## Supporting Information

# Siting and mobility of deuterium absorbed in co-sputtered $\mathbf{M g}_{0.65} \mathbf{T i}_{0.35}$. A MAS ${ }^{2} \mathbf{H}$ NMR study 

S. Srinivasan, ${ }^{1}$ P.C.M.M. Magusin, ${ }^{1 *}$ R. A. van Santen, ${ }^{1}$ P.H.L. Notten, ${ }^{1}$<br>H. Schreuders, ${ }^{2}$ B. Dam ${ }^{2}$

[^0]
# Static and MAS ${ }^{2} \mathrm{H}$ NMR of $\mathrm{MgD}_{2}$ and $\mathrm{Mg}_{0.65} \mathrm{Sc}_{0.35} \mathrm{D}_{2.2}$ : experimental and simulated NMR spectra 



Figure S1: Static and 8-kHz MAS ${ }^{2} \mathrm{H}$ NMR lineshapes of (a) $\mathrm{MgD}_{2}$ and (b) $\mathrm{Mg}_{0.65} \mathrm{Sc}_{0.35} \mathrm{D}_{2.2}$ compared to simulated quadrupolar lineshapes

$$
\Delta v=\frac{v_{Q}}{2}\left[3 \cos ^{2} \theta-1+\eta \sin ^{2} \theta \cos 2 \phi\right]
$$

for selected values of the quadrupolar coupling constant $v_{Q}=$ asymmetry parameter $\eta$. (a) Main component $v_{Q}=28 \mathrm{kHz}$ and $\eta=0.65$ combined with $1 \%$ isotropic component due to unknown impurity. (b) lineshapes generated for (green) $v_{Q}=15 \mathrm{kHz}$ and $\eta=1$ and (purple) $\mathrm{v}_{\mathrm{Q}}=17 \mathrm{kHz}$ and $\eta=0$. Both combinations $\left(\mathrm{v}_{\mathrm{Q}}, \eta\right)$ describe the MAS sideband pattern of $\mathrm{Mg}_{0.65} \mathrm{Sc}_{0.35} \mathrm{D}_{2.2}$ equally well, but not the static ${ }^{2} \mathrm{H}$ NMR lineshape of this ternary compound.

The inset above the $\mathrm{MgD}_{2}$ spectrum in Fig. S1a illustrates the rutile structure of $\mathrm{MgD}_{2}$, in which each deuterium atom has a planar threefold Mg coordination ( $\mathrm{d}_{\mathrm{Mg}-\mathrm{D}}=1.95 \AA$ ) with Mg at the corners of a triangle with one side of $3.01 \AA$ and two sides of $3.52 \AA$. The inset also shows the principal axes system of the quadrupolar tensor $\underline{\mathrm{V}}$ associated with deuterium at $(1-\xi, \xi, 1 / 2)$ with $\xi=0.303$. The principal tensor values $\left\{\mathrm{V}_{11}, \mathrm{~V}_{22}, \mathrm{~V}_{33}\right\}$ are proportional to the $2^{\text {nd }}$ order derivatives of the electric potential energy mainly caused by the closest three Mg atoms at $(1,0,0),(1,01)$ and $(1 / 2,1 / 2,1 / 2)$. The asymmetry parameter $\eta=\left|V_{11}-V_{22}\right| / V_{33}$ computed from the three $2^{\text {nd }}$-order derivatives equals 0.61 .


[^0]:    Affiliations
    ${ }^{1}$ Eindhoven University of Technology, P. O. Box 513, 5600 MB Eindhoven, The Netherlands
    ${ }^{2}$ Delft University of Technology, The Netherlands.

    * corresponding author; email: p.c.m.m.magusin@tue.nl

    Technische Universiteit Eindhoven, P. O. Box 513, Eindhoven, The Netherlands (phone: 0031-402472435)

