Supporting Information

Organic Dyes Incorporating Bis-Hexapropyltruxeneamino Moiety for Efficient Dye-Sensitized Solar Cells

Meng Lu, Mao Liang, * Hong-Yu Han, Zhe Sun and Song Xue*
Department of Applied Chemistry, Tianjin University of Technology, Tianjin, 300384, P.R.China. Fax: +86-22-60214250; Tel: +86-22-60214250; E-mail: liangmao717@126.com; xuesong@ustc.edu.cn
\section*{List of Contents}
(1) General Remark...S2
(2) Synthetic Routes..S2
(3) Characterization data for compounds $2,3 \ldots \ldots$
(4) Characterization data for compounds MXD5, 4..S4

(6) Characterization data for compounds MXD 6, 7 ..S6
(7) Characterization data for compounds 8, MXD7, Figure S1............................. .S7
(8) Figure S2 - S3 ..
(9) Table S1 S9

(11) Figure S6 and References .. S11

[^0]
1. Synthesis and characterization.

1.1 General

The synthesis was carried out as outlined in Scheme 1. Treatment of Iodide-substituted truxene 1 with powdered anhydrous potassium carbonate, copper bronze and 18-crown-6 afforded a key intermediate $\mathbf{2}$. Aldehyde 3 was prepared from 2 via bromonation reaction with NBS and Suzuki reaction with 5-formylthiophen-2-ylboronic acid according to literature procedure. Aldehyde $\mathbf{4}$ was synthesized by Vilsmeier-Haack reaction of $\mathbf{2}$ with POCl_{3} and DMF, and then cross-coupled with ethyl methyl(thiophen-2-ylmethyl)phosphinate under wittig-Horner reaction to give aldehyde 5. Aldehyde $\mathbf{8}$ was prepared from 2 via iodonation reaction with NIS and stille reaction with 2-(tributylstannyl)-3,4-(ethelenedioxy)thiophene. The synthetic procedure for aldehyde $\mathbf{6 , 9}$ were similar to that for aldehyde 4 except temperature shown in Scheme 2. Subsequently, the target dye MXD5-7 were obtained via Knoevenagel condensation reaction of the aldehyde 3, 6, 9 with cyanoacetic acid in the presence of a catalytic amount of piperidine.

Scheme 1. Synthetic Routes to the MXD5-7 Dyes ($\mathrm{R}=$ propyl) ${ }^{\text {a }}$
${ }^{a}$ (a) aniline, Cu powder, 18-Crown-6, $\mathrm{K}_{2} \mathrm{CO}_{3}$, 1,2-dichlorobenzene, reflux. (b) NIS, CHCl_{3}. (c) 5-formylthiophen-2-ylboronic acid, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{DME} / \mathrm{H}_{2} \mathrm{O}$, reflux. (d) $\mathrm{CNCH}_{2} \mathrm{COOH}, \mathrm{CH}_{3} \mathrm{CN}$,
piperidine, reflux. (e) $\mathrm{DMF} / \mathrm{POCl}_{3}, 100 \square$. (f) ethyl methyl(thiophen-2-ylmethyl)phosphinate, $\mathrm{Bu}^{\mathrm{t}} \mathrm{OK}, \mathrm{THF}$. (g) $\mathrm{DMF} / \mathrm{POCl}_{3}, 50 \square$. (h) NBS, CHCl_{3}. (i) 2-(Tributylstannyl)-3,4-(ethelenedioxy)thiophene, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$, toluene, reflux. (j) $\mathrm{DMF} / \mathrm{POCl}_{3}$, rt.

