, 743, 732, 726. **HRMS (EI)**: *m/z* calcd for C₃₂H₅₆NaO₇Si₂ [M-Na]⁺: 631.3457, found: 631.3457.

Ester 24: To a solution of **23** (924 mg, 1.52 mmol, 1 equiv) in 40 ml EtOAc was added *Lindlar* catalyst (162 mg, 0.08 mmol, 0.05 equiv) and the suspension was

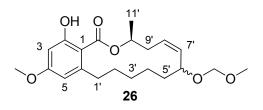
vigorously stirred under a hydrogen atmosphre (baloon); after every 30 min the flask was flushed with argon and the progress of the reaction was assessed by MS and TLC. After 3 h the reaction was complete. The mixture was filtered through Celite, the solvent was evaporated and the residue was purified by FC (hexane/EtOAc 50:1 \rightarrow 20:1 \rightarrow 10:1) to give **24** (853 mg, 92%) as a colorless oil.


$R_{f} = 0.35$ (hexane/EtOAc 10:1).

¹**H-NMR** (400.1 MHz, CDCl₃): δ 11.83 (s, 1H, 2-OH); 6.33 (d, 1H, J = 2.6 Hz, H-3); 6.27 (d, 1H, J = 2.6 Hz, H-5); 5.67-5.60 (m, 1H, H-8'); 5.29 (t, 1H, J = 9.8 Hz, H-7'); 4.46-4.67 (m, 2H, MOM-CH₂); 4.44-4.39 (m, 2H, H-α); 4.36-4.30 (m, 1H, H-6'); 3.88-3.81 (m, 1H, H-10'); 3.79 (s, 3H, 4-O-CH₃); 3.34 (s, 3H, MOM-CH₃); 2.88 (t, 2H, J =8.0 Hz, H-1'); 2.31-2.22 (m, 2H, H-9'); 1.65-1.52 (m, 3H, H-2', H-5'); 1.44-1.26 (m, 5H, H-3', H-4', H-5'); 1.26 (d, 3H, J = 2.1 Hz, H-11); 1.26-1.09 (m, 5H, H-β (2H), 0.95 (t, 9H, J = 8.0 Hz, Si(CH₂CH₃)₃); 0.59 (q, 6H, J = 8.0 Hz, Si(CH₂CH₃)₃); 0.09 (s, 9H, Si(CH₃)₃).

¹³**C-NMR** (100.6 MHz, CDCl₃): δ 171.8 (C=O);165.7 (C-2); 163.9 (C-4); 148.0 (C-6); 131.6 (C-7'); 130.1 (C-8'); 110.8 (C-5); 105.1 (C-1); 99.0 (C-3); 93.5 (MOM-*C*H₂); 71.0/71.1 (C-6'); 68.3/68.4 (C-10'); 63.8 (C-α); 55.4 (4-O-*C*H₃/MOM-*C*H₃); 37.9/38.0 (C-9'); 37.0 (C-1'); 35.8/35.9 (C-5'); 32.1 (C-2'); 30.0 (C-3'); 25.6/25.8 (C-4'); 23.6/23.7 (C-11'); 17.7 (C-β); 7.0 (Si(*C*H₂CH₃)₃); 5.0/5.1 (Si(*C*H₂*C*H₃)₃); -1.4 (Si(*C*H₃)₃).

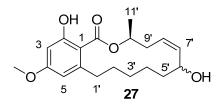
IR (neat, v/cm⁻¹): 2950, 2875, 1646, 1613, 1577, 1320, 1251, 1204, 1157, 1096, 1037, 837, 743, 725.


HRMS (ESI): m/z calcd for C₃₂H₅₈NaO₇Si₂ [M-Na]⁺: 633.3613, found: 633.3616.

