Supporting Information

Siting and mobility of deuterium absorbed in co-sputtered Mg_{0.65}Ti_{0.35}. A MAS ²H NMR study

S. Srinivasan,¹ P.C.M.M. Magusin,^{1*} R. A. van Santen,¹ P.H.L. Notten,¹ H. Schreuders,² B. Dam²

Affiliations

¹Eindhoven University of Technology, P. O. Box 513, 5600 MB Eindhoven, The Netherlands

² Delft University of Technology, The Netherlands.

* corresponding author; email: p.c.m.m.magusin@tue.nl

Technische Universiteit Eindhoven, P. O. Box 513, Eindhoven, The Netherlands (phone: 0031-402472435)

Static and MAS ²H NMR of MgD₂ and Mg_{0.65}Sc_{0.35}D_{2.2}: experimental and simulated NMR spectra

Figure S1: Static and 8-kHz MAS ²H NMR lineshapes of (a) MgD_2 and (b) $Mg_{0.65}Sc_{0.35}D_{2.2}$ compared to simulated quadrupolar lineshapes

$$\Delta v = \frac{v_{\varrho}}{2} \left[3\cos^2 \theta - 1 + \eta \sin^2 \theta \cos 2\phi \right]$$

for selected values of the quadrupolar coupling constant v_Q = asymmetry parameter η . (a) Main component v_Q = 28 kHz and η = 0.65 combined with 1 % isotropic component due to unknown impurity. (b) lineshapes generated for (green) v_Q = 15 kHz and η = 1 and (purple) v_Q = 17 kHz and η = 0. Both combinations (v_Q , η) describe the MAS sideband pattern of Mg_{0.65}Sc_{0.35}D_{2.2} equally well, but not the static ²H NMR lineshape of this ternary compound.

The inset above the MgD₂ spectrum in Fig. S1a illustrates the rutile structure of MgD₂, in which each deuterium atom has a planar threefold Mg coordination ($d_{Mg-D} = 1.95$ Å) with Mg at the corners of a triangle with one side of 3.01 Å and two sides of 3.52 Å. The inset also shows the principal axes system of the quadrupolar tensor <u>V</u> associated with deuterium at (1- ξ , ξ , $\frac{1}{2}$) with $\xi = 0.303$. The principal tensor values {V₁₁, V₂₂, V₃₃} are proportional to the 2nd order derivatives of the electric potential energy mainly caused by the closest three Mg atoms at (1,0,0), (1,01) and ($\frac{1}{2},\frac{1}{2},\frac{1}{2}$). The asymmetry parameter $\eta = |V_{11} - V_{22}| / V_{33}$ computed from the three 2nd-order derivatives equals 0.61.