Synthesis of Triarylamine 2

A mixture of truxene iodide $\mathbf{1}(4.6 \mathrm{~g}, 6.39 \mathrm{mmol})$, aniline $(0.238 \mathrm{~g}, 2.56 \mathrm{mmol})$, fresh $\mathrm{Cu}(0.63 \mathrm{~g}, 9.84$ $\mathrm{mmol})$ powder, $\mathrm{K}_{2} \mathrm{CO}_{3}(1.763 \mathrm{~g}, 12.8 \mathrm{mmol})$ powder, 18 -crown-6 ether ($0.124 \mathrm{~g}, 2.48 \mathrm{mmol}$) and 1,2-dichlorobenzene (50 mL) was refluxed for 18 h under nitrogen atmosphere. After cooling to room temperature, the solvent was removed under reduced pressure. Ethyl acetate was added before cooling down to room temperature. The organic layer was separated and washed 3 times with water, dried over anhydrous MgSO_{4}, and filtered. After removing the solvent, the resulting solid was purified by column chromatography on silica gel (petroleum : dichloromethane $=10: 1$ as eluent) to give a buff powder $(2.9 \mathrm{~g}$, 35.1%). Mp: 155-157 \square. IR (KBr): $1396,1457,1559,3464 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.30-8.42$ $(\mathrm{m}, 6 \mathrm{H}), 7.35-7.54(\mathrm{~m}, 21 \mathrm{H}), 2.90-2.92(\mathrm{~m}, 12 \mathrm{H}), 2.06-2.09(\mathrm{~m}, 12 \mathrm{H}), 0.49-0.79(\mathrm{~m}, 60 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 155.2,153.7,153.6,145.0,144.8,144.6,144.3,140.4,140.3,140.2,138.5,138.3,129.2$, $126.3,126.0,124.7,124.6,122.4,122.3,55.8,55.7,55.6,39.5,39.4,39.3,39.2,29.8,29.6,17.6,17.5$, 17.4, 17.3, 14.7, 14.6 14.4. HRMS (ESI) calcd for $\mathrm{C}_{96} \mathrm{H}_{111} \mathrm{~N}\left(\mathrm{M}+\mathrm{H}^{+}\right)$: 1278.8707. Found: 1278.8696.

Synthesis of Carbaldehyde 3

Compound $2(500 \mathrm{mg}, 0.39 \mathrm{mmol})$ and NIS $(90 \mathrm{mg}, 0.39 \mathrm{mmol})$ were dissolved in chloroform (10 mL) and stirred at $0 \square$ for 2 h . The mixture was poured into water and extracted with dichloromethane. Then drying over anhydrous MgSO_{4}, the product was afforded after removing solvent as pink powder. After 5-formylthiophen-2-ylboronic acid ($74 \mathrm{mg}, 0.47 \mathrm{mmol}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(50 \mathrm{mg}, 0.042 \mathrm{mmol})$, aqueous 1 M $\mathrm{Na}_{2} \mathrm{CO}_{3}(3 \mathrm{~mL})$, and 10 mL DME was added, the mixture was refluxed overnight under nitrogen atmosphere. Ethyl acetate (10 mL) was added before cooling down to room temperature. The organic layer was separated and washed 3 times with water, dried over anhydrous MgSO_{4}, and filtered. After removing the solvent, the resulting solid was purified by column chromatography on silica gel (petroleum : ethyl acetate $=10: 1$ as eluent) to give an orange yellow powder $3(230 \mathrm{mg}, 42.3 \%) . \mathrm{Mp}: 70-72{ }^{\circ} \mathrm{C} . \mathrm{IR}$ (KBr): $1139,1396,1456,1559,3464 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.91(\mathrm{~s}, 1 \mathrm{H}), 8.28-8.42(\mathrm{~m}, 6 \mathrm{H})$, 7.22-7.56 (m, 23H), 2.89-2.92 (m, 12H), 1.92-2.19 (m, 12H), 0.5-0.78 (m, 60H). ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 182.9,182.7,155.5,154.8,154.4,153.8,153.6,149.4,145.3,144.8,144.6,144.5,142.5,141.4$,
$140.3,138.4,138.3,138.0,137.9,137.8,137.5,136.3,129.5,129.3,128.9,127.3,126.5,126.4,126.1$, $125.6,124.7,124.6,122.9,122.6,122.4,118.7,55.8,55.7,55.6,39.5,39.4,39.3,39.1,29.8,29.6,17.6$, 17.5, 17.4, 17.3, 14.7, 14.6 14.4. HRMS (ESI) calcd for $\mathrm{C}_{101} \mathrm{H}_{113} \mathrm{NOS}\left(\mathrm{M}+\mathrm{H}^{+}\right)$: 1388.8616. Found: 1388.8631.