Seco acid 25: To a solution of 24 (746 mg, 1.22 mmol, 1 equiv) in THF (45 ml) was added TBAF (1 M in THF; 2.4 ml, 2.44 mmol, 2 equiv) and the reaction mixture was stirred for 2 h. Sat aqu NH₄Cl was then added and the mixture was extracted with EtOAc (3 x 10 ml). The combined organic extracts were dried over MgSO₄, filtered and the solvent was evaporated *in vacuo*. The crude product was purified by FC (EtOAc/MeOH 100:0 \rightarrow 10:1 \rightarrow 2:1) to give 25 (436 mg, 90%) as a light-brown resin.

R_f = 0.43 (EtOAc/MeOH 10:1).

¹**H-NMR** (400.1 MHz, CDCl₃): δ 6.25 (s, 1H, H-3/H-5); 5.17 (s, 1H, H-3/H-5); 5.58-5.45 (m, 1H, H-8'); 5.30-5.22 (m, 1H, H-7'); 4.71-4.43 (m, 2H, MOM-C*H*₂); 4.33-4.28 (m, 1H, H-6'); 3.89-3.81 (m, 1H, H-10'); 3.73 (s, 3H, 4-O-C*H*₃); 3.32 (s, 3H, MOM-*CH*₃); 2.35-2.12 (m, 2H, H-9'); 3.13-2.94 (m, 2H, H-1'); 1.79-1.15 (m, 11H, H-2', H-3', H-4', H-5', H-11'). **IR** (neat, v/cm⁻¹): 3367, 2933, 2877, 1610, 1582, 1430, 1375, 1157, 1034, 843. **HRMS (ESI)**: *m*/*z* calcd for C₂₁H₃₂NaO₇ [M-Na]⁺: 419.2040, found: 419.2040.


Protected macrolactone 26: To solution of **25** (427 mg, 1.08 mmol, 1 equiv) in toluene (150 ml, 0.007 M) and THF (4 ml) were added PPh₃ (565 mg, 2.16 mmol, 2 equiv) und DEAD (350 µl, 2.16 mmol, 2 equiv) and the reaction mixture was stirred for at rt for 1 h. The whole mixture was then adsorbed on Celite and purified by FC (hexane/EtOAc $10:1 \rightarrow 5:1 \rightarrow 3:1$) to give **26** (261 mg, 64%) as an off-white solid.

$\mathbf{R}_{\mathbf{f}} = 0.80$ (hexane/EtOAc 1:1).

¹**H-NMR** (400.1 MHz, CDCl₃): δ 12.14 (s, 1H, 2-O*H*); 6.32-6.31 (m, 1H, H-3); 6.29-6.27 (m, 1H, H-5); 5.60-5.92 (m, 1H, H-8'); 5.51-5.46 (m, 0.4H, H-7'); 5.44-5.37 (m, 1H, H-10'); 5.34-5.28 (m, 0.6H, H-7'); 5.10-5.03 (m, 0.5H, H-10'); 4.53-4.70 (m, 2H, MOM-C*H*₂); 4.40-4.56 (m, 1H, H-6'); 3.79 (s, 3H, 4-O-C*H*₃); 3.37 (s, 3H, MOM-C*H*₃); 3.21-3.07 (m, 1H, H-1'); 2.98-2.88 (m, 1H, H-9'); 2.73-2.51 (m, 1H, H-1'); 2.247-2.27 (m, 1H, H-9'); 1.78-1.72 (m, 1H, H-5'); 1.62-1.22 (m, 10H, H-2', H-3', H-4', H-5', H-11'(d, 3H, *J* = 6.7 Hz)).

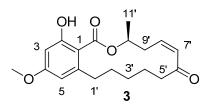
¹³**C-NMR** (100 MHz, CDCl₃): δ 172.0 (C=O); 166.3 (C-2); 165.4 (C-2); 164.1 (C-4); 164.0 (C-4); 148.2 (C-6); 148.1 (C-6); 133.1 (C-7'); 132.1 (C-7'); 130.7 (C-8'); 127.6 (C-8'); 109.5 (C-5); 109.2 (C-5); 105.8 (C-1); 105.1 (C-1); 98.8 (C-3); 98.7 (C-3); 93.6 (MOM-*C*H₂); 93.5 (MOM-*C*H₂); 72.7 (C-10'); 71.9 (C-10'); 70.6 (C-6'); 69.1 (C-6'); 55.3/55.4 (MOM-*C*H₃/4-O-*C*H₃); 36.1 (C-1'); 35.1 (C-9'); 34.4 (C-1'); 33.4/33.5 (C-5'/C-9'); 30.9 (C-2'); 29.3 (C-2'); 27.4 (C-3'); 27.1 (C-3'); 24.6 (C-4'); 22.8 (C-4'); 21.4 (C-11'); 18.5 (C-11').

IR (neat, v/cm⁻¹): 2932, 2860, 1736, 1640, 1612, 1576, 1249, 1204, 1158, 1033, 829. **HRMS (ESI)**: *m*/*z* calcd for C₂₁H₃₀NaO₆ [M-Na]⁺: 401.19346, found: 401.1935.

Macrolactone 27: To a solution of **26** (235 mg, 0.62 mmol) in MeOH (21 ml) was added sulfonic acid resin (3.1 mmol/g; 220 mg, 0.68 mmol) and the mixture was refluxed for 3 h. The resin was then removed by filtration and washed with MeOH.

The filtrate was evaporated *in vacuo* and the residue was purified by FC (hexane/EtOAc $4:1 \rightarrow 2:1 \rightarrow 1:1$) to give **27** (152 mg, 73%) as colorless crystals.

R_f = 0.47 (hexane/EtOAc 1:1).


M.p: 66 °C.

¹**H-NMR** (400.1 MHz, CDCl₃): δ 12.09 (s, 0.45H, 2-O*H*); 11.78 (s, 0.4H, 2-O*H*); 6.32 (d, J = 2.6 Hz, 1H, H-3); 6.29 (d, J = 2.6 Hz, 1H, H-5); 5.82-5.76 (m, 0.45H, H-8'); 5.65-5.60 (m, 0.5H, H-7'); 5.56-5.50 (m, 0.54H, H-8'); 5.48-5.38 (m, 1.5H, H-10' (1H), H-7' (0.5H)); 4.61-4.56 (m, 0.55H, H-6'); 4.48-4.53 (m, 0.45H, H-6'); 3.22-3.06 (m, 1H, H-1'); 2.97-2.84 (m, 1H, H-9'); 2.73-2.53 (m, 1H, H-1'); 2.49-2.42 (m, 0.5H, H-9'); 2.35-2.29 (m, 0.5H, H-9'); 1.79-1.68 (m, 1H, H-5'); 1.67-1.30 (m, 9.45H, H-2', H-3', H-4', H-5', H-11 (d, J = 6.6 Hz)); 1.22-1.17 (m, 0.55H, H-4').

¹³**C-NMR** (100 MHz, CDCl₃): δ 171.8 (C=O); 171.3 (C=O); 166.1 (C-2); 165.5 (C-2); 164.1 (C-4); 164.1 (C-4); 148.1 (C-6); 135.7 (C-7'); 134.9 (C-7'); 129.1 (C-8'); 126.0 (C-8'); 109.3 (C-5); 109.3 (C-5); 105.7 (C-1); 105.2 (C-1); 98.8 (C-3); 98.8 (C-3); 72.6 (C-10'); 71.8 (C-10'); 67.8 (C-6'); 66.5 (C-6'); 55.4 (4-O-CH₃); 36.1 (C-5'); 35.7 (C-5'); 35.4 (C-1'); 35.2 (C-9'); 34.4 (C-1'); 33.3 (C-9'); 30.5 (C-2'); 29.4 (C-2'); 27.4 (C-3'); 27.2 (C-3'); 24.4(C-4'); 22.7 (C-4'); 21.4 (C-11'); 18.4 (C-11').

IR (neat, v/cm⁻¹): 3440, 2932, 2856, 1739, 1637, 1611, 1575, 1248, 1201, 1158, 1040, 826.