Synthesis of MXD5

To a solution of compound $\mathbf{3}(170 \mathrm{mg}, 0.12 \mathrm{mmol})$ and cyanoacetic acid ($14 \mathrm{mg}, 0.16 \mathrm{mmol}$) was added acetonitrile $(10 \mathrm{~mL})$, dichlormethane $(5 \mathrm{~mL})$ and piperidine $(50 \mu \mathrm{~L})$. The solution was refluxed for 24 h . After cooling the solution, the solvent was removed in vacuo. Dichloromethane was added. The organic layer was separated and washed 3 times with water, dried over anhydrous MgSO_{4}, and filtered. The pure product was obtained by silica gel chromatography (dichloromethane : methanol $=10: 1$ as eluent) to give a salmon pink powder MXD5 (140 mg, 78.7\%). Mp: 133-135 \square. IR (KBr):1396, 1456, 1559, 2264, 2957, $3364 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.32-8.38(\mathrm{~m}, 6 \mathrm{H}), 7.16-7.68(\mathrm{~m}, 23 \mathrm{H}), 2.90-2.95(\mathrm{~m}, 12 \mathrm{H})$, $1.86-2.16(\mathrm{~m}, 12 \mathrm{H}), 0.37-0.78(\mathrm{~m}, 60 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.3,155.4,153.7,153.6,145.3$, $144.8,144.5,144.4,140.3,140.2,138.3,138.2,137.9,136.2,126.4,126.1,125.5,124.7,122.9,122.5$, $122.3,118.6,60.5,55.8,55.7,55.6,39.4,39.3,39.2,29.8,17.5,17.3,14.7,14.6,14.5$. HRMS (ESI) calcd for $\mathrm{C}_{104} \mathrm{H}_{114} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right): 1455.8674$. Found: 1455.8682 .

Synthesis of Carbaldehyde 4

To a solution of compound $2(500 \mathrm{mg}, 0.39 \mathrm{mmol})$ in anhydrous DMF ($10 \mathrm{~mL}, 126 \mathrm{mmol}$) at $0 \square$ under nitrogen atmosphere was added $\mathrm{POCl}_{3}(1 \mathrm{~mL}, 6.70 \mathrm{mmol})$ dropwise and stirred for 1 h . Subsequently, the mixture was heated at $100 \square$ for 4 h . The mixture was cooled and poured into an ice-water with vigorous stirring. After neutralization with NaOH , extraction with ethyl acetate, the organic fractions were combined and dried over MgSO_{4}. The resulting solid was purified by column chromatography on silica gel (petroleum: ethyl acetate $=10: 1$ as eluent) to give a bright yellow powder $4(450 \mathrm{mg}, 88.1 \%) . \mathrm{Mp}$: $133-135 \square . \mathrm{IR}(\mathrm{KBr}): 1396,1456,1559,1637,3464 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.87(\mathrm{~s}, 1 \mathrm{H})$, 8.33-8.38 (m, 6H), 7.28-7.81 (m, 2H), 7.21-7.51 (m, 18H), 2.90-2.94 (m, 12H), 2.01-2.07 (m, 12H), $0.47-0.79(\mathrm{~m}, 60 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 190.6,155.7,153.8,153.6,153.5,145.0,144.8,144.6$,
$140.3,140.2,138.5,138.4,137.8,137.5,131.5,126.6,126.2,125.8,124.8,124.7,124.0,122.5,122.4$, $120.0,55.9,55.8,55.7,39.5,39.3,39.1,38.9,30.3,29.8,29.6,23.1,22.9,22.8,20.3,19.3,17.6,17.4,14.8$, 14.7, 14.6. HRMS (ESI) calcd for $\mathrm{C}_{97} \mathrm{H}_{111} \mathrm{NO}\left(\mathrm{M}+\mathrm{H}^{+}\right):$1306.8739. Found: 1306.8769.

Synthesis of Compound 5.

To a suspension of ethyl methyl(thiophen-2-ylmethyl)phosphinate ($98 \mathrm{mg}, 0.42 \mathrm{mmol}$) in 20 mL dry THF at $0 \square$ under nitrogen atmosphere, $\mathrm{Bu}^{\mathrm{t}} \mathrm{OK}(47 \mathrm{mg}, 0.42 \mathrm{mmol})$ was added and the mixture turned red. The mixture was stirred at this temperature for 1 h before compound $4(180 \mathrm{mg}, 0.14 \mathrm{mmol})$ dissolved in 10 ml dry THF was added dropwise. The mixture was stirred at $0 \square$ for 1 h and moved into room temperature for another 12 h . Saturated $\mathrm{NH}_{4} \mathrm{Cl}$ was added and the resulting mixture was extracted with Ethyl acetate. The combined extracts were washed with water and dried over MgSO_{4}. After filtration and removal of the solvent under vacuum, the crude product was purified by column chromatography on silica gel (petroleum : dichloromethane $=10: 1$ as eluent) to give a yellow powder $5(120 \mathrm{mg}, 64.8 \%) . \mathrm{Mp}$: 91-93 \square. $\operatorname{IR}(\mathrm{KBr}): 1103,1396,1487,3464 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 8.22-8.42(\mathrm{~m}, 6 \mathrm{H}), 7.16-7.52(\mathrm{~m}$, $22 H), 6.89-7.14(\mathrm{~m}, 3 \mathrm{H}), 2.86-3.03(\mathrm{~m}, 12 \mathrm{H}), 1.93-2.19(\mathrm{~m}, 12 \mathrm{H}), 0.52-0.83(\mathrm{~m}, 60 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 155.3,153.8,153.7,147.6,146.0,145.9,144.9,144.4,144.3,143.4,140.4,140.3,138.3$, $138.2,138.1,135.6,135.4,131.1,128.1,127.8,127.7,127.2,126.4,126.1,125.6,125.4,124.7,123.9$, $123.6,122.4,120.2,118.1,55.8,55.7,55.6,39.5,39.4,39.3,29.8,29.6,17.6,17.4,14.7,14.6$. HRMS (ESI) calcd for $\mathrm{C}_{102} \mathrm{H}_{115} \mathrm{NS}\left(\mathrm{M}+\mathrm{H}^{+}\right):$1386.8823. Found: 1386.8808 .

Synthesis of Carbaldehyde 6

The product was synthesized according to the procedure for synthesis of 4, giving an orange powder $\mathbf{6}$ of the product in 79.6% yield. Mp: 95-96 \square. IR (KBr): 1396, $1487,1637,3464 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 9.87(\mathrm{~s}, 1 \mathrm{H}), 8.25-8.42(\mathrm{~m}, 6 \mathrm{H}), 7.69(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.53(\mathrm{~m}, 24 \mathrm{H}), 2.83-3.01(\mathrm{~m}$, $12 \mathrm{H}), 1.93-2.18(\mathrm{~m}, 12 \mathrm{H}), 0.52-0.79(\mathrm{~m}, 60 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 182.5,155.4,153.8,153.7$, $153.3,145.5,144.8,144.6,144.4,140.4,140.3,138.3,138.0,137.5,136.1,132.8,129.5,128.0,126.4$, $126.1,126.0,125.5,124.7,124.6,122.8,122.4,118.7,118.5,55.8,55.7,55.6,39.4,39.3,29.8,24.8,22.8$, 17.6, 17.4, 14.7, 14.6, 14.2. HRMS (ESI) calcd for $\mathrm{C}_{103} \mathrm{H}_{115} \mathrm{NOS}\left(\mathrm{M}+\mathrm{H}^{+}\right)$:1414.8772. Found: 1414.8787.

Synthesis of MXD 6

The product was synthesized according to the procedure for synthesis of MXD5, giving a fuchsia powder MXD6 of the product in 76.7% yield. Mp: 111-113 \square. IR (KBr): $1487,1637,2263,3374 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta 8.30-8.74(\mathrm{~m}, 8 \mathrm{H}), 7.16-7.58(\mathrm{~m}, 23 \mathrm{H}), 2.93-2.99(\mathrm{~m}, 12 \mathrm{H}), 1.95-2.21(\mathrm{~m}$, $12 \mathrm{H}), 0.51-0.79(\mathrm{~m}, 60 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 168.8,168.1,153.8,153.7,144.9,140.4,140.3$, $138.4,128.4,124.7,122.4,118.7,116.0,112.6,95.2,55.8,55.7,39.4,39.3,31.7,29.8,29.6,29.2,29.0$, $24.8,22.9,22.8,22.7,17.6,17.4,14.8,14.7,14.6,14.2$. HRMS (ESI) calcd for $\mathrm{C}_{106} \mathrm{H}_{116} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ $\left(\mathrm{M}+\mathrm{H}^{+}\right): 1481.8813$. Found: 1481.8844.

Synthesis of Compound 7.