HRMS (ESI): *m*/*z* calcd for C₁₉H₂₆NaO₅ [M-Na]⁺ 357.16725, found: 357.1672.

Dideoxy L-783277 (3): To a solution of **27** (91 mg, 0.27 mmol, 1 equiv) in CH_2Cl_2 (5 ml) was added DMP (15% in CH_2Cl_2 ; 400 µl, 0.19 mmol, 0,7 equiv). The mixture was stirred for 30 minutes and a second portion of DMP (400 µl, 0.19 mmol, 0,7 equiv) was added. After 1 h a third portion of DMP (330 µl, 0.16 mmol, 0,6 equiv) was added. After 3 h the mixture was directly put on a column and purified by FC (hexane/EtOAc 5:1) to give **3** (65 mg, 72%) as a colorless crystals.

 R_{f} = 0.18 (hexane/EtOAc 10:1).

M.p.: 100 °C.

 $[\alpha]_D^{20} = -24.5^\circ$ (*c* = 0.89, CHCl₃).

¹**H-NMR** (400.1 MHz, CDCl₃): δ 6.35-6.32 (m, 1H, H-3); 6.30-6.29 (m, 1H, H-7'); 6.24-6.23 (m, 1H, H-5); 5.92-5.86 (m, 1H, H-8'); 5.52-5.44 (m, 1H, H-10'); 3.79 (s, 3H, 4-OC*H*₃); 3.29-3.20 (m, 1H, H-9'); 3.15-3.09 (m, 1H, H-1'); 2.64-2.57 (m, 1H, H-5'); 2.46-2.41 (m, 1H, H-9'); 2.40-2.32 (m, 1H, H-1'); 2.27-2.21 (m, 1H, H-5'); 2.09-2.02 (m, 1H, H-4'); 1.53-1.43 (m, 3H, H-3', H-2', H-4'); 1.40 (d, *J* = 5.7 Hz, 3H, H-11'); 1.36-1.23 (m, 2H, H-3' und H-2').

¹³**C-NMR** (100.6 MHz, CDCl₃): δ 204.7 (C=O); 171.6 (C-6'); 166.3 (C-2); 164.1 (C-4); 147.8 (C-6); 138.9 (C-8'); 132.7 (C-7'); 110.5 (C-5); 104.8 (C-1); 99.1 (C-3); 72.4 (C-10'); 40.3 (C-5'); 55.4 (4-O-CH₃); 37.3 (C-1'); 36.3 (C-9'); 31.4 (C-2'); 27.2 (C-3'); 24.0 (C-4'); 21.2 (C-11').

IR (near, v/cm⁻¹): 3060, 2928, 2854, 1728, 1685, 1642, 1616, 1575, 1319, 1254, 1205, 1162, 1039, 826.

HRMS (ESI): *m*/*z* calcd for C₁₉H₂₄NaO₅ [M-Na]⁺ 355.15159, found: 355.1516.

5. Individual IC₅₀ values for kinase inhibition by L-783277 and 1

Kinase ^c	IC ₅₀ [nM]			
Killase	L-783277	1	2	3
ALK	810/740/740	850/730/710	> 10000	3500/4400
ERK2	950/1300	6600/6400	> 10000	> 10000
EPHB4	>10000	7400/7500	> 10000	> 10000
cKIT	150/360/400	540/770/710	7600/8500	> 10000
LCK	6200/7000	4800/4700	> 10000	> 10000
$MEK2^d$	15 ^e	N. D.	N. D.	6840 ^e
MK5	640^{e}	N. D.	N. D.	> 10000
MNK2	N. D.	150 ^e	N. D.	> 10000
PDGFR α^{f}	2.1/0.64/4.4	6.0/7.4/8.3	180/220	95/100
RET	>10000	9900/7200	>10000	> 10000
TYK2	4100/5600	4400/5700	> 10000	> 10000
VEGFR2	2.0/3.4/0.6	4.7/5/3/5/6	230/190	170/190

Table 1A: Inhibition of protein kinases by RL L-783277, 1, 2, and 3^{*a,b*}