Compound $2(1.2 \mathrm{~g}, 0.94 \mathrm{mmol})$ and NBS $(168 \mathrm{mg}, 0.94 \mathrm{mmol})$ were dissolved in chloroform (12 mL) and stirred at $0 \square$ for 4 h . The mixture was poured into water and extracted with dichloromethane. Then drying over anhydrous MgSO_{4}, the product was afforded after removing solvent as buff powder. After 2-(tributylstannyl)-3,4-(ethelenedioxy)thiophene ($700 \mathrm{mg}, 0.62 \mathrm{mmol}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(110 \mathrm{mg}, 0.092 \mathrm{mmol})$, and 50 mL toluene was added, the mixture was refluxed for 7 h under nitrogen atmosphere. After cooling the solution, the solvent was removed in vacuo. Dichloromethane was added. The organic layer was separated and washed 3 times with water, dried over anhydrous MgSO_{4}, and filtered. The pure product was obtained by silica gel chromatography. (petroleum : dichloromethane $=10: 1$ as eluent) to give a yellow powder 7 ($526 \mathrm{mg}, 39.6 \%$). Mp: 108-109 \square. IR (KBr): 1103 , 1637, $3420 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \mathrm{NMR}$ (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 8.19-8.39(\mathrm{~m}, 6 \mathrm{H}), 7.68(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.14-7.49(\mathrm{~m}, 18 \mathrm{H}), 6.28(\mathrm{~s}, 1 \mathrm{H}), 4.29(\mathrm{~d}, J=8.7$ $\mathrm{Hz}, 4 \mathrm{H}), 2.83-2.89(\mathrm{~m}, 12 \mathrm{H}), 1.89-2.12(\mathrm{~m}, 12 \mathrm{H}), 0.48-0.73(\mathrm{~m}, 60 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $155.2,153.7,146.5,145.9,144.8,144.3,144.2,142.3,140.4,140.3,138.2,138.1,137.6,135.3,128.6$, $127.5,126.9,126.6,126.3,126.0,125.4,124.7,123.9,122.3,122.1,117.8,117.6,64.8,64.5,55.7,55.6$, $39.4,39.3,39.0,29.7,29.5,29.4,17.5,17.3,14.7,14.6,14.5$. HRMS (ESI) calcd for $\mathrm{C}_{102} \mathrm{H}_{115} \mathrm{NO}_{2} \mathrm{~S}$ $\left(\mathrm{M}+\mathrm{H}^{+}\right): 1418.8722$. Found: 1418.8730.

Synthesis of Carbaldehyde 8.

The product was synthesized according to the procedure for synthesis of $\mathbf{4}$, giving an orange powder $\mathbf{8}$ of the product in 76.6% yield. Mp: 122-124 \square. IR (KBr): 1144, 1637, $3420 \mathrm{~cm}^{-1} \cdot{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 9.94(\mathrm{~s}, 1 \mathrm{H}), 8.30-8.36(\mathrm{~m}, 6 \mathrm{H}), 7.76(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.14-7.51(\mathrm{~m}, 18 \mathrm{H}), 4.40(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $4 \mathrm{H}), 2.89(\mathrm{~s}, 12 \mathrm{H}), 1.86-2.18(\mathrm{~m}, 12 \mathrm{H}), 0.47-0.73(\mathrm{~m}, 60 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 179.4,155.4$, $155.3,153.7,153.6,149.2,148.6,145.4,144.8,144.6,144.4,140.3,140.2,138.4,138.3,138.0,137.0$, $136.1,129.6,127.9,126.4,126.1,125.5,125.1,124.7,124.6,122.8,122.4,122.3,118.6,114.8,65.2,64.6$, $55.8,55.7,55.6,39.4,39.3,39.2,29.7,29.5,17.5,17.3,14.6,14.5,14.4$. HRMS (ESI) calcd for $\mathrm{C}_{103} \mathrm{H}_{115} \mathrm{NO}_{3} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right): 1446.8670$. Found: 1446.8641 .

Synthesis of MXD7.

The product was synthesized according to the procedure for synthesis of MXD5, giving a red powder MXD7 of the product in 71.7% yield. Mp: 140-142 $\square . \mathrm{IR}(\mathrm{KBr}): 1144,2264,3364 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.23-8.52(\mathrm{~m}, 7 \mathrm{H}), 7.82(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.18-7.50(\mathrm{~m}, 18 \mathrm{H}), 4.42-4.45(\mathrm{~m}, 4 \mathrm{H})$, 2.89-2.93 (m, 12H), 1.91-2.16 (m, 12H), 0.48-0.78 (m, 60H). ${ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 155.4,153.7$, $153.6,145.3,144.8,144.6,144.4,140.3,140.2,138.3,138.2,137.9,137.2,136.3,128.2,126.4,126.0$, $125.5,124.7,123.0,122.3,118.7,64.7,60.4,55.8,55.7,55.6,39.4,39.3,39.2,30.3,29.7,17.5,17.3,14.6$, 14.5. HRMS (ESI) calcd for $\mathrm{C}_{106} \mathrm{H}_{116} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right): 1513.8729$. Found: 1513.8797.

Figure S1. Optimized geometrical configuration of MXD5-7.

Figure S2. Absorption and emission spectra of dyes MXD5-7 in dichloromethane

Figure S3. Frontier molecular orbitals of the MXD5-7 dyes calculated at B3LYP/6-31+g(d) level.

Table S1. Calculated TDDFT Excitation Energies (eV, nm), Oscillator Strengths (f), and Molecular Orbital Transition assignment. ${ }^{\text {a }}$

State	$\mathrm{E}(\mathrm{ev}, \mathrm{nm})$	f	Transition assignment	
1	2.16 (572)	0.64	$\mathrm{H} \rightarrow \mathrm{L}(89 \%)$	MXD5
5	3.03 (408)	0.54	$\mathrm{H}-4 \rightarrow \mathrm{~L}(84 \%)$	
6	3.29 (376)	0.80	$\mathrm{H} \rightarrow \mathrm{L}+1$ (89\%)	
7	3.41 (363)	0.35	$\mathrm{H}-5 \rightarrow \mathrm{~L}(37 \%) ; \mathrm{H} \rightarrow \mathrm{L}+2(56 \%)$	
1	2.10 (589)	0.97	$\mathrm{H} \rightarrow \mathrm{L}(87 \%)$	MXD6
4	2.88 (429)	0.92	$\mathrm{H}-3 \rightarrow \mathrm{~L}(72 \%)$	
6	3.21 (386)	0.19	$\mathrm{H}-3 \rightarrow \mathrm{~L}(2 \%) ; \mathrm{H} \rightarrow \mathrm{L}+1(60 \%) ; \mathrm{H} \rightarrow \mathrm{L}+2(6 \%)$	
7	3.23 (383)	0.71	$\mathrm{H}-5 \rightarrow \mathrm{~L}(3 \%) ; \mathrm{H} \rightarrow \mathrm{L}+2$ (84\%)	
1	2.28 (544)	0.74	$\mathrm{H} \rightarrow \mathrm{L}(89 \%)$	MXD7
4	3.12 (396)	0.13	$\mathrm{H}-3 \rightarrow \mathrm{~L}(72 \%) ; \mathrm{H}-2 \rightarrow \mathrm{~L}(23 \%)$	
5	3.13 (395)	0.57	$\mathrm{H}-2 \rightarrow \mathrm{~L}(56 \%) ; \mathrm{H} \rightarrow \mathrm{L}+2(4 \%)$	
6	3.23 (383)	0.85	$\mathrm{H} \rightarrow \mathrm{L}+1$ (89\%)	

[^1]

Figure S4. IPCE spectra for DSSCs based on MXD5-7 with and without the addition of CDCA

Figure S5. Absorption spectra for TiO_{2} films ($3 \mu \mathrm{~m}$) exposed to dye solutions containing 0 and 3 mM CDCA. There are no significant changes between the maximum absorption wavelengths of MXD5-7 on the TiO_{2} film with and without CDCA addition, indicating that the possible π-stacked aggregation is not obvious.

Figure S6. EIS for DSSCs based on the MXD6 dye with and without the addition of CDCA measured in the dark under -0.7 V bias displayed in the form of Nyquist plots.

References

[S1] Xiao-Yu Cao, Wei Zhang, Hong Zi, and Jian Pei, Org. Lett., 2004, 26, 4845.

[^0]: * Corresponding author. Tel.: +86 22 60214250; fax: +86 22 60214252;
 e-mail address: liangmao717@126.com (Mao Liang); xuesong@ustc.edu.cn (Song Xue)

[^1]: ${ }^{\text {a }}$ Incorporating the optimized model at the B3LYP/6-31G(d) level in vacuo, the lowest 10 singlet-singlet electronic transitions are calculated. Transitions with $f<0.1$ are not shown